

Solution - Exercise TE-01

Stress redistribution around excavation & Kirsch's solutions Redistribution des contraintes autour de l'excavation et solution de Kirsch

Assistant: A. Guggisberg (EPFL-LEMR)

Ex. TE01.1

For verifying if the rock mass strength is reached at the excavation contours (r=R) use the Kirsch's solutions

Pour vérifier si la résistance du massif est atteinte au niveau des contours de l'excavation (r=R), on utilise les solutions de Kirsch

$$\begin{split} &\sigma_{rr} = \frac{\sigma_{\nu}}{2} \Bigg[\Big(1 + K_0 \Big) \Bigg(1 - \frac{R^2}{r^2} \Bigg) - \Big(1 - K_0 \Big) \Bigg(1 - 4 \frac{R^2}{r^2} + 3 \frac{R^4}{r^4} \Bigg) \cos 2\theta \Bigg] \\ &\sigma_{\theta\theta} = \frac{\sigma_{\nu}}{2} \Bigg[\Big(1 + K_0 \Big) \Bigg(1 + \frac{R^2}{r^2} \Bigg) + \Big(1 - K_0 \Big) \Bigg(1 + 3 \frac{R^4}{r^4} \Bigg) \cos 2\theta \Bigg] \end{split}$$

considering the following parameters:

en tenant compte des paramètres suivants :

Tunnel depth, h	Profondeur, h	[m]	400
Unit weight, γ	Poids unitaire, γ	[MN/m ³]	0.026
Radius, R	Rayon, R	[m]	4
Distance, r	Distance, r	[m]	4*
Compressive strength (CS)	Résistance à la compression (CS)	[MN/m ²]	80
Tensile strength (TS)	Résistance à la traction (TS)	[MN/m ²]	5

and solve them at both side-wall and crown considering: et on ressoude l'équation en piédroits et en voûte:

$$I - K_0 = 1$$

Angle theta, θ	[°]	0*	CHECK	90**	CHECK
σr	[MN/m ²]	0	OK (<cs;>TS)</cs;>	0	OK (<cs;>TS)</cs;>
σ_{θ}	[MN/m ²]	20.8	OK (<cs;>TS)</cs;>	20.8	OK (<cs;>TS)</cs;>

^{*} side-wall (springline) - piédroits / ** tunnel crown - calotte

II- $K_0 = 0.1$,

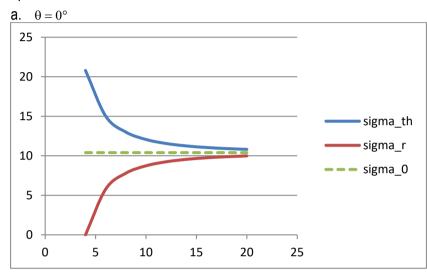
Angle theta, θ	[°]	0*	CHECK	90**	CHECK
$\sigma_{\rm r}$	[MN/m ²]	0	OK (<cs;>TS)</cs;>	0	OK (<cs;>TS)</cs;>
σ_{θ}	[MN/m ²]	30.16	OK (<cs ;="">TS)</cs>	-7.28	N-OK*** (<cs ;="" <del="">>TS)</cs>

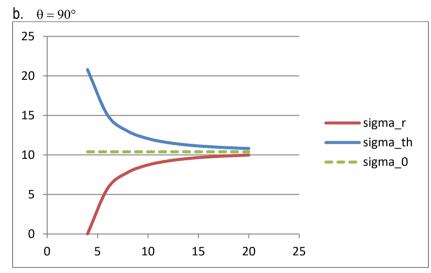
^{*} side-wall (springline) - piédroits / ** tunnel crown - calotte

III- $K_0 = 2.5$.

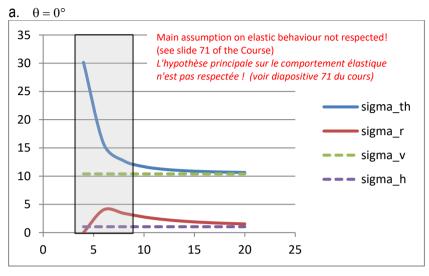
Angle theta, θ	[°]	0*	CHECK	90**	CHECK
σ r	[MN/m ²]	0	OK (<cs;>TS)</cs;>	0	OK (<cs;>TS)</cs;>
σ_{θ}	[MN/m ²]	5.2	OK (<cs;>TS)</cs;>	67.6	OK (<cs;>TS)</cs;>

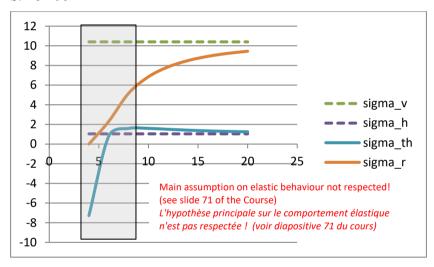
^{*} side-wall (springline) - piédroits / ** tunnel crown - calotte

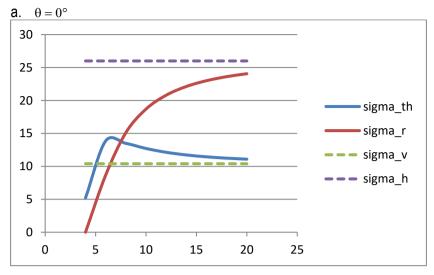

^{***} In this case the value obtained is bigger than the tensile resistance of the rock; this means that the rock around the tunnel contour fails. If a failure happens, one the main assumptions of the Kirsch's solutions (= "linear elastic medium", see slide 71 of the Course) is no more respected and the value obtained can't be taken in into consideration.

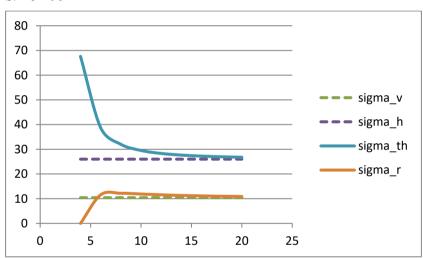

^{***}Dans ce cas, la valeur obtenue est supérieure à la résistance à la traction de la roche, une rupture se produit ce qui signifie que <u>la roche autour du contour du tunnel ne respecte plus l'une des principales hypothèses des solutions de Kirsch (= « milieu élastique linéaire », voir diapositive 71 du cours) et la valeur obtenue ne peut pas être prise en considération.</u>

To determine the principal stresses after the excavation at a distance of 20 m from the tunnel axis (both at crown and at spring line) and plot the results it is necessary to use again the Kirsch's solutions, considering r>4 up to r=20.


Pour déterminer les contraintes principales après l'excavation à une distance de 20 m de l'axe du tunnel (à la fois en voûte et aux piédroits) et dessiner la distribution des contraintes dans l'espace, il est nécessaire d'utiliser à nouveau les solutions de Kirsch, en considérant r>4 jusqu'à r=20.




II- $K_0 = 0.1$



III- $K_0 = 2.5$

b. $\theta = 90^{\circ}$

To answer to the last question "What would have happened with bigger or smaller excavations?" it is important to consider that for a diameter smaller or bigger nothing changes since the stresses are calculated using a ratio R/r and at the tunnel boundary r=R. Thus R/R = 1 for a diameter of 8, 4 or 12 m.

Pour répondre à la dernière question « Que se serait-il passé avec des excavations plus grandes ou plus petites ? », il est important de considérer que pour un diamètre plus petit ou plus grand, rien ne change puisque les contraintes sont calculées en utilisant un rapport R/r et qu'à la limite du tunnel, r=R. Ainsi, R/R = 1 pour un diamètre de 8, 4 ou 12 m.

Ex. TE01.2

The best configuration corresponds to a <u>homogeneous distribution of stresses around the cavity</u>. In order to find the optimal shape for an excavation in a ground mass with $K_0 = 0.5$, it is thus necessary to evaluate the principal stresses at the tunnel contour (i.e. crown and springline) in all cases using the Kirsch's modified solution for elliptical excavation.

La meilleure configuration correspond à une distribution homogène des contraintes autour de la cavité. Afin de trouver la forme optimale d'une excavation dans un massif avec $K_0 = 0,5$, il est donc nécessaire d'évaluer les contraintes principales au niveau du contour du tunnel (c.-à-d. en voûte et aux piédroits) pour les quatre cas en utilisant la solution modifiée de Kirsch pour les cavités de forme elliptique.

$$\theta = \frac{\pi}{2} \quad \sigma_{\theta\theta} = \sigma_{\nu} \left(K_0 - 1 + 2K_0 \frac{h}{w} \right)$$

$$\theta = \pi \quad \sigma_{\theta\theta} = \sigma_{\nu} \left(1 - K_0 + 2\frac{w}{h} \right)$$

	CASE				
$K_0 = 0.5$	Α	В	С	D	
h/w	1	1.5	2	4	
$\sigma_{\theta} = \pi/2$	0.5 σν	σν	1.5 σ _ν	3.5 σν	
$\sigma_{\theta} = \pi$	2.5 σν	1.83 σν	1.5 σ _ν	1.0 σν	