

TABLE OF CONTENT

- 1 Implenia in a nutshell 5 Water systems
- Green Village project as a Use CaseBiodiversity
- **3** Zero Carbon integration **7** Mobility, waste management
- 4 Circular strategies 8 Dialogue & Questions

WE DESIGN AND BUILD WITH AND FOR PEOPLE

3'563 mio. CHF, CA 2022

138,9 mio. CHF, EBIT 2022

7'221 mio. CHF, order book

4 divisions

Real Estate

Civil Engineering

Specialties

1 integrated model

Integrated services throughout the value the value creation chain

4 strategic priorities

- Portfolio
- Profitable growth
- Innovation
- Talent and organisation

Excellence Collaboration Agility Integrity Sustainability

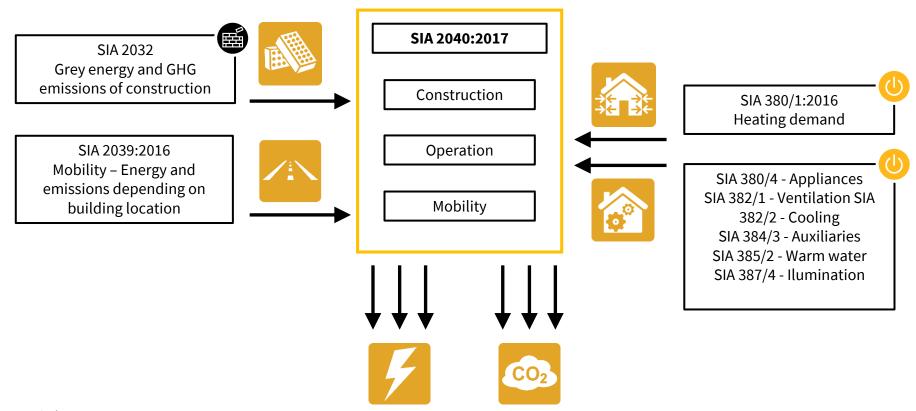
~ 9'000

FTE May 2023 Culture based on

values

on

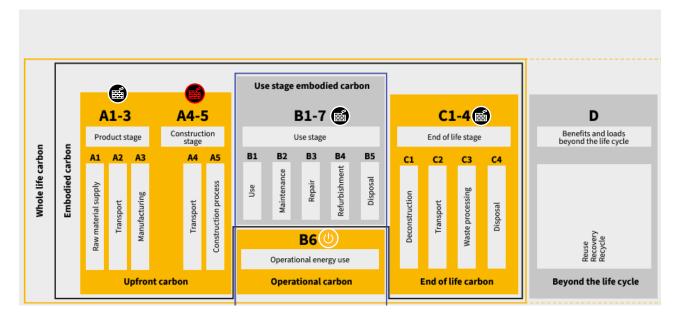
GREEN VILLAGE USE CASE



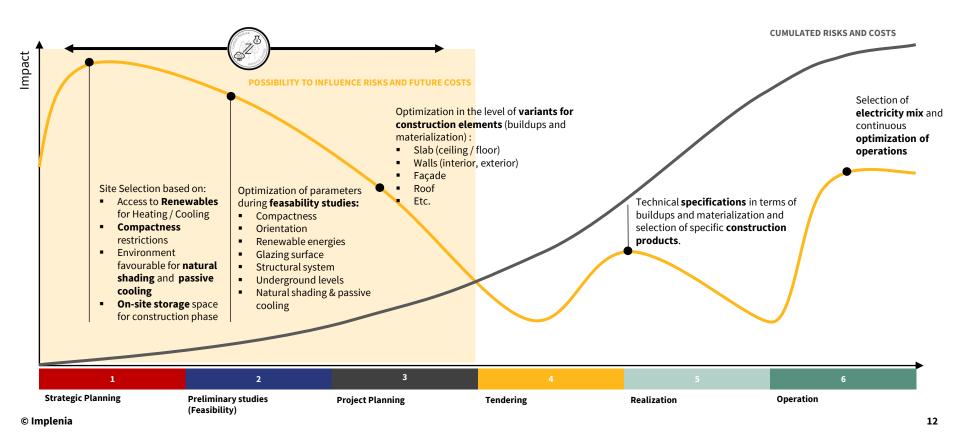
Panel of measures from the Green Village Sustainability Action Plan (tri-party agreement)

Zero carbon energy	Zero waste	কিউচ Travel and transport	Materials and products	Sustainable water	1 Land and nature
Minimising the grey energy of construction choices (special work, spans, slabs, distribution, lightening, filling, etc.).	LIMITING EXCAVATIONS AND PROMOTING OPEN LAND (MAXIMUM TARGET 1.2 M3 EXCAVATED PER M2 BUILT)	80% OF TIM CAR PARKS PRE- ELECTRIFIED (9 ELECTROMOBILITY CHARGING POINTS PLANNED FOR THE DRIVEWAY)	LOW-CARBON CEMENT FOR REINFORCED BUILDING CONSTRUCTION (STOCKHOLM)	RAINWATER RECOVERY CONCEPT FOR STORAGE AND REUSE FOR OUTDOOR WATERING	CREATION OF 5 REPLACEMENT ENVIRONMENTS TO PROMOTE BIODIVERSITY, IN COORDINATION WITH AN ECOLOGIST
ARCHITECTURAL CHARTER LIMITED QUANTITIES OF GLASS/ALUMINIUM IN FACADES	REUSE OF PRODUCTS FROM THE IN SITU DECONSTRUCTION INVENTORY	EASY ACCESS TO INDOOR AND OUTDOOR CYCLE PARKING (INCLUDING CARGO BIKES)	USE OF NATURAL, LOCALLY- SOURCED MATERIALS, TIMBER FRAMING FOR LIMA	95% OPEN-AIR RAINWATER MANAGEMENT.	20% OF THE SURFACE AREA OF THE PLOT RESERVED EXCLUSIVELY FOR BIODIVERSITY
ZERO-CARBON SOURCE OF HEAT, COOLING AND HOT WATER PRODUCTION BY CONNECTING GROUNDWATER TO HEAT PUMPS	GOOD INTEGRATION OF 'ECO- POINTS' TO FACILITATE USE AND LOGISTICS	MAXIMUM 40% OF USERS USING MOTORISED MEANS OF TRANSPORT	Installation of Misapor to drain the land	REDUCING THE NUMBER OF IMPERVIOUS ROAD SURFACES (SURFACE PLANTED PARKING, FIRE ACCESS IN A MIX OF EARTH AND STONE)	PROTECTING BIRDS ON FAÇADES, SWIFT NEST BOXES DEDICATED SPACE FOR AN ORCHARD
LOW-INTENSITY EXTERIOR LIGHTING (BIODIVERSITY) WITH TIMER OR DETECTOR.	REUSE OF EXCAVATED MATERIALS TO RESHAPE THE LAND	FACILITIES TO FACILITATE URBAN LOGISTICS (AUTOMATIC PARCEL DISPENSER, DEDICATED SPACE FOR DELIVERIES, REMOVALS)	PRIORITY RECYCLING OF EXCAVATED MATERIAL	70% OF THE NEIGHBOURHOOD PERIMETER IS PERMEABLE	AT LEAST 45% OF THE PLOT TO BE PLANTED IN OPEN GROUND

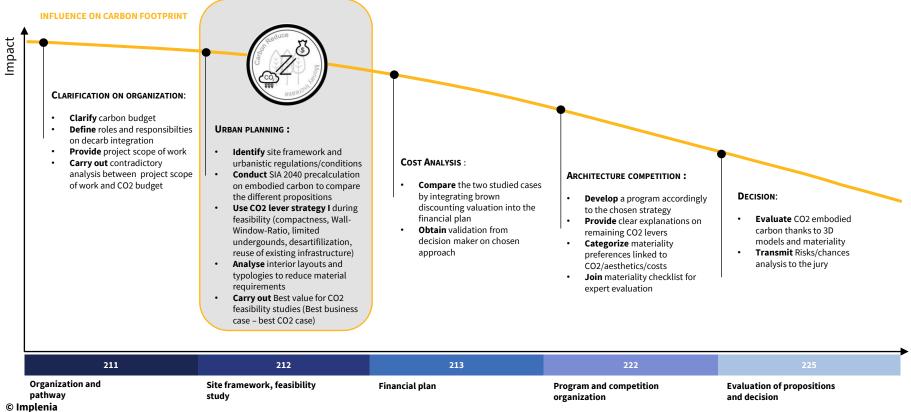
USING EXISTING NORMS TO EVALUATE FOOTPRINT: SIA 2040

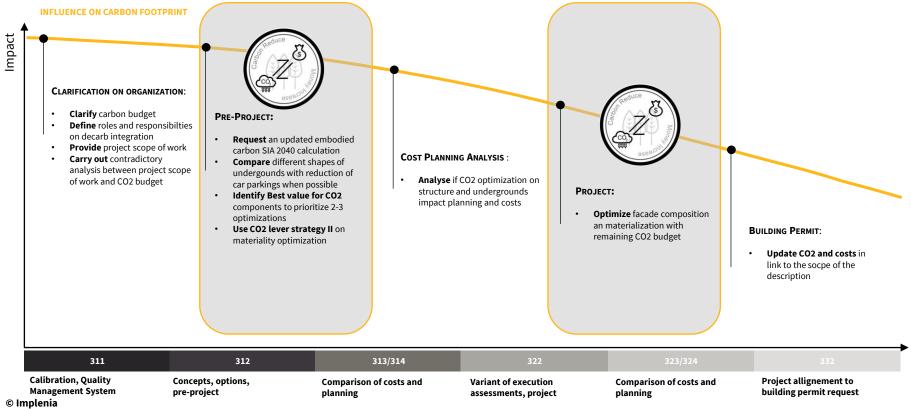


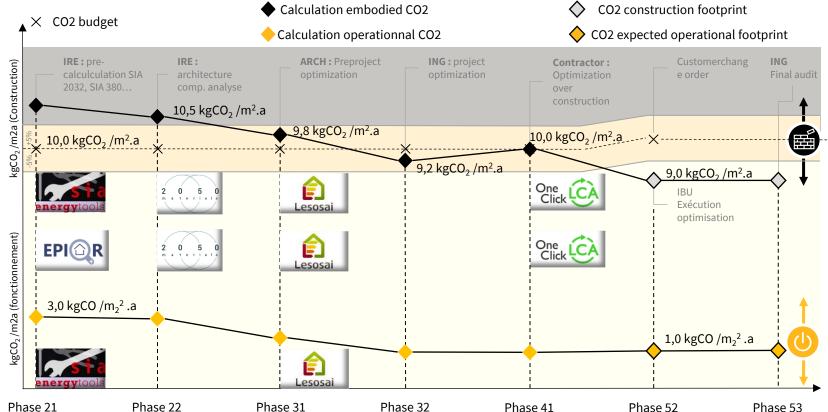
kWh_{NRE} par m²


LIFE CYCLE PHASES OF A BUILDING

Decarbonising a building requires a perspective that considers the entire life cycle of that building. Starting with site selection, through the development and construction phase, to the operation and end-of-life of a building, all decisions and actions should be assessed for their overall im-


pact. The European EN 15978 standard, to which this study refers, presents a framework for a building's life cycle phases that can be used when analysing its environmental performance in a Life Cycle Assessment (LCA) (Figure 4).


IMPACT CHRONOLOGY OF STRATEGIES AND LEVERS


BEST VALUE FOR DECARBONIZATION

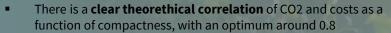
BEST VALUE FOR DECARBONIZATION

CARBON BUDGETS AND FOLLOW UP TOOLS

© Implenia

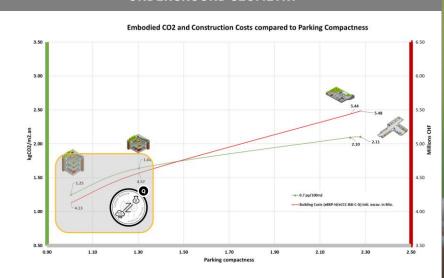
157/23

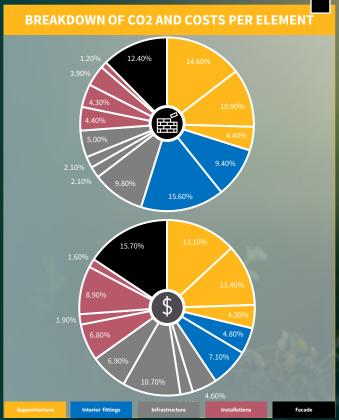
LEVERS AND STRATEGIES BY MEANS OF EMBODIED CARBON



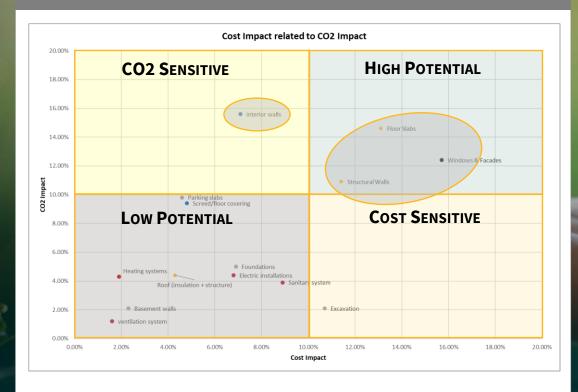
*For the reuse of excavated material and existing elements or materials.

STRATEGY I: PARAMETRIC DESIGN

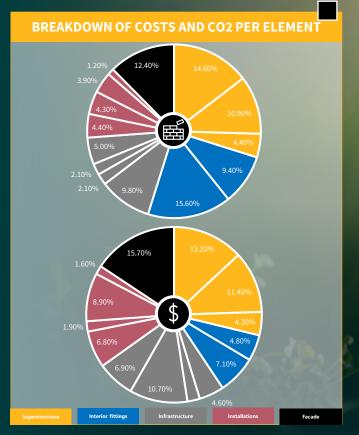

BUILDING GEOMETRY

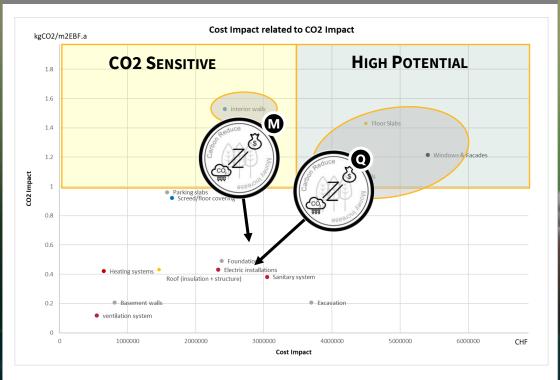

- In Praxis, compactness is also studied in correlation to zoning plan
- **Take away**: KPI to include in dashboards to steer best value for CO2 efficiency of building geometry

UNDERGROUND GEOMETRY



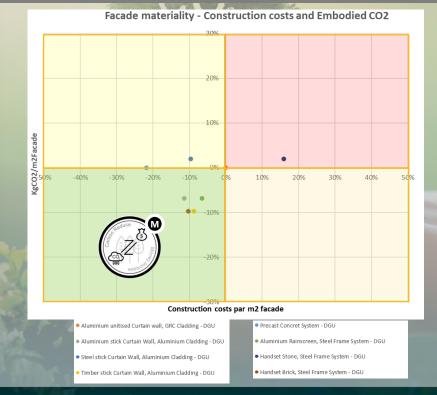
- In theory, underground compactness optimum is found below 1.3, above this factor there is no longer «win-win» as far as cost and CO2
- In Praxis, # levels, geometry design vs geotechnical, usage & accessibility
- Take away: KPI to use as a guidance to steer best value for CO2 efficiency of undergrounds


BEST VALUE FOR CO2 STRATEGIES – DEPENDENCY ANALYSIS


METHODOLOGY TO IDENTIFY FOCUS PRIORITIES

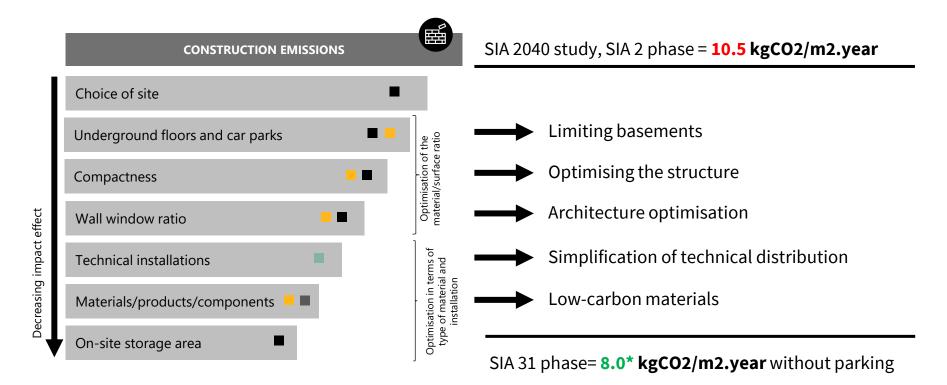
BEST VALUE FOR CO2 STRATEGIES - DEPENDENCY ANALYSIS

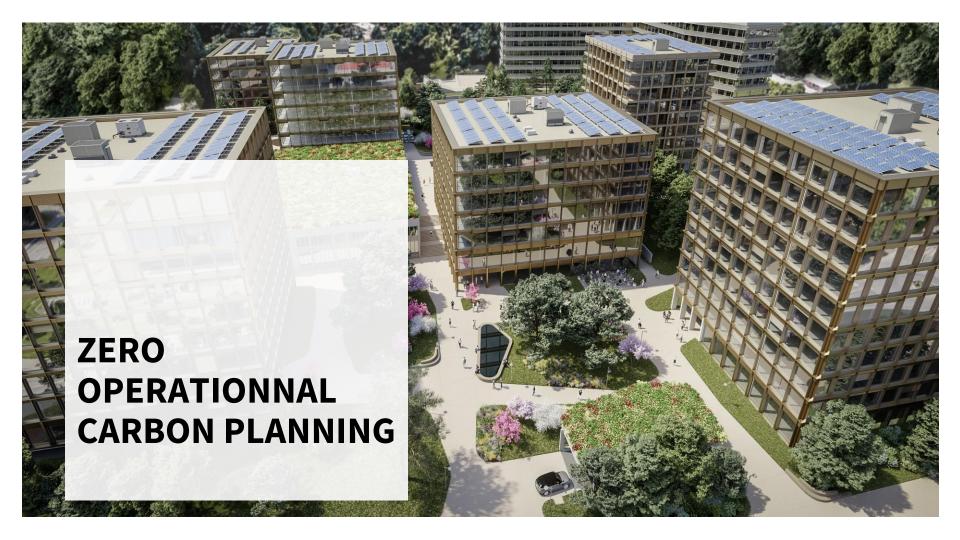
IDENTIFICATION OF APPLIED STRATEGIES



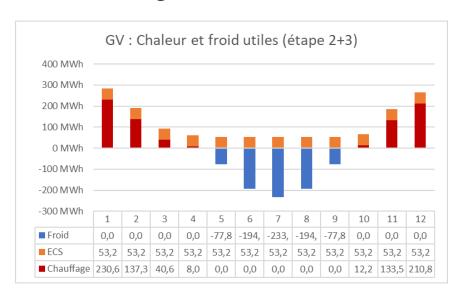
IMPLENIA REAL ESTATE – BEST VALUE FOR CO2 – HOW TO OPTIMIZE COSTS AND EMBODIED CARBON?

STRATEGY II: OPTIMIZATION BY COMPONENTS




BEST VALUE FOR CO2 COMPARISON

OPTIMIZATION OF EMBODIED CARBON



Green

HYPOTHESES THERMAL REQUIREMENTS

According to Concept Energétique Territorial - Green Village 2023

- Heat for heating (773,000 kWh/year)
 - Project values for buildings under construction
 - 70% Qhli of SIA 380/1 2016
 - 40% of heating can be interrupted for DHW production
- Heat for DHW (638,000 kWh/year)
 - Based on SIA 380/1 2016
 - Weinmann assessment for hotel building G (Rio)
- Cooling (512,000 kWh/year)
 - Administrative areas: in accordance with the STD for administrative building E (Kyoto)
 - Hotel building G (Rio), commercial, catering and assembly areas: CT 2024 2021

Annex to the call for tenders . XLS file of monthly consumption data by building

STRATEGIES FOR LOW-CARBON THERMAL SUPPLY

Strategies validated by the OCEN following the coordination meeting on 08.12.2022

Strategy 1: groundwater and GeniLac network, direct for cooling and coupled with pumps for heat production, photovoltaic solar energy via Microgrid Group E

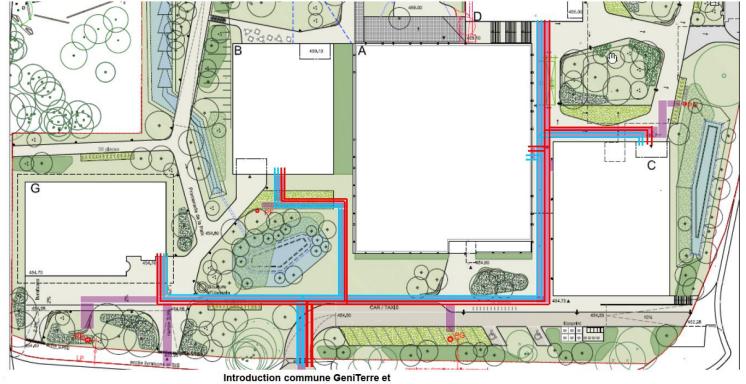
Strategy 2: connection to the GeniLac network, directly for cooling and coupled with heat pumps for heat production, photovoltaic solar energy via Microgrid Group E

Strategy 3: groundwater, direct for cooling and coupled with heat pumps for part of the heat production, GeniTerre for the rest of the production, photovoltaic solar power via Microgrid Group E

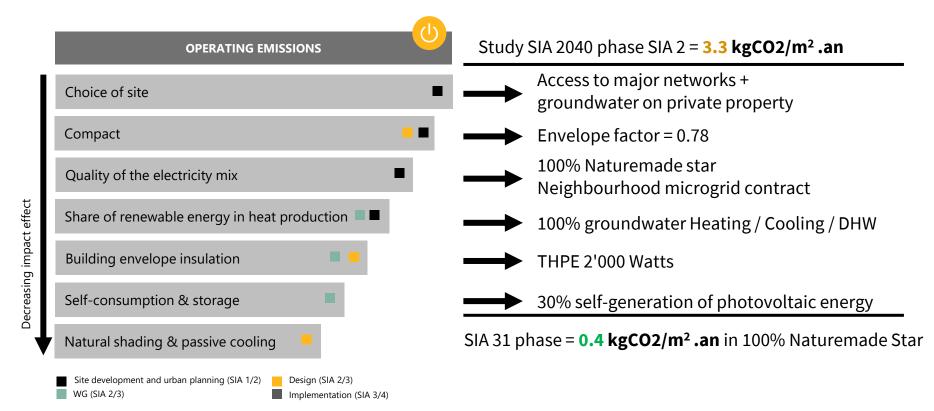
NB1: All strategies must meet the legal requirements and the increased requirements of the client (100% renewable thermal supply).

NB2: The developer would like <u>decentralised production to take place in the technical basements</u> of each building. There are no plans for additional buildings or shared areas in the car parks or on the roof for the thermal contractor.

Green


RESPONSES FROM THERMAL OPERATORS MARCH 2023

SRE (41,469 m2)	(Operator A	A	Operator B	Oper	ator C
Dranged variant Appro	V1 . V2			Did not wish to respond to variants 1	XXXX	
Proposed variant Appro	V1	i V2 i	V3	and 3, no contact with SIG on variant 2	Decentralised	Centralised
Compliance with carbon and AO targets	Legal?	Legal?	Complian t	/	Compliant	Non-compliant
Presta. limits equivalent	pumps and	nections, netv delectricity co neat exchange	n <mark>sumption,</mark>	/	Connections, networks to buildings, exchangers	Connection, networks to main power station, exchangers
Annual heating costs (CHF/m²) quotation dated 06.03.23	14,3	21,1	13,9	/	22,4	19,1
Additional services included		harging and s stribution gro		/	1	/
Delta proprietary investment		/		/	+ 700 kCHF	+ 1,000 kCHF
Annual heating costs (CHF/m²) offer dated 16.03.23	16,1	22,6	15,5	/	22,4	19,1 25


ZERO CARBON THERMAL ENERGY SUPPLY

Vue en plan des réseaux thermiques sur la parcelle

Green

OPTIMIZING THE CARBON EMITTED BY OPERATIONS

IMPLEMENTATION PATHWAY

Legitimacy and Vision Sustainability Action **OPL SEED KPIs**

Sept 2019

Deconstruction tender Site visit and O&A Clarification sessions

Inventory online

Labels audit

Recommendations for decarbonizion / Reuse

Search reemployment consultant

Invitation to tender and contract

Inventory

Materials diagnostics **Draft strategy**

Request/Instruction

Demolition permits

Deconstruction Task Force

Tender drafting Diagnosis of pollutants

Strategy definition

Planning dialogue Reuse objectives

Dec-March 2024

Feb 2024

Comparative analysis

Costs. Methods, Variants

Scenario analysis

Budget/planning impact Feasibility/logistics

Recommanded scenario

Quantity, price, availability Reuse materials

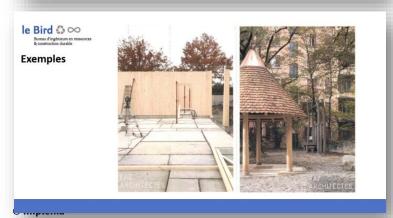
May 2024

Green Village

INVENTORY PHASE – DIAGNOSIS OF EXISTING ELEMENTS

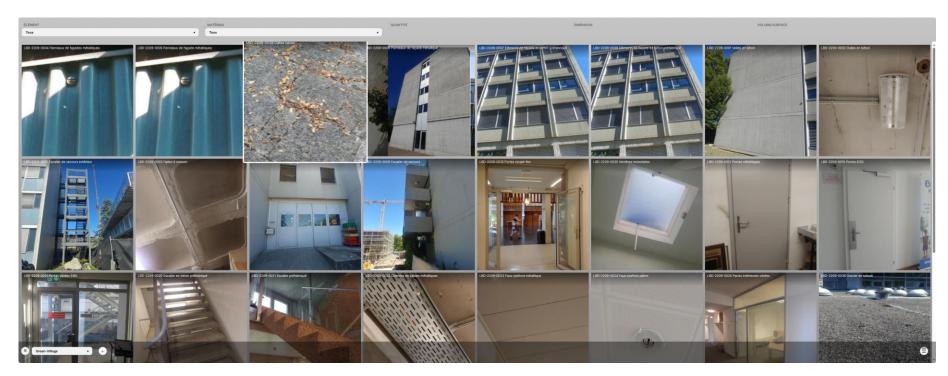
2. Liste des éléments réutilisables Le réemploi ou la réutilisation de matériaux de construction permet l'économie de matériaux neufs et évite des frais d'élimination (transport et traitement des déchets). Dans le cadre de la solution C-BAT, ces avantages sont mis en évidence par le calcul d'un poids équivalent CO» par unité de matériaux selon méthode de calcul de la hase de données INIES. Pour les coûts d'élimination, les coûts sont calculés selon prix moyen au m de transport et traitement des déchets évacués via les déchèteries de chantier gérées par Bird en 2021-2022 par m2 2800 1.09E+02 par m2 5800 2.36E+01 8000 7.26F+01 E.02 Bardage en acier 700 4.29E+01 255 4.296+01 E.02 Bardage en acier 100 4.29€+01 4.29€+03 236 2.05E+02 90 2.05E+02 par mi 50 7.71E+02 50 7.62E+02 LBD-2209-0011 Porte de garage E.03 Porte de garage en acier motorisé 16 3.60E+02 5.76E+03 par m2 G.01 Porte acier 35 1.16E+02 4.06E+03 25 1.09E+02 2.73E+03 LBD-2209-0013 Portes abris anti-atomique: G.01 Porte blindée béton acier LBD-2209-0014 Portes métalliques simples G.01 Porte acier 3 1.16E+02 LBD-2209-0015 Portes El30 20 9.84E+01 1.97E+03 1000 9.845+01 LBD-2209-0016 Portes en bois Porte en bois LBD-2209-0017 Portes en bois Porte en bois (agglor 250 9.845+01 LBD-2209-0018 Portes vitrées £130 225 1.21E+02 2.725+04 Portes vitrées isolantes acier 65 1.215+02 LBD-2209-0019 Portes vitrées E166 7.87E+01 100 7.715+02 LBD-2209-0021 Escaller en béton préfabriqué 105 7.71E+02 8.105+04 Escaller droit en béton armé Chemin de câbles dalle acier LBD-2209-0023 2000 3.41E+01 6.825+0 Cloiron démontable en profilér aluminium à remplissage bloc-porte vitré LBD-2209-0026 pour éclairage tertiaire ou industriel pour éclairage tertiaire ou industriel pour éclairage tertiaire ou industriel Encastrés intérieurs non linéraires pour éclairage tertiaire LBD-2209-0031 Signalétique protection incend 200 5.975+00 LBD-2209-0033 Sanitaires (WC+lavabos 5.990+04 G.05 Céramique LBD-2209-0034 Sanitaires (WC+lavabos 26 4.47E+02 1.165+04 F.01 Gravier LBD-2209-0036 Gravier 110 3.05E+01 Diagnostic reemploi GV bată vf 2023030 Page 5 cur 59

INITIAL INVENTORY – CATALOG OF ELEMENTS



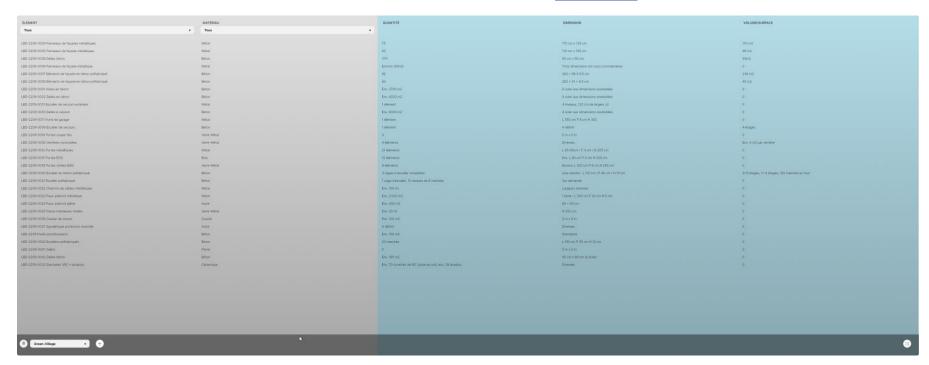
Green Village

DIALOGUE WITH ARCHITECTS AND ENGINEERS



Green Village

GREEN VILLAGE INVENTORY POSTED ON REUZI



Accès :	REUZI Inventaire
Nom d'utilisateur :	INVENTAIRE REEMPOI GREEN-VILLAGE
Mot de passe :	GreenVillage

Green

GREEN VILLAGE INVENTORY POSTED ON REUZI

Accès :	REUZI Inventaire		
Nom d'utilisateur :	INVENTAIRE REEMPOI GREEN-VILLAGE		
Mot de passe :	GreenVillage		

TENDERING WITH OPTIONS

Green

Chapter CAN 117 demolition and dismantling is organised as follows:

Demolition

Demolition-evacuation-transportlandfill **Articles 117.** 124, 125, 215, 223, 228, 311, 333, 453, 461, 513, 631

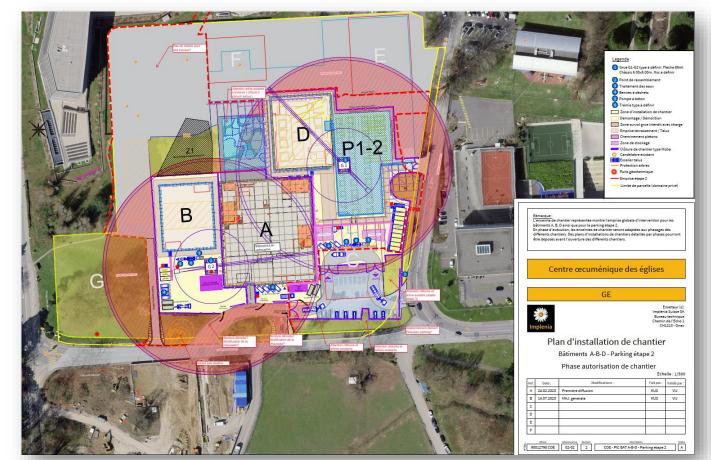
Dismantling

Dismantling-transport-storage on site 117.223.001

Dismantling + demolition variant

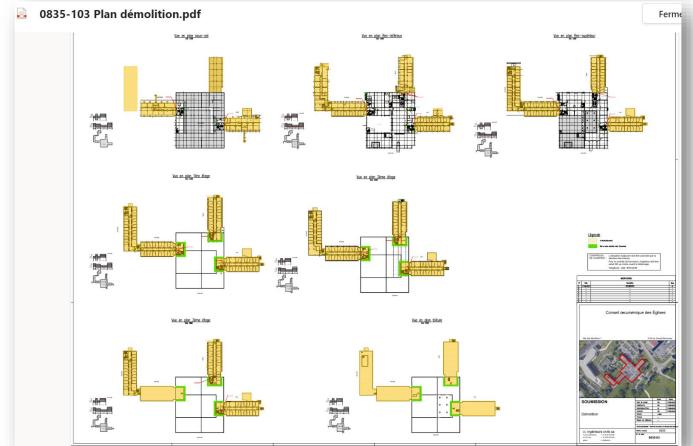
Dismantling-transport-storage on site 117.225.001

- Non-added variant Demolition cost 117(224.001) Disposal cost 117(725.001) Landfill cost 117(734.001)
- Articles 225 (224) 322 (323) 336
 (335) 342 (341) 352 (351) 412
 (412.003) 556 (555)


Demolition + dismantling variant

Single demolition 117.233.011

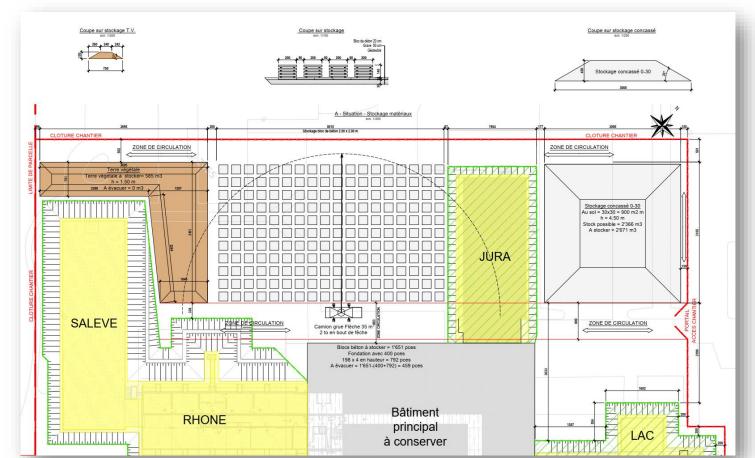
- Cost of **dismantling** services 117(234.001) Cost of removal 117(728.001) Cost of landfill 117(731.001)
- **Articles** 233 (234) 411 (411.003) 423 (424) 445 (446) 531 (532)


Green

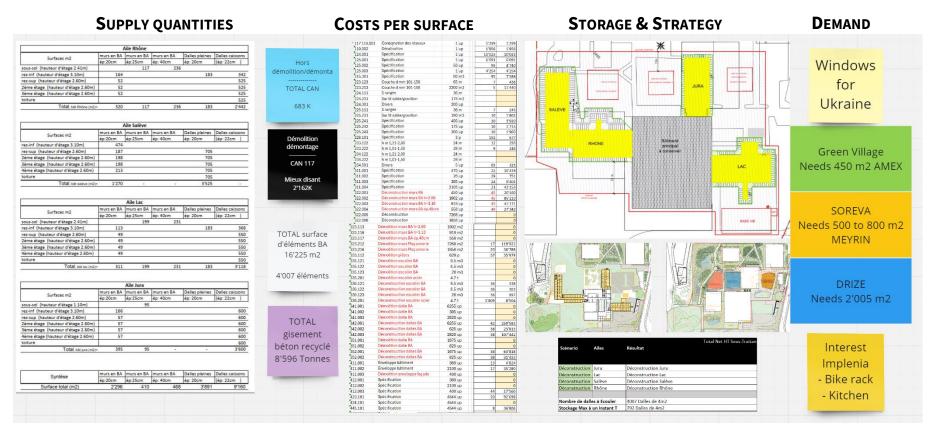
SITE INSTALLATION BY IMPLENIA BUILDINGS

Green

DISMANTLEMENT DRAWINGS – SEQUENCE OF WORKS


Green Village

SITE INSTALLATION BY CIVIL ENGINEER


Green Village

STORAGE AREA SUITABLE FOR REUSE - RECYCLING

SUPPLY AND DEMAND ANALYSIS

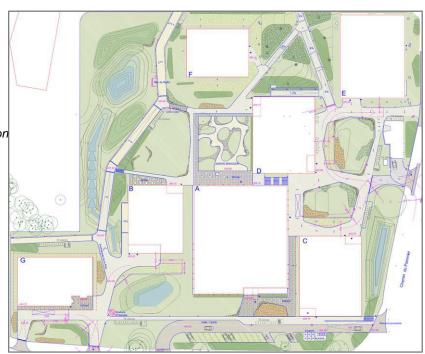
© Implenia 4

Budget: xx Mio	Scenario I	Scenario II	Scenario III		
DESCRIPTION	Demolition + Evacuation (Lake, Jura, Rhône, Salève) Deconstruction 450 m2 for reuse in situ	Demolition + Crushing (Rhône) Demolition + Evacuation (Lac, Jura, Salève) Deconstruction 450 m2 for reuse in situ	Demolition Crushing (Rhône) Salève deconstruction Demolition Evacuation (Lac, Jura, Salève)		
TOTAL COSTS (BKP 1-6) BEST BIDDER AVERAGE COST (4 BIDS)	XX CHF EXCL. TAX XX CHF EXCL. TAX	xx CHF EXCL. TAX xx CHF EXCL. TAX	XX CHF EXCL. TAX XX CHF EXCL. TAX		
PLANNING	6 months - 25 weeks	7 months - 30 weeks	8 ½ months - 36 weeks		
Benefits	Budget and planning under control Low storage impact on stage 2 GV	Allignment to (authorities) demand : concrete recycling in GV	Increased visibility, demonstrator		
RISKS	Missallignment to (authorities) demand : concrete recycling in GV	Management of the insitu crushing process	1st experience, reuse costs, planning		
Prerequisites	N/A	Storage area (350 m2) for recycled aggregates	Recycled storage (350 m2) Reuse storage (1750 m2)		
CRUSHING REVENUES	N/A	CHF 47,825 EXCL.	CHF 47,825 EXCL.		
RE-EMPLOYMENT INCOME	N/A	N/A	CHF 71,940 EXCL. (1199 Slabs (4m2) at 15 CHF		

Green

WATER CYCLES

Implenia commissioned an engineer to carry out a study
the hydraulic **potential of rainwater reclamation for watering** according to the established rainwater management concept


vision of reducing the need for drinking water

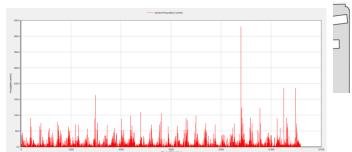
Objectives:

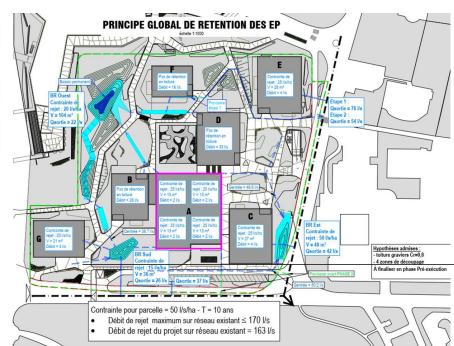
- assess the potential for rainwater harvesting without compromising the concept initial integrated water management system favourable to biodiversity and irrigation of the soil;
- calculation of possible autonomy rates for watering
- proposed layout and water storage volume

Study carried out on the basis of **hydrodynamic modelling** of the historical rainfall (last 30 years), taking into account the network the infiltration and evapotranspiration of water from the site. according to the configuration of the landscape project

Autonomous watering rates calculated on the basis of **water requirements for watering** supplied by landscapers depending on number and species planned planting

Landscaping plan, ADR architects, version of 21.03.2023

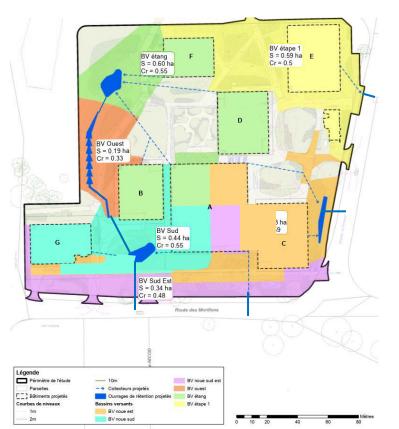

Green


WATER CYCLES

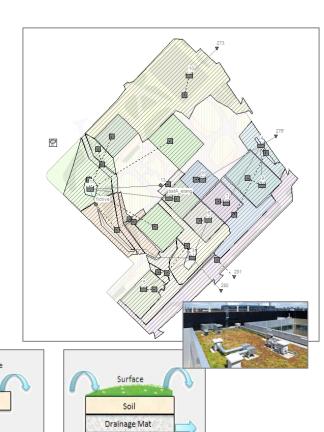
Sizing of hydraulic structures (reservoir permanent, ditch, open ditch) based on the water management concept drawn up by civil engineers and landscape architects

Climatic data:

- <u>Precipitation</u>: continuous rainfall series measured at the Bachet-de-Pesay station (Plan-les-Ouates) over a 30-year period (1989 - 2019)
- Evapotranspiration: defined according to temperature daily rates (max / min) over the last 3 years (in euros) data from Cointrin station



Plan of the overall water retention principle, EDMS Ingénieurs, version of 10.12.2019


WATER CYCLES

Soil

Green

WATER CYCLES

Results for all the areas concerned (BV West, South and East):

26.1 m of rainfall over 30 years, i.e. ~ 900 mm / year

Average rainfall ~ 15,400 m3 / year

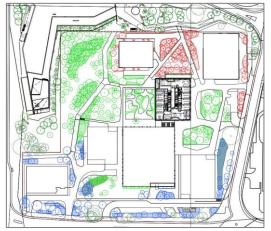
Volumes available at outlet ~ 3,500 m3 / year

On the scale of the project perimeter, around 80% of rainwater is

discharged into the ground.

are evaporated or naturally infiltrated into the spaces greens / pond

Catchment plan, EDMS Ingénieurs, version of 19.01.2018

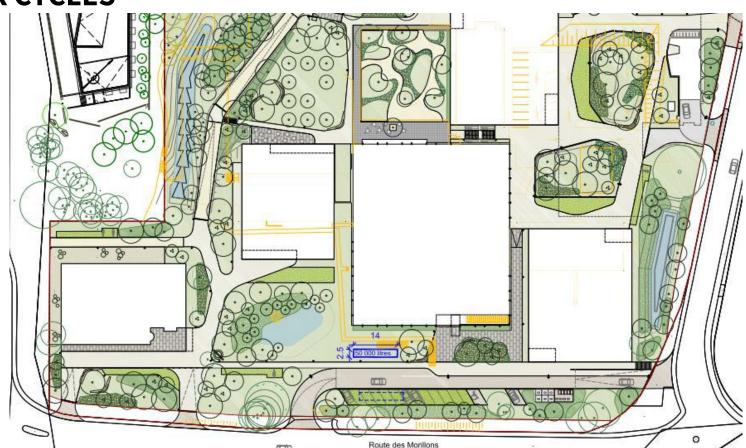

WATER CYCLES

Watering requirements: Estimated requirements for the 2 construction stages combined

The estimated watering requirements for the two stages of construction combined must take into account the evolution of needs over time, which will tend to decrease over the years (growth and the trees' natural water autonomy).

A reduction of 20% per year allowed, i.e. ~10m³ /year for stage 2 and ~4m³ /year for stage 3

The table below assumes that stage 3 will be completed 2 years after stage 2.


Plan of planting stages, ADR, version of 25.04.2023

Phase of project	Watering needs per year									
	année 1	année 2	année 3	année 4	année 5	année 6	année 7	année 8		
Étape 2	50	40	30	20	10	-	-	-		
Étape 3	non réalisée		20	16	14	10	6	4		
Étape 2 + 3	50	40	50	36	24	10	6	4		

We can therefore define a maximum overall watering requirement (stages 2+3) of approximately 50m³ per intervention (10/year).

Green Village

WATER CYCLES

Green

LANDSCAPING DESIGN

Green

BIODIVERSITY INTEGRATION

1

Identification of areas suitable for conversion into substitute medium (minimum of 5 media)

- Prairial
- Pioneer
- Bocage
- ② Wooded
- Wet

Create biological connections for the transit of

Qualité des connexions biologiques entre les principaux milieux aménagés

Overall, the environments are well connected. Concrete pathways, particularly between wooded knolls, remain a weak point in the project.

BIODIVERSITY INTEGRATION

2

Drawing up lists of plants to recreate environments that correspond to a target pool of animal and plant species.

Converging biodiversity, landscape and technicality (sustainability (climate), maintenance, economic aspects, etc.)

BIODIVERSITY INTEGRATION

3

Choice of ground features for small fauna to be placed in the green spaces created.

Creating a neighbourhood-wide network of micro-habitats.

Establish a sufficient density of networked structures in the environments created.

Assessed under theme 1 "environmental structure".

This criterion reaches the OPL level.

Wooded hills of Stage 1

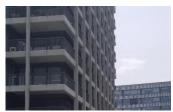
Sand-stone niche within wooded knolls (stage 1) Other developments under study (stage 2)

BIODIVERSITY INTEGRATION

Minimising the impact of buildings on flora and fauna (theme 2)

Wildlife-friendly lighting plan

low markers (1 m) aligned with the aisles, on one side of the linear layout only



Large surfaces in unlit substitution (low residual brightness)

"night in the western sector preserved

Facades that pose little danger to the birds

- + Choice of low-reflective glazing
- Large areas of glazing on ground floor
- Glazing surfaces on upper floors at the recommended 4 m²
- Metal railings (Montréal)
- Blinds

Stage 1 (Montreal)

Permeable coatings small invertebrate fauna

The paths are exclusively in concrete which offers no possibility of passage for some of the small fauna land. The use of grass grids is only available on SIS lanes.

BIODIVERSITY INTEGRATION

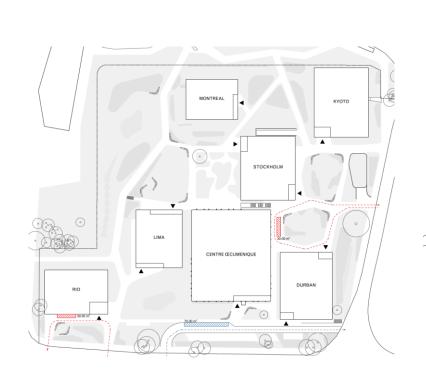
Including facilities in construction (theme 2)

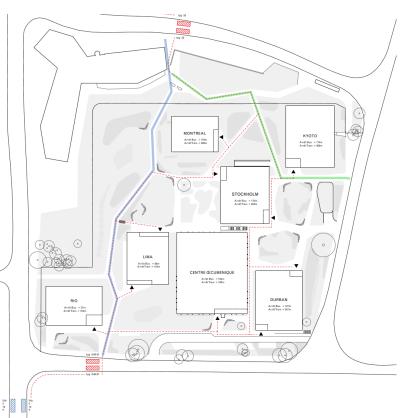
Installation of nesting boxes for small colonies of swifts on buildings in Lima and Stockholm

Length of open-air water management system High proportion of trees open vegetation (majority)

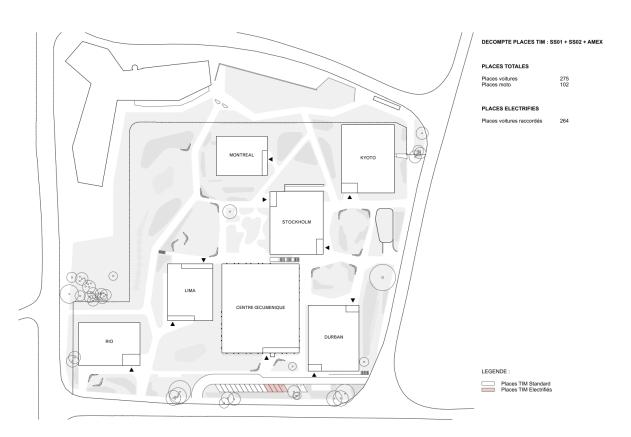
Noues et basins (stage 2 project underway)

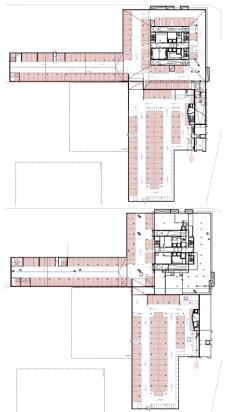
honey and fruit trees

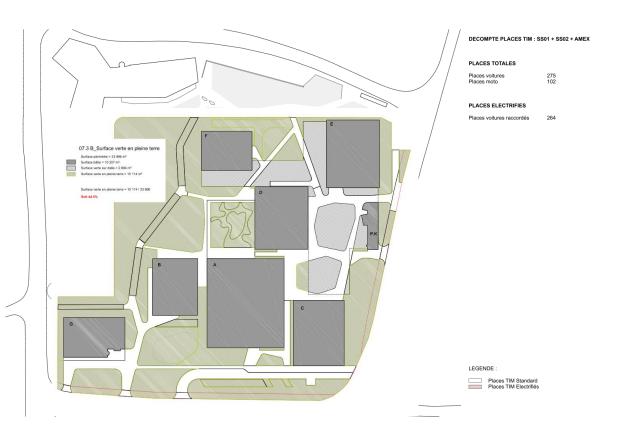


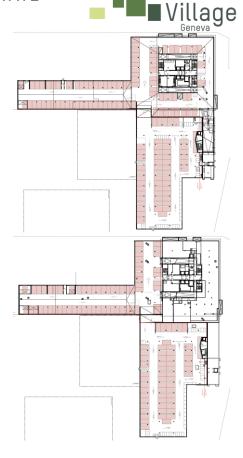


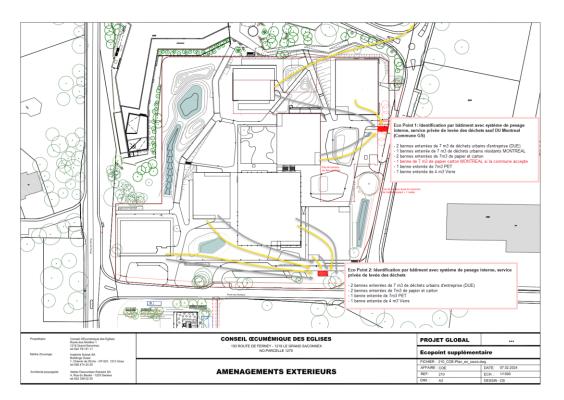
This criterion is rated as good at this stage.

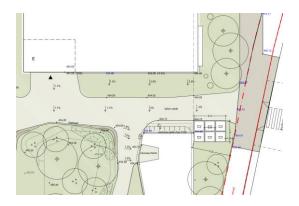

MOBILITY ASPECTS – LOGISTICS ACCESS TO PUBLIC TRANSPORTS

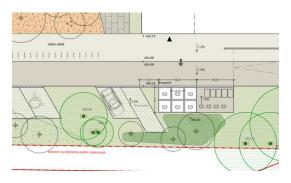



Green


MOBILITY ASPECTS – PARKINGS & ELECTRIFICATION

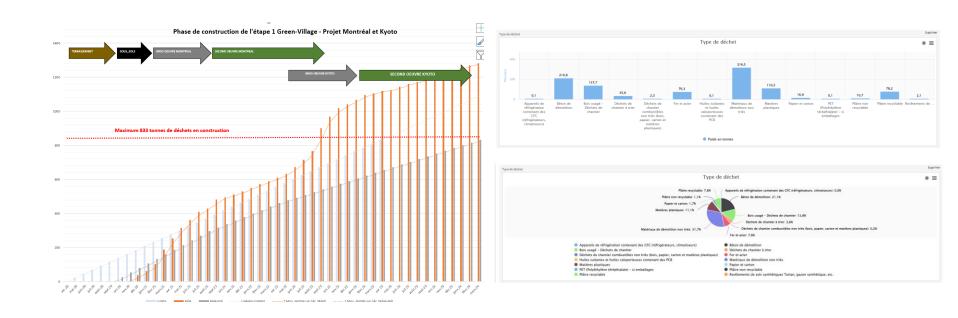

MOBILITY ASPECTS AND URBAN PLANNING

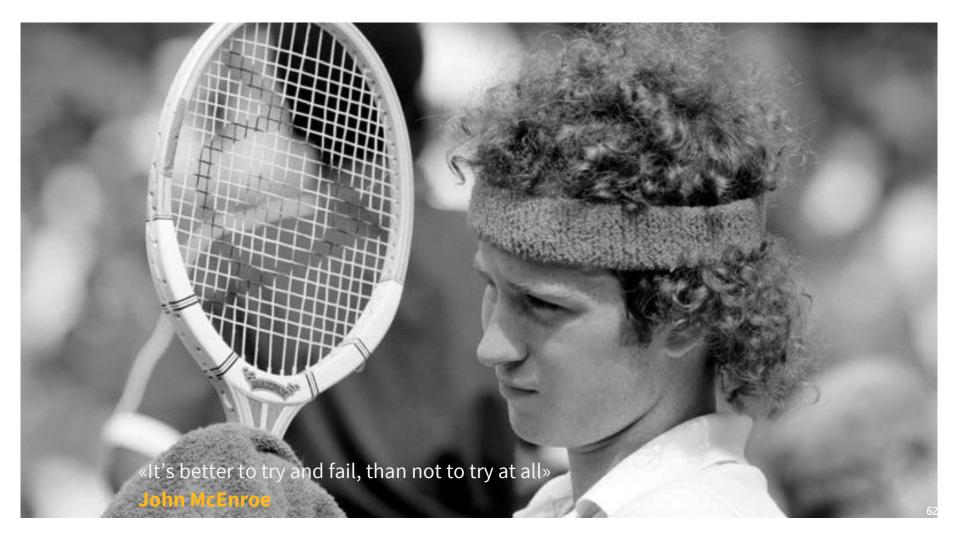




Green

WASTE MANAGEMENT IN OPERATION



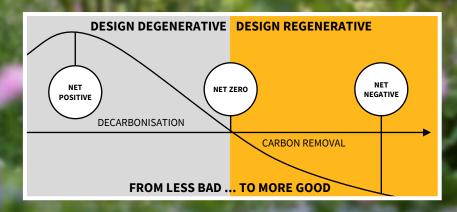


Green

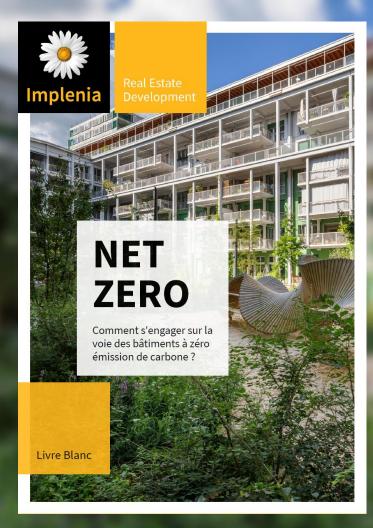
WASTE MANAGEMENT DURING CONSTRUCTION

IMPLENIA REAL ESTATE - BEST VALUE FOR CO2 - HOW TO OPTIMIZE COSTS AND EMBODIED CARBON?

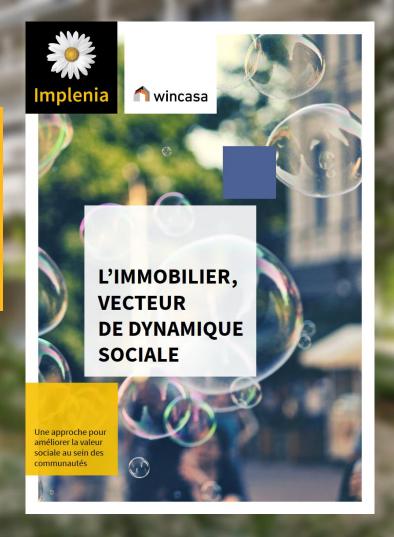
LET'S TRY ALL TOGETHER



Benoît KLEIN
Senior Sustainability Manager
Implenia Real Estate Development
benoit.klein@implenia.com



Upload our white paper: implenia.com/en/net-zero



Merci de votre attention

Téléchargez maintenant notre livre blanc: implenia.com/fr/net-zero

LEGAL NOTICE

DISCLAIMER

This presentation, material, any associated oral presentation and/or discussion (hereafter together, the "MATERIAL") has been prepared by Implenia Ltd and/or its affiliates (hereafter "IMPLENIA") for informational purposes only and may contain confidential and/or legally protected information. The MATERIAL may include forward-looking information and statements, including statements concerning the outlook for IMPLENIA'S businesses. These statements are based on current expectations, estimates and projections about the factors that may affect IMPLENIA'S future performance, including global economic conditions and the economic conditions of the regions and industries that are major markets for IMPLENIA. These expectations, estimates and projections are generally identifiable by statements containing words such as "expects", "believes", "estimates", "targets", "plans", "outlook", or similar expressions.

Numerous risks and uncertainties, many of which are beyond IMPLENIA'S control, could cause IMPLENIA'S actual results to differ materially from the forward-looking information and statements made in this MATERIAL, and could affect IMPLENIA'S ability to achieve any or all of its stated targets. The information and opinions contained in this MATERIAL do not purport to be comprehensive, are provided as of the date of this MATERIAL or as of the date specified herein and are subject to change without notice.

Although IMPLENIA believes that the expectations reflected in all such forward-looking statements are based upon reasonable assumptions, it can give no assurance that these expectations will be achieved. IMPLENIA also disclaims any obligation to update these forward-looking statements to re?ect future events or developments.

This MATERIAL is not an offer to sell or a solicitation of offers to purchase or subscribe for shares of Implenia Ltd. This MATERIAL is (i) not a prospectus within the meaning of article 652a of the Swiss Code of Obligations, (ii) not a listing prospectus as defined in articles 27 et seqq. of the listing rules of the SIX Swiss Exchange Ltd or of any other stock exchange or regulated trading venue in Switzerland, (iii) not a prospectus within the meaning of the Swiss Financial Services Act and (iv) not a prospectus under any other applicable laws.

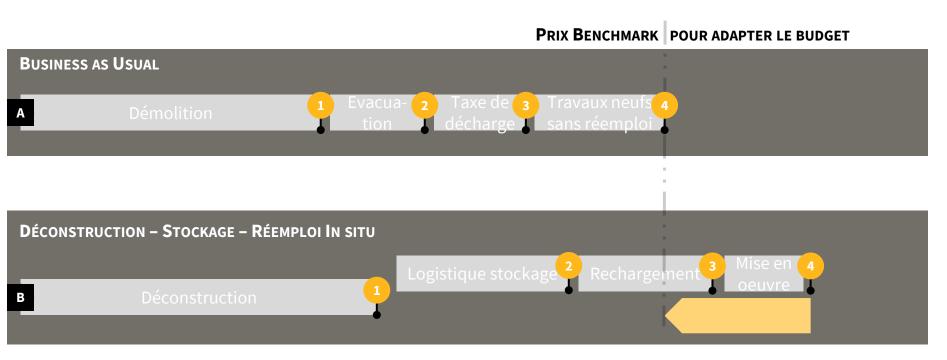
This MATERIAL does not constitute an offer to sell, or a solicitation of an offer to purchase, shares in Implenia Ltd. or any other securities in the United States.

This MATERIAL is not for publication, transmission or distribution, directly or indirectly, into the United States or its territories or possessions or to persons in the United States (within the meaning of Regulation S under the U.S. Securities Act of 1933, as amended (the "Securities Act")) and are only addressed to and directed at persons outside the United States, as defined in Regulation S under the Securities Act. This MATERIAL does not constitute an "offer of securities to the public" within the meaning of the Prospectus Regulation (EU) 2017/1129 of the European Union and is not a public offering in the United Kingdom. The information contained herein shall not constitute an offer to sell or the solicitation of an offer to buy, in any jurisdiction in which such offer or solicitation would be unlawful prior to registration, exemption from registration or qualification under the securities laws of any jurisdiction. Neither this MATERIAL nor any part or copy of it nor the information contained in it and any related materials may be taken or transmitted into the United States or any jurisdiction which prohibits the same or distributed or redistributed, directly or indirectly, in the United States or any jurisdiction which prohibits the same or to any resident thereof.

All of the information and material used in this MATERIAL, including text, images, logos and product names, is either the property of IMPLENIA, or is used by IMPLENIA with permission.

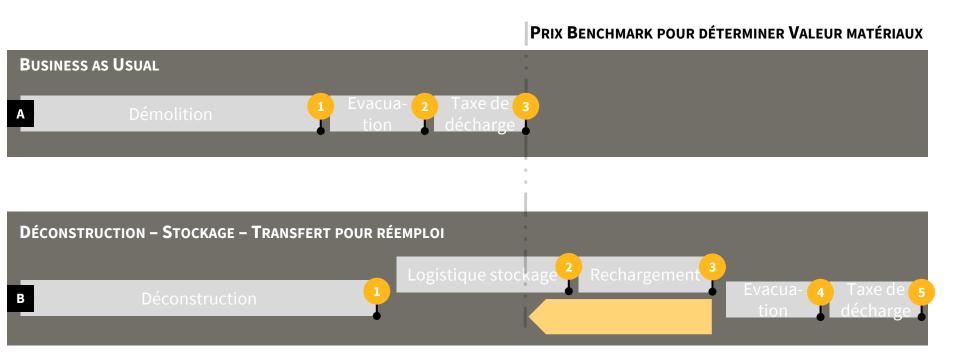
Whilst IMPLENIA uses all reasonable attempts to ensure the accuracy and completeness of all contents, IMPLENIA gives no warranties or representations of any kind that material in this MATERIAL is complete, accurate, reliable or timely, or that it does not infringe third-party rights. IMPLENIA does not accept any liability for any direct, indirect or consequential loss and/or damage arising from reliance on this MATERIAL.

The contents of this MATERIAL may not be reproduced, modi?ed or copied, or used for any commercial purposes, or communicated to any third parties without written consent from IMPLENIA. All trademarks mentioned are legally protected.


Copyright © 2021 Implenia Ltd and/or its affiliates. All rights reserved.

By attending this presentation and/or by accepting this MATERIAL you will be taken to have represented that you agree to accept the terms set out above.

© Implenia 65



DÉCOMPOSITION DES MODÈLES DE COÛTS

DÉCOMPOSITION DES MODÈLES DE COÛTS

