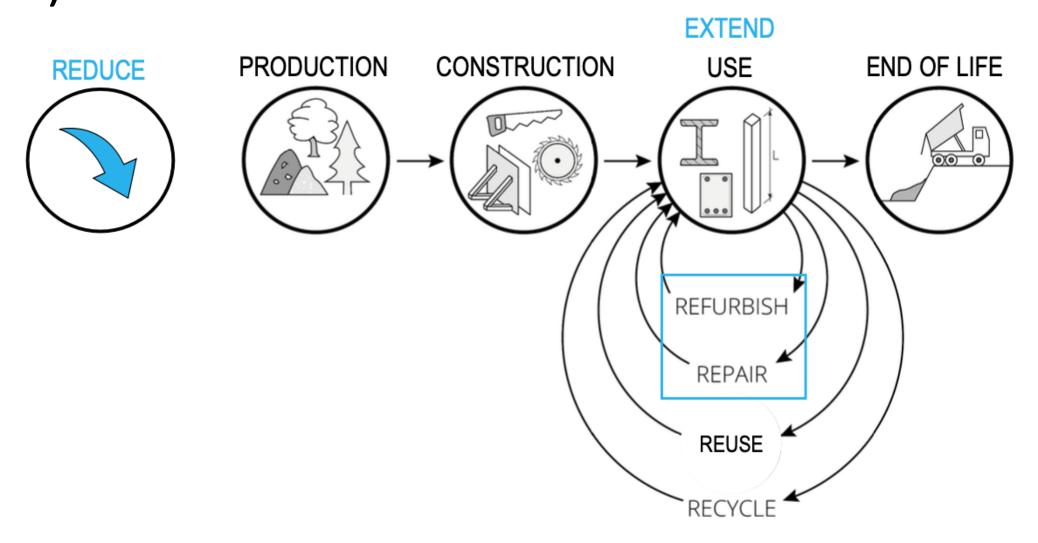


Scan to add to class Spotify paylist

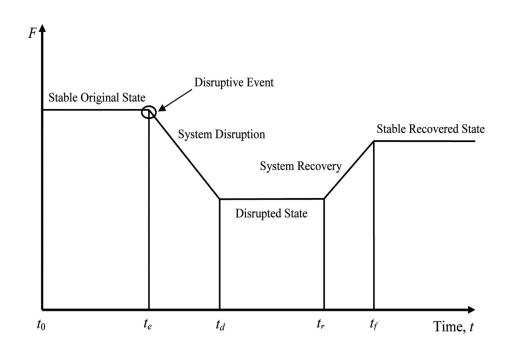
Lecture 11 Safety and Reliability in Civil Engineering

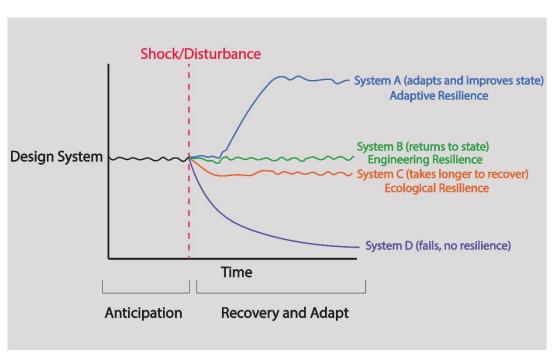
CIVIL-239: Engineering a sustainable built environment


David Ruggiero (and Andrew Sonta)

Housekeeping

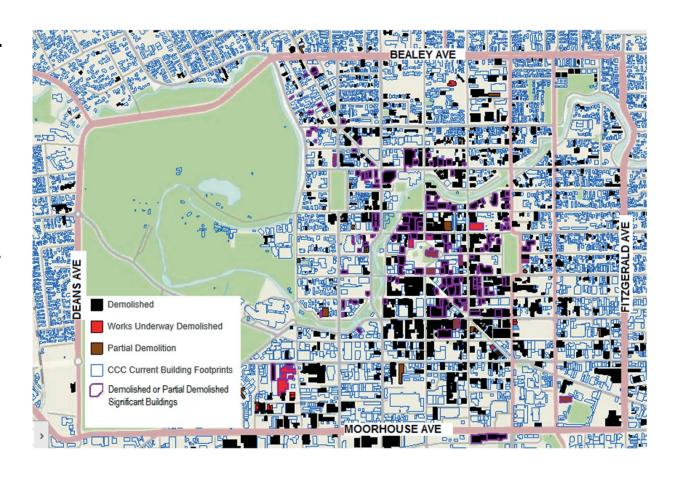
- Assignment 5 due December 17
- Today: Guest lecture from Prof. David Ruggiero
- Next week: Industry Guest Lecture from Benoit Klein from Implenia


	Materials, structures, and life-cycle assessment					
9	5-Nov	Guest lecture: Embodied carbon emissions and materials	The phases of infrastructure life cycles			
10	12-Nov	Life-cycle assessment	Environmental LCA; Safety factors			
	Civil engineering and natural systems					
11	19-Nov	Guest lecture: Assigning value to natural systems	Sustainability in natural systems; Engineering and sustainability economics			
12	26-Nov	Engineering with natural systems; geotechnical engineering, water resources engineering	Multi-criteria decision-making, resilience, sensitivity analysis, nature-based solutions	Assignment 4		
	Sustainability in the civil engineering profession					
13	3-Dec	Guest lecture: Safety and reliability in civil engineering	Load combinations, safety and reliability			
14	10-Dec	Guest lecture: Sustainable engineering in the industry	Practicalissues			
15	17-Dec	Course wrap up Thinking in systems Tentative: class debate		Assignment 5		


Circular economy in civil engineering (week 7)

Resilience (week 10)

- Resilience is the capacity of a system to recover and reconstitute critical services with minimal damage to public safety, health, and security
- Resilience vs sustainability?



Basu, D., Misra, A., and Puppala, A. (2015). "Sustainability and geotechnical engineering: perspectives and review." Canadian Geotechnical Journal, 52(1), 96-113.

Example: Christchurch Earthquake

- 6.2 magnitude earthquake near Christchurch, New Zealand
- 185 fatalities
- Following the earthquake, over 60% of concrete buildings in central business district with 3+ stories were demolished
- "... a significant number of buildings with relatively low damage were demolished"

SAFETY AND RELIABILITY IN CIVIL ENGINEERING

CIVIL-239: Engineering a sustainable built environment, 2024

December 3rd, 2024

Prof. D. Ruggiero

EPFL-CONSTRUCT

Agenda

Introduction

• Risk in the built environment

Risk

What is risk?

Design philosophy

 Probabilistic background

Structural verification

Code format

Actions

Different types

1. INTRODUCTION

Preamble

TABLE 1 Average annual risk of death as a consequence of an activity

Activity associated with death	Risk of death per person-year
Voluntary	_
Motorcycling	2000.0×10^{-5}
Smoking (20 cigarettes per day)	500.0×10^{-5}
Car racing	120.0×10^{-5}
Scuba diving	60.0×10^{-5}
Surgical anaesthesia	50.0×10^{-5}
Car driving	17.0×10^{-5}
Pregnancy	9.8×10^{-5}
Drinking (one bottle of wine per day)	7.5×10^{-5}
Rock climbing	4.0×10^{-5}
Involuntary	
Quarry accidents	18.0×10^{-5}
Rail travel accidents	6.0×10^{-5}
Work in the service industry	0.4×10^{-5}
Floods (USA)	0.22×10^{-5}
Tornadoes (Mid west USA)	0.22×10^{-5}
Earthquake (California)	0.17×10^{-5}
Storms (USA)	0.08×10^{-5}
Lightning	0.01×10^{-5}
Aircraft accidents	0.01×10^{-5}
Release from nuclear power station	0.01×10^{-5}
Explosion of pressure vessel	0.005×10^{-5}
Transport of petrol and chemicals (USA)	0.005×10^{-5}
Leukemia	8.0×10^{-5}
Influenza	20.0×10^{-5}
Meteorite	0.000006×10^{-5}
Cosmic rays from explosion of supernova	Less than 0.000 000 01

Nivolianitou, Zoe. (2002). Risk analysis and risk management: a European insight. Law, Probability and Risk. 1. 10.1093/lpr/1.2.161.

"Acceptable" risk of death in structures

 0.1×10^{-5} to 0.3×10^{-5}

International Organization for Standardization (ISO). ISO 2394: General Principles on Reliability for Structures. Geneva: ISO, 2015.

Structures

Structures

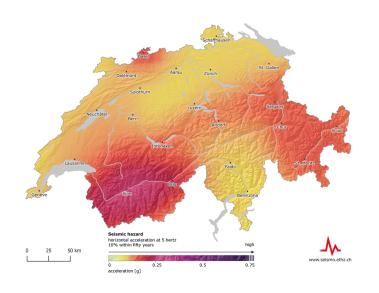
- Fulfill some purpose
 - Shelter, connection, production, etc.
- "Structural failure"
 - Failure to serve this purpose
 - Can be catastrophic, but not necessarily

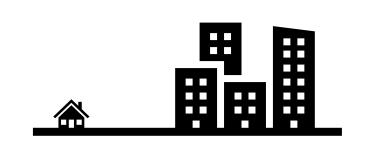
Codes, standards, norms

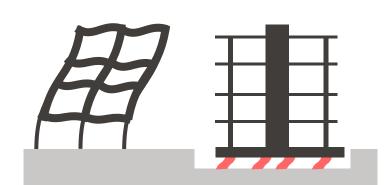
Switzerland

- SIA (Swiss Society of Engineers and Architects)
- SIA 260 Basis of Structural Design
- SIA 261 Actions on Structures

Europe


- Eurocodes
- EN 1990 EN 1999




2. RISKS

Risk

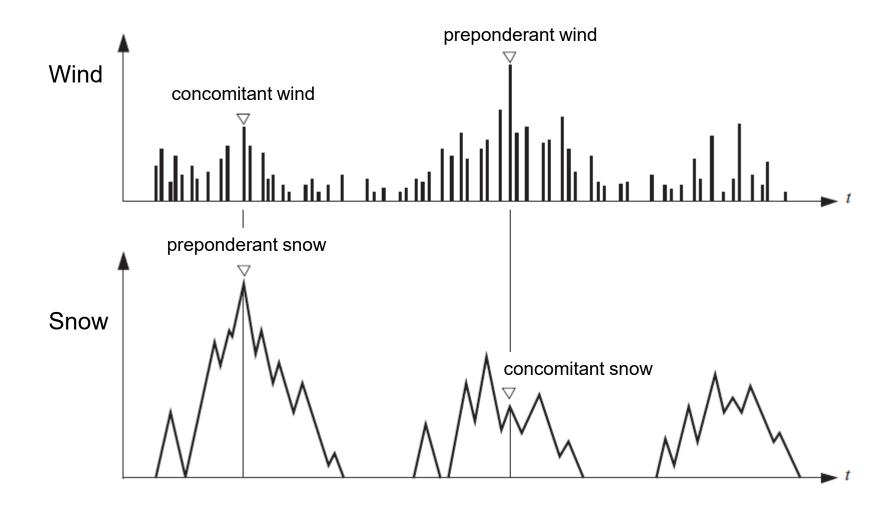
$Risk = Hazard \times Exposure \times Vulnerability$

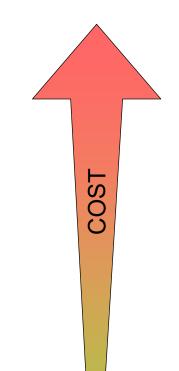
Environmental hazards

Human hazards

etc.

Durability hazards

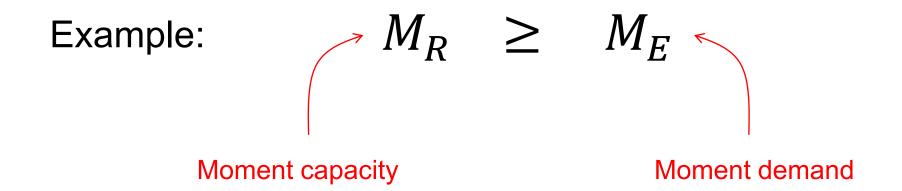


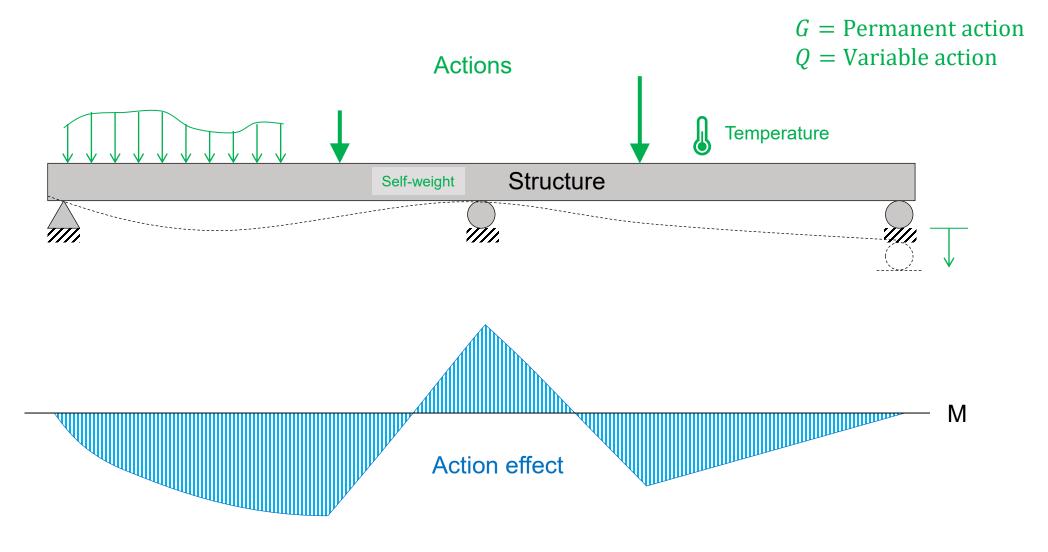

etc.

Risk scenarios

Multiple hazards can occur at the same time

Managing hazards


- Eliminate the hazard by addressing its source
- Avoid the hazard by circumventing dangerous situations
- Overcome the hazard by planning for monitoring, controls, or alarm systems
- Control the hazard by providing sufficient reserves
- Consciously accept the hazard as unavoidable or as a sufficiently small risk to be considered within acceptable limits



Main idea

$$Resistance \geq Action Effects$$
 $R \geq E$

Action effects

Probabilistic approach

Want:

$$R \geq E$$

• Issue: capacity (R) and demand (E) are actually random variables

Probabilistic statement:

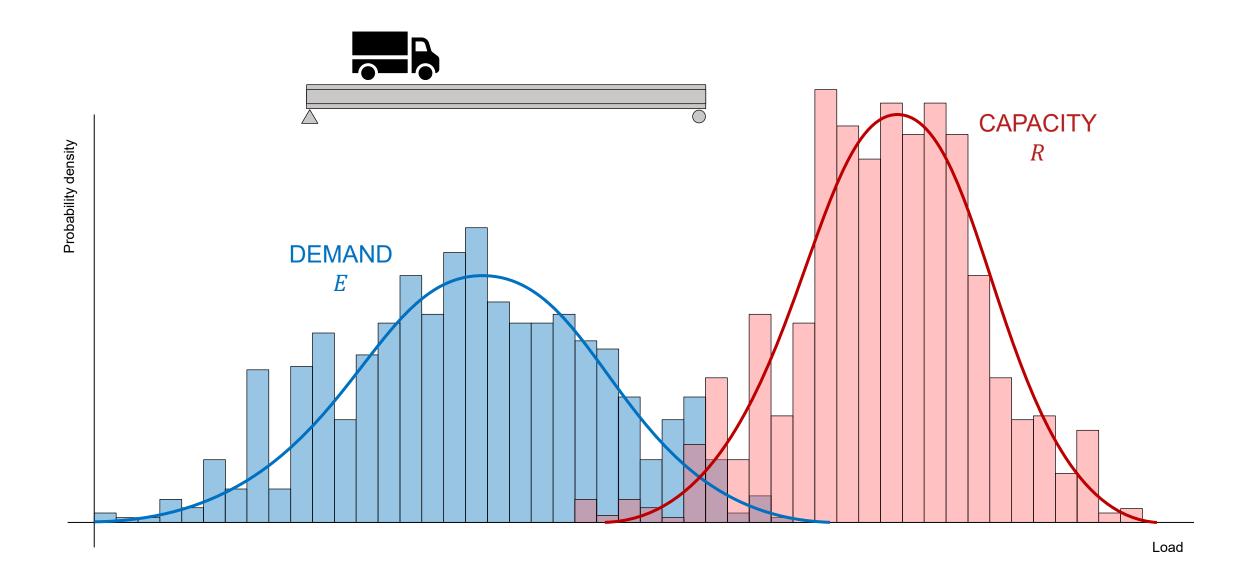
$$P(R < E)$$
 < acceptable limit

Sources of variability

Variability of resistance

- Imprecise modelling of local resistance
- Material properties influencing local resistance
- Geometric properties influencing local resistance

Variability of action effect


Uncertainty of actions themselves

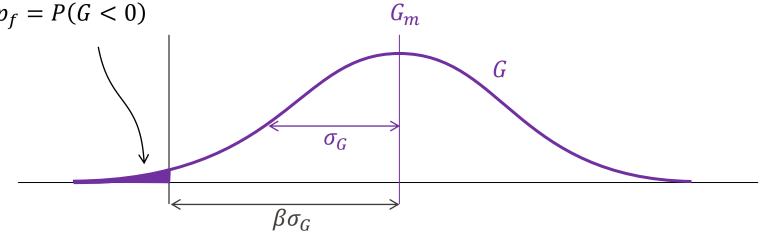
- Environmental uncertainty
- Imprecise modelling of actions
- Geometric properties influencing actions


Uncertainty of action effects given actions

- Mechanical behaviour
- Modelling choices
- Material properties influencing action effects
- Geometric properties influencing action effects

Probabilistic approach

Reliability index β



• Define limit state function: G = R - E

Probability of failure = $p_f = P(G < 0)$

Assume *G* is normal:

$$p_f = \Phi(-\beta)$$

Reliability index β

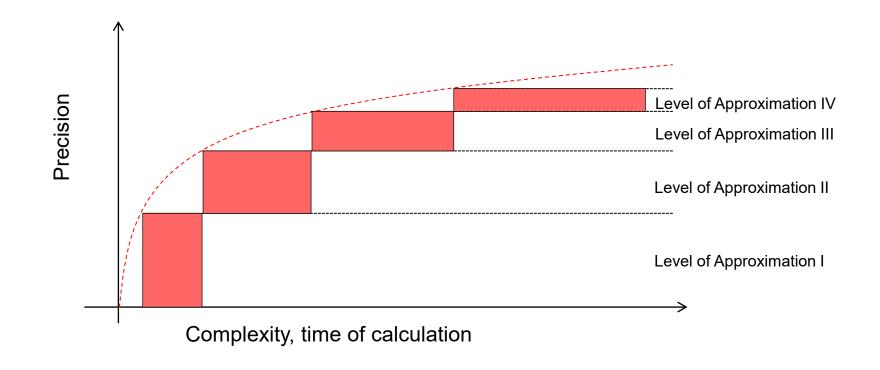
By properties of Normal random variables:

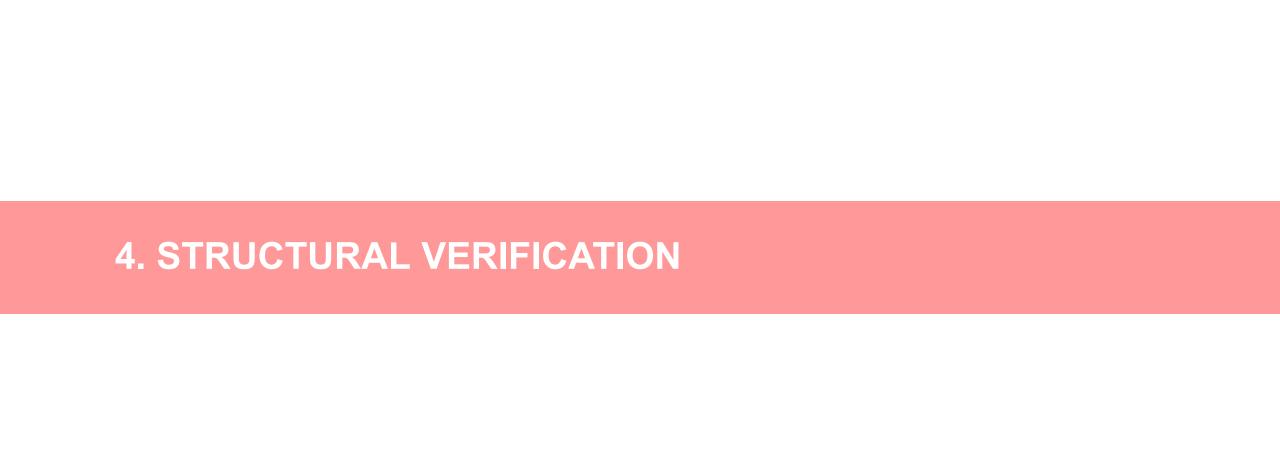
$$G = R - E$$

$$G_m = R_m - E_m$$

$$\sigma_G^2 = \sigma_R^2 + \sigma_E^2$$

$$\therefore \beta = \frac{R_m - E_m}{\sqrt{\sigma_R^2 + \sigma_E^2}}$$

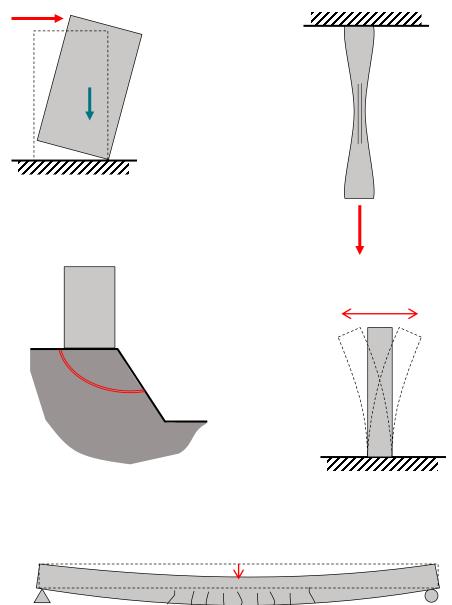

Reliability index β

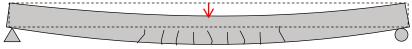

Example: Recommended target reliability indices according to *fib* Model Code 2010 (1 year reference period):

Limit state	β	p_f	1 in
Serviceability	3.0	0.135%	741
Ultimate – Low consequence	4.1	0.00207%	48 409
Ultimate – Medium consequence	4.7	0.000130%	768 753
Ultimate – High consequence	5.1	0.0000170%	5 888 354

Practicality

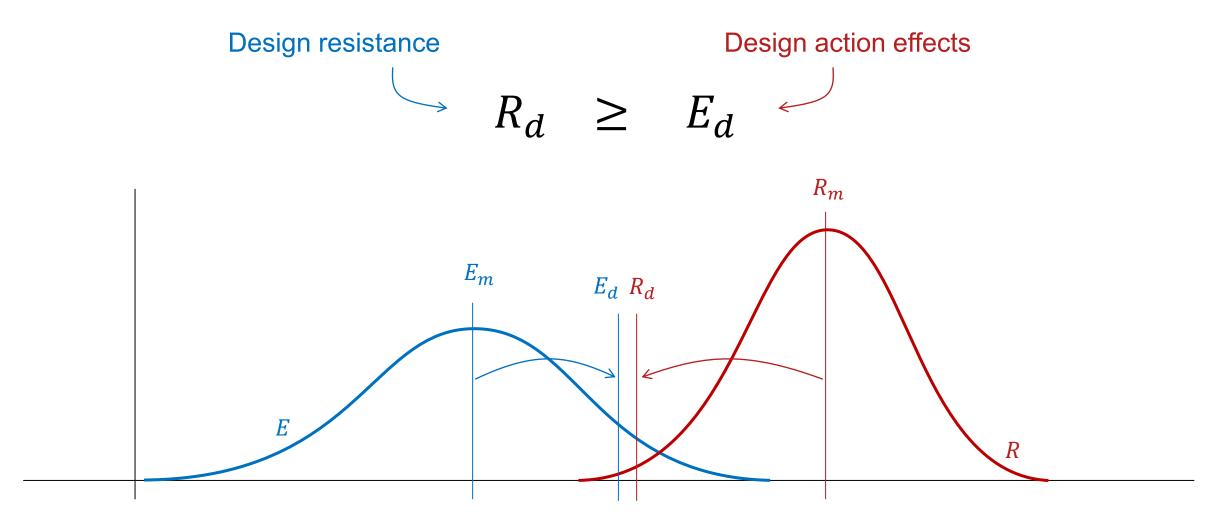
- Full probabilistic method is hard to use in practice
- We rarely have enough information about the variability to quantify both resistance and action effect accurately
- Simplified methods used for "everyday" design



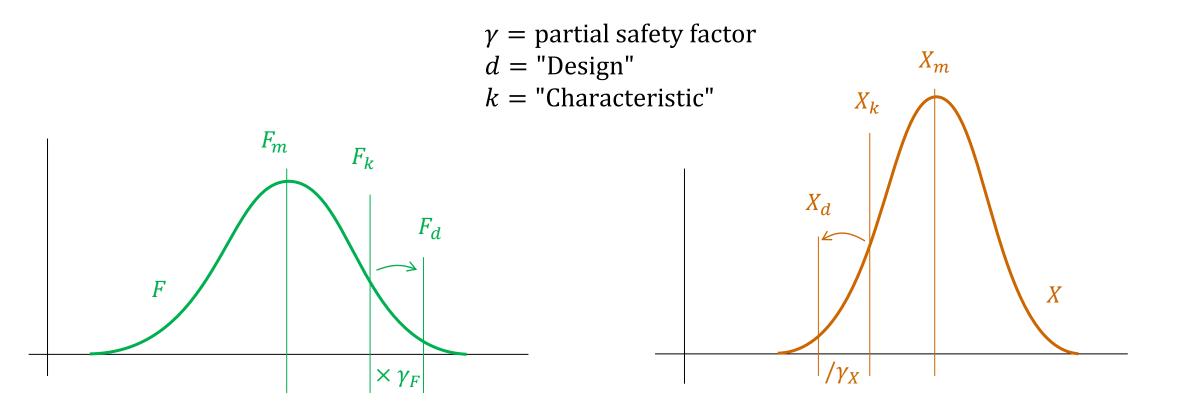


Limit states

- Ultimate limit states (ULS) Life-safety
 - Stability
 - Resistance
 - Soil/terrain
 - Fatigue


- Serviceability limit states (SLS) Utilization
 - Deflection, cracking, comfort, etc.

ULS Resistance – Deterministic method

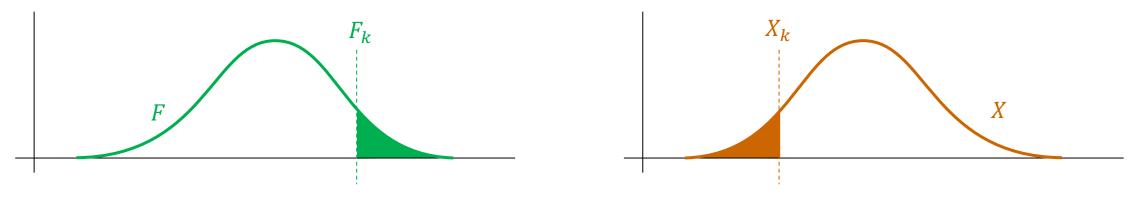

- Check limit states using design values
- Does not explicitly take into account statistical distributions single values

Design values

$$E_d = E\{F_d, ...\}$$
 where $F_d = \gamma_F F_k$
$$F = \text{action}$$

$$R_d = R\{X_d, ...\}$$
 where $X_d = \frac{\eta X_k}{\gamma_X}$
 $X = \text{material property}$
 $\eta = \text{modification factor}$

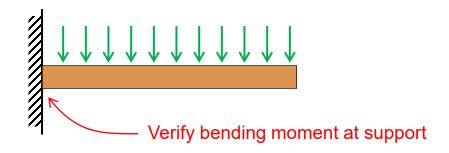
Note: this is a bit of a simplification; for certain types of verifications the safety factors are included differently, there are other parameters, etc.


Characteristic values

Often represent statistical values

Examples:

Permanent loads – Given fractile value


Materials – Given fractile value (often 5%)

Variable loads – Given probability of exceedance (over time span)

Example

Action: distributed load of $F_k = 2 \text{ kN/m}$

Material: wood beam with strength of $X_k = 15 \text{ MPa}$

Partial safety factors:

$$\gamma_F = 1.5$$
 $\gamma_X = 1.7$
 $\eta = 1.0$

Geometry:

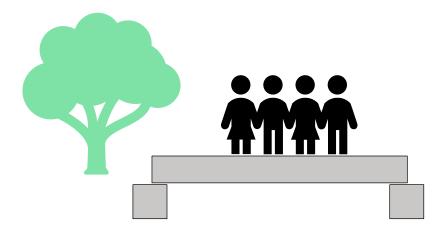
Length L = 3 m

Section modulus $W = 5\,000\,000\,\mathrm{mm}^3$

Design action effect:

$$M_{Ed} = \frac{F_d L^2}{2} = \frac{\gamma_F F_k \cdot L^2}{2} = 13.5 \text{ kNm}$$

Design resistance:


$$M_{Rd} = WX_d = W \cdot \frac{X_k}{\gamma_X} = 17.6 \text{ kNm}$$


 $M_{Rd} > M_{Ed}$ so resistance is OK!

Partial safety factors vs. single safety factor

Why not? Historically a single safety factor was used ("Allowable Stress Design")

Counterexample:

Short bridge

- Action dominated by live load (high variability)
- Safety factor tends to be unconservative

Long bridge

- Action dominated by dead load (low variability)
- Safety factor tends to be overconservative

Partial safety factors

- Type 2 = resistance check
- Dead load is considered with upper and lower bounds to find worst case
- Live load may need to be patterned to find worst case (discussed later)

SIA260 Table 1

Actions	2/_	État-limite			
Actions	$\gamma_{ extsf{ iny F}}$	Type 1	Type 2	Type 3	
Actions permanentes - avec effet défavorable - avec effet favorable	Υ _{G,sup} Υ _{G,inf}	1,10 ¹⁾ 0,90 ¹⁾	1,35 ¹⁾ 0,80 ¹⁾	1,00 1,00	
Actions variables - en général - charges dues au trafic routier - charges dues au trafic ferroviaire - modèles de charge 1, 2, 4 à 7 - modèle de charge 3	γ _α γ _α γ _α	1,50 1,50 1,45 1,45	1,50 1,50 1,45 1,20	1,30 1,30 1,25 1,25	
Actions du terrain de fondation Charges de terre – avec effet défavorable – avec effet favorable	Υ _{G,sup} Υ _{G,inf}	1,10 0,90	1,35 ^{2) 3)} 0,80	1,00 1,00	
Poussée des terres - avec effet défavorable - avec effet favorable ⁴⁾	ΥG,Q,sup ΥG,Q,inf	1,35 0,80	1,35 0,70	1,00 1,00	
Pression hydraulique - avec effet défavorable - avec effet favorable	ΥG,Q,sup ΥG,Q,inf	1,05 0,95	1,20 ³⁾ 0,90	1,00 1,00	

¹⁾ G est multiplié par $\gamma_{G,sup}$ ou par $\gamma_{G,inf}$, selon que l'effet d'ensemble de l'action est défavorable ou favorable.

Pour des hauteurs de remblai de 2 à 6 m, $\gamma_{G,sup}$ peut être réduit linéairement de 1,35 à 1,20.

³⁾ Lors de l'application de la méthode observationnelle, des valeurs réduites sont admises dans certains cas, selon la norme SIA 267.

Pour la butée des terres exerçant une action favorable, on a $F_d = R_d$, selon la norme SIA 267.

SLS – Serviceability

Similar to ULS, we compare load effects (e.g. deflection) with a limit value

$$E_{ser} \leq C_{ser}$$

 Different limit states may be considered depending on specific requirements (deflection, crack width, vibration, etc.)

SLS limits

Different serviceability limits need to be checked; e.g. deflection limits below

SIA260 Annex A Table 3 (buildings)

État-limite	Conséquences des effets des actions					
	irréversibles	réversibles	réversibles			
	Cas de charge					
	rare (20)	fréquent (21)	quasi permanent (22)			
Aptitude au fonctionnement – Éléments incorporés à caractère fragile – Éléments incorporés à caractère ductile – Utilisation et exploitation	$w \le l/500^{-1/2}$	$w \le l/350^{-1}$ $w \le l/350^{-3}$				
Confort		$w \le l/350^{3}$				
Aspect			$w \le l/300^{-4}$			

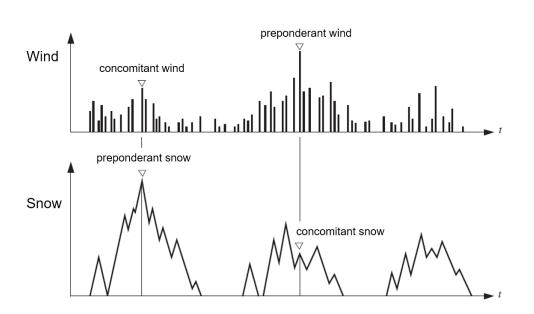
- 1) Flèche due aux actions, en particulier aux actions à long terme, après le montage de tous les éléments de construction secondaires et la mise en place de l'équipement technique.
- 2) Si des éléments incorporés réagissent de manière particulièrement sensible aux déformations de la structure porteuse, il faut avant tout prévoir des mesures constructives contre les dommages, en plus ou à la place des mesures découlant de la procédure de dimensionnement.
- 3) Flèche due uniquement aux actions variables.
- 4) Flèche, après déduction d'une éventuelle contreflèche. Les éventuels effets à long terme doivent être pris en considération

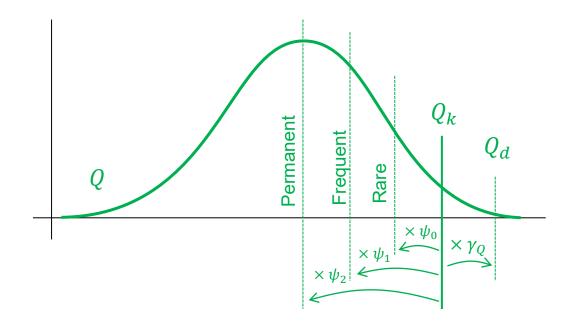
Les flèches seront déterminées selon les indications des normes SIA 262 à 266.

Des valeurs limites différentes pour les flèches peuvent être convenues en accord avec les exigences d'utilisation. Elles seront consignées dans la base du projet. Des exigences réduites sont envisageables spécialement pour les éléments de construction secondaires.

SIA260 Annex B Table 7 (road bridges)

État-limite	Conséquences des effets des actions					
	irréversibles	réversibles	réversibles			
	Cas de charge					
	rare (20)	fréquent (21)	quasi permanent (22)			
Aptitude au fonctionnement — Déplacement vertical relatif au joint de transition de la chaussée		$\delta_{v} \le 5 \text{ mm}^{(1)(2)(3)}$				
Confort		$w \le l/500^{4}$				
Aspect			$w \le l/700^{-1)(2)}$			


- 1) Flèche après déduction d'une éventuelle contreflèche. Les éventuels effets à long terme dus au retrait, à la relaxation ou au fluage doivent être pris en considération.
- 2) Flèche due aux actions, en particulier aux actions à long terme, après le montage de l'équipement technique principal
- 3) Si des éléments incorporés réagissent de manière particulièrement sensible aux déformations de la structure porteuse, il faut avant tout prévoir la prise de mesures techniques contre les dommages, en plus ou à la place des mesures découlant de la procédure de dimensionnement. Les directives émises par les fabricants et les soumissionnaires des produits de construction doivent être respectées.
- 4) Flèche due à la valeur fréquente du modèle de charge 1.


Prof. D. Ruggiero

Les flèches seront déterminées selon les indications des normes SIA 262 à 266.

Des valeurs limites différentes pour les flèches peuvent être convenues en accord avec les exigences d'utilisation. Elles seront consignées dans la base du projet. Des exigences réduites sont envisageables spécialement pour les éléments de construction secondaires.

Load combinations

• Turkstra's rule: check with one preponderant variable load + concomitant variable loads

Load combinations

ULS (permanent and variable)

$$\gamma_G G_k + \gamma_{Q1} Q_{k1} + \sum \psi_{0i} Q_{ki}$$

ULS (accidental)

$$G_k + A_d + \sum \psi_{2i} Q_{ki}$$

SLS (rare)

$$G_k + Q_{k1} + \sum \psi_{0i} Q_{ki}$$

SLS (frequent)

$$G_k + \psi_{11}Q_{k1} + \sum \psi_{2i}Q_{ki}$$

SLS (quasi-permanent)

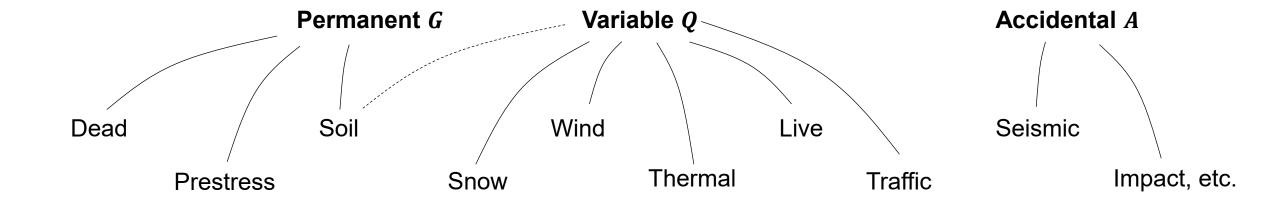
$$G_k + \psi_{2i} Q_{ki}$$

SIA260 Annex A Table 2 (buildings)

Actions	ψ_0	ψ_1	ψ_2
Charges utiles dans les bâtiments	1	, ,	12
Catégorie A Locaux habitables	0,7	0,5	0,3
Catégorie B Locaux administratifs	0,7	0,5	0,3
Catégorie C Locaux de réunion	0,7	0,7	0,6
Catégorie D Locaux de vente	0,7	0,7	0,6
 Catégorie E Entrepôts 	1,0	0,9	0,8
Charges dues au trafic dans les bâtiments			
 Catégorie F Véhicules en dessous de 3,5 t 	0,7	0,7	0,6
 Catégorie G Véhicules de 3,5 t à 16 t 	0,7	0,5	0,3
 Catégorie H Toits 	0	0	0
Charges de neige	1 – 60/h ₀	1 – 250/h ₀	1 – 1000/h ₀
Forces dues au vent	0,6	0,5	0
Effets de la température	0,6	0,5	0
Actions du terrain de fondation			
 Poussée des terres 	0,7	0,7	0,7
 Pression hydraulique 	0,7	0,7	0,7

SIA260 Annex B Table 6 (road bridges)

Actions	ψ_0	ψ_1	ψ_2
Charges verticales – Modèle de charge 1 – Modèle de charge 3	0,75 0	0,75 0	0 0
Forces horizontales 1)	0,75	0,75	0
Charges de neige ²⁾	0,6	0,2	0
Forces dues au vent	0,6	0,2	0
Effets de la température	0,6	0,6	0,5
Actions du terrain de fondation - Poussée des terres - Pression hydraulique	0,7 0,7	0,7 0,7	0,7 0,7


¹⁾ On admettra que les forces horizontales agissent simultanément avec le modèle de charge 1.

Note: prestress load omitted here for simplicity

Generalities

- What follows is not a complete summary just a taste
- Actions are specified in standard SIA 261

December 3rd, 2024

Dead load

- Self-weight of structural materials (concrete, steel, timber, etc.)
- Quasi-permanent non-structural material (roofing, partition walls, etc.) sometimes called "Superimposed Dead Load" (SDL)
- Calculate based on mean density and nominal volume

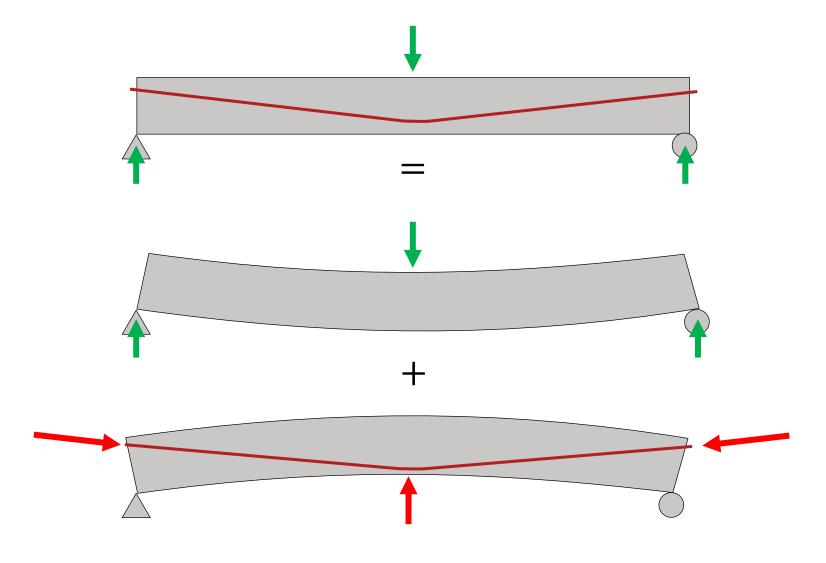
CIVIL-239: Engineering a sustainable built environment, 2024

SIA261 Annex A Table 28

Matériau	Charge volumique kN/m ³	Matériau	Charge volumique kN/m ³
Aluminium	27	Maçonnerie montée sans crépi	
Acier	78,5	briques de terre cuite pleines	18
Béton		briques de terre cuite perforées	13
non armé	24	briques à haute isolation phonique	17
armé	25	briques apparentes perforées	15
Béton léger (à déterminer de cas en cas)		agglomérés de béton pleins	22
Bois		agglomérés de béton perforés	18
résineux en général	5	agglomérés isolants phoniquement	20
feuillus en général	7,5	briques silico-calcaires pleines	20
bois résineux collés	5	briques silico-calcaires perforées	18
panneaux en bois aggloméré	8	agglomérés de béton cellulaire,	
Maçonnerie en pierre		qualité normale	6
moellons (calcaire)	24	agglomérés de béton cellulaire,	
granite	27	haute qualité	7
basalte	30	briques de verre pleines	25
molasse, grès	24	briques de verre creuses	14
Enduits et crépis		plaques d'argile cellulaire	12
mortier de chaux	19	plaques de plâtre	12
mortier de ciment	22	Revêtements de sols	
mortier de plâtre	12	dallage en céramique	20
crépis muraux extérieurs	18	pierre naturelle	30
crépis muraux intérieurs	14	parquet en bois collé	8
		linoléum	15
		Revêtements bitumineux	
		asphalte coulé	24
		revêtement bitumineux (HMT)	24

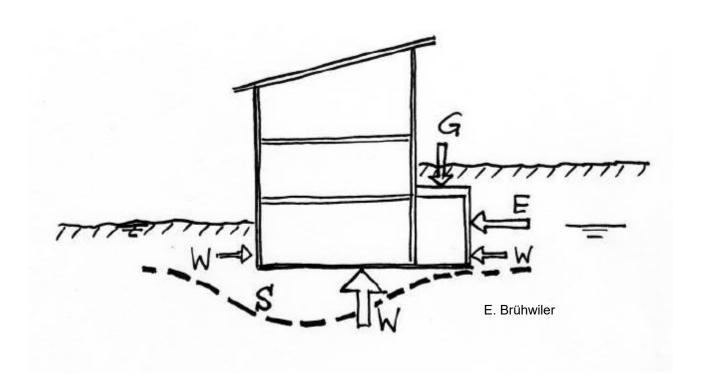
SIA261 Annex A Table 29

Couverture, revêtement	Charge de surface kN/m²	Couverture, revêtement	Charge de surface kN/m²
Ciment armé de fibres	0,18	Sous-toitures	
Tôles profilées, h = 80 mm, d = 0,8 mm		bardeaux	0,10
en acier	0,12	panneaux de fibres durs	0,05
en aluminium	0,04	panneaux en ciment armé de fibres	0,12
Couverture d'ardoise en ciment armé de fibres		lambris de 24 mm, y.c. une couche de	
recouvrement simple	0,23	carton bituminé ou une feuille plastique	0,14
recouvrement double	0,30	Vitrage, y compris châssis	
Tuiles en terre cuite, y compris lattis		verre normal de 5 mm	0,25
tuiles plates, recouvrement double	0,75	verre armé de 6 mm	0,35
tuiles flamandes	0,47	Gravillon, par 10 mm d'épaisseur	0,20
Tuiles en béton, y compris lattis		Carton bitumé, par couche	0,02
tuiles plates	0,55	Feuille plastique	0,02
tuiles flamandes	0,48	Enduits de mortier	0,02


SIA261 Annex A Table 30

Matériau/denrée	Charge volumique	Angle de talus	Matériau/denrée	Charge volumique	Angle de talus
	kN/m ³	0		kN/m ³	0
Terres et ballast			Liquides		
sable	15	35	essence	7,3	
tout venant, mélangé	20	27	pétrole, diesel et mazout	8,5	
ballast, concassé	18	35	goudron de houille, bitume	12	
terre, sèche	16	40 à 45	huile minérale de graissage	9,2	
terre, humide	21	20 à 25	huile végétale	9,5	
gravats (en moyenne)	14	30 à 35	Papier		
Combustibles			livres sur étagères	6	
houille	9	35	papier empilé	11	
briquettes, en vrac	9	30	papier en rouleaux	15	
briquettes, empilées	13,5		Fourrage		
coke, en vrac	5		céréales en vrac	7,5	30
bois en bûches:			pommes de terre,		
conifère, sec	4,4	45	betteraves fourragères	7	30
conifère, humide	6,5	45	foin et paille en vrac	1,5	
feuillu, sec	7	45	herbe en vrac	3,5	
feuillu, humide	10	45	Fumier	9,5	
bois en copeaux, en vrac	1,5	25	Denrées alimentaires		
bois en copeaux, compacté	2,5	45	farine en vrac	6	35
Liants			sucre en vrac	9,5	35
chaux hydraulique	12	25	sel en vrac	12	40
ciment en silo	16	30	sel en sacs	10	
ciment en sacs	12				
clinker de ciment, en vrac	17	30			

Prestress load

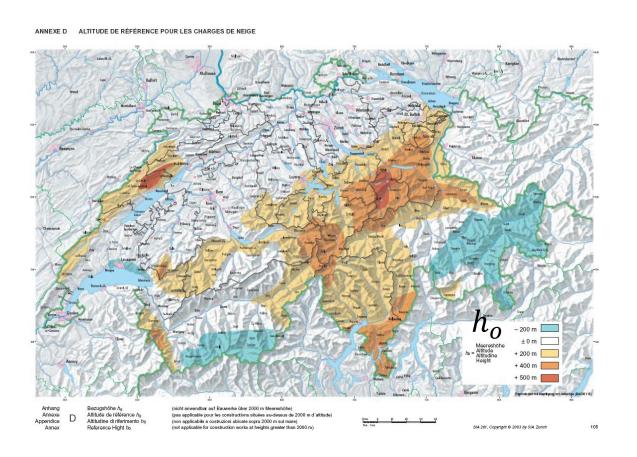

Considered permanent load

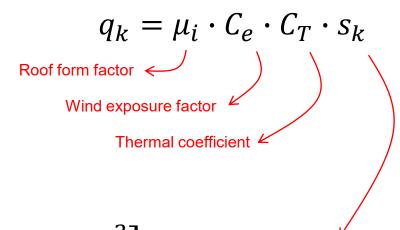
• Given its own safety factor γ_p

Soil load

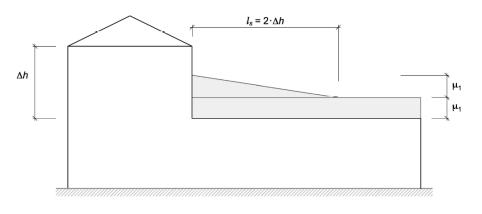
- Usually coordinated with geotechnical engineer
- Effective load depends on weight of soil and friction angle

G = Surcharge


E = Lateral earth pressure

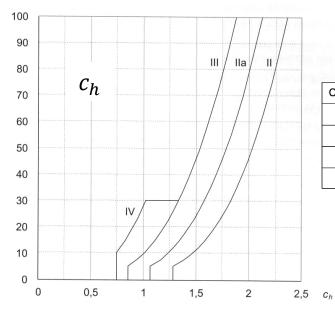

W = Hydraulic pressure

S = Soil settlement

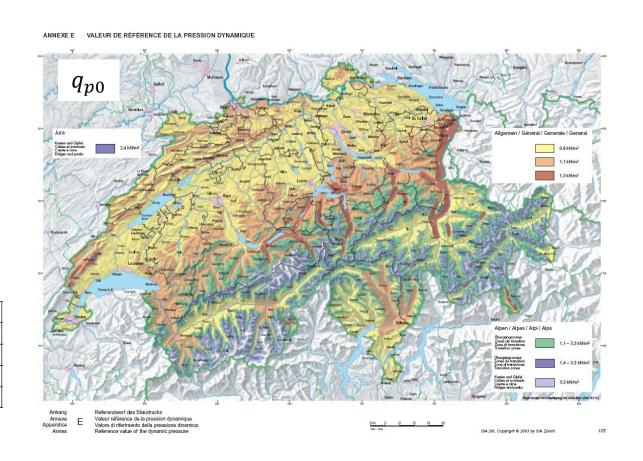

Snow load

- Generally a function of altitude
- Snow piling due to wind and shape of roof must be considered

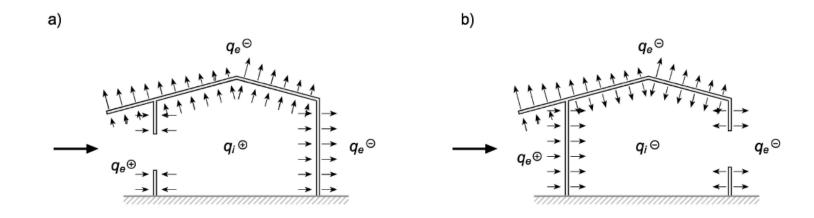
$$s_k = \left[1 + \left(\frac{h_o}{350}\right)^2\right] \cdot 0.4 \text{ kPa} \ge 0.9 \text{ kPa}$$


Prof. D. Ruggiero

Wind load

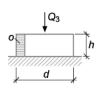

Pressure derives from wind speed

$$q = \frac{1}{2} \cdot \rho \cdot v^2$$

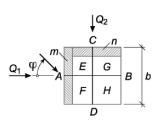

• Dynamic pressure is function of height $q_p = c_h \cdot q_{p0}$

Exemples
rive lacustre
grande plaine
localité, milieu rural
zone urbaine étendue

Wind load



Local effect (e.g., cladding design)


$$Q_{ek} = c_d \cdot c_{pe} \cdot q_p \cdot A_{ref}$$

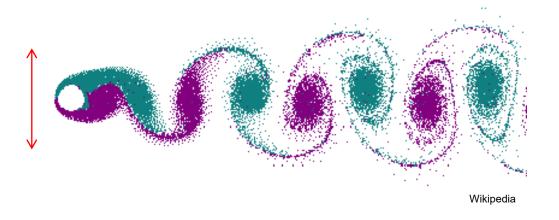
$$Q_{ik} = c_d \cdot c_{pi} \cdot q_p \cdot A_{ref}$$

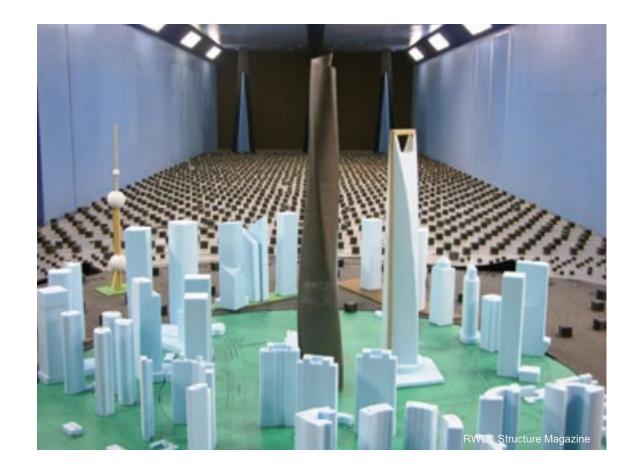
Dynamic factor ______

Example:

Global effect (e.g., structural stability)

$$Q_k = c_{red} \cdot c_d \cdot c_f \cdot q_p \cdot A_{ref}$$
Reduction factor for large areas


Tableau 31 Coefficients pour h: b: d = 0.3:1:1 à 0.05:1:1 , toit plat

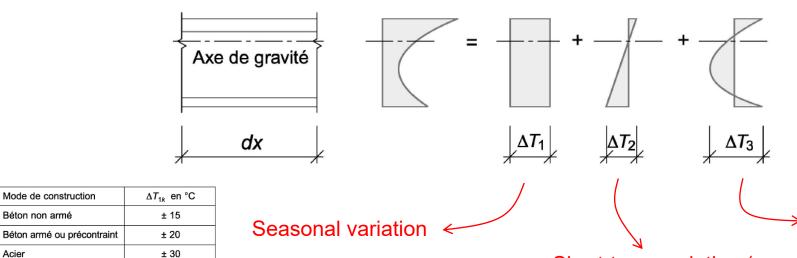

	Coefficients de pression											Coefficients de force							
				С	ре					c _{pe}				c_{pi}			c_{f1}	c_{f2}	C _{f3}
			Surf	ace d'	applic	ation			Surface localisée			Surface localisée Ouvertures prépondérantes sur les côtés			antes	es Surface de référence			
φ	Α	В	С	D	E	F	G	Н	m	n	o	rép.	Α	В	С	D	b·h	d·h	d·b
0°	0,7	-0,25	-0,35	-0,35	-0,5	-0,5	-0,25	-0,25	-0,85	-0,45	-0,8	0,15/ -0,21	0,7	-0,25	-0,35	-0,35	0,95	0	-0,38
15°	0,55	-0,25	-0,2	-0,35	-0,5	-0,55	-0,25	-0,3	-0,85	-0,45	-1,0	±0,15	0,55	-0,25	-0,2	-0,35	0,8	0,15	-0,4
45°	0,4	-0,4	0,4	-0,4	-0,45	-0,45	-0,45	-0,25	-0,85	-0,85	-0,45	±0,1	0,4	-0,4	0,4	-0,4	0,8	0,8	-0,4
90°	-0,35	-0,35	0,7	-0,25	-0,5	-0,25	-0,5	-0,25	-0,45	-0,85	0,45	±0,15	-0,35	-0,35	0,7	-0,25	0	0,95	-0,38
$\hat{c}_{ ho e}$ =						_e = -2	2,0						c _{fr} =	0					

Wind load

 In tall buildings a wind consultant usually provides input on design forces and pressures, as well as vibration criteria

Phenomenon of "vortex shedding"

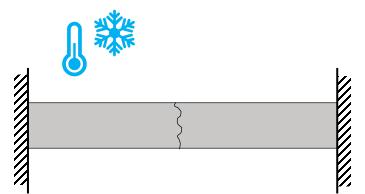
Thermal load


Mode de construction Béton non armé

Mixte acier-béton

Acier

Bois Maçonnerie

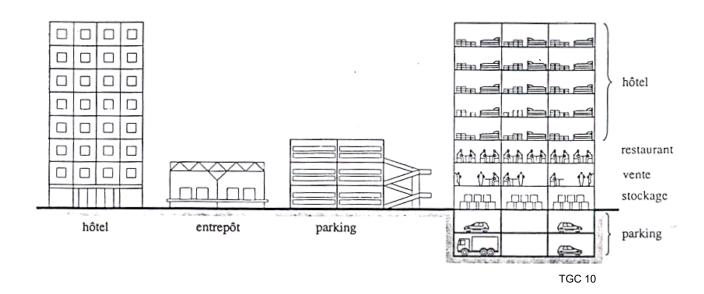

Aluminium

Short-term variation (e.g., direct sun)

Type de structure	Face supérieure plus chaude ΔT_{2k} en °C	Face supérieure plus froide ΔT_{2k} en °C
Ponts métalliques	+ 10	-6
Ponts en béton ¹⁾ h ≤ 1,0 m h ≥ 3,0 m	+ 12 + 8	- 4 - 3
Ponts de construction mixte Dalle Poutre métallique	+ 12 0	- 4 0

Nonlinearity (usually ignored)

± 25 ± 20


± 15

± 30

Expansion joints may be needed in monolithic structures

¹⁾ h = hauteur de la section; pour des hauteurs entre 1 m et 3 m, les valeurs pourront être interpolées linéairement.

Live load (buildings)

Consider distributed and/or point loads

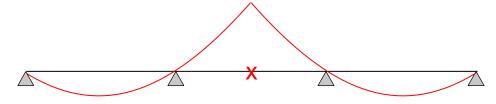
SIA261 Table 8

Catégorie	Genre de surface utile	Exemples	q_k en kN/m ²	Q _k en kN
A	Surfaces d'habitation	A1: Locaux dans les immeubles et les maisons d'habitation, services des hôpitaux, chambres d'hôtel, cuisines et toilettes	2	2 ¹⁾
		A2: Balcons	3	2 ¹⁾
		A3: Escaliers	4	2 ¹⁾
В	Bureaux		3	2 1)
С	Locaux de réunion	C1: Surfaces avec tables et chaises	3	4 ¹⁾
		C2: Surfaces avec sièges fixes	4	4 ¹⁾
		C3: Surfaces librement accessibles, surfaces de sport et de jeu, surfaces pouvant acceuillir des rassemblements de personnes	5	4 1)
D	Surfaces de vente	Grands magasins, commerces	5	4 ¹⁾
E	Surfaces d'entrepo- sage et de fabrication	Entrepôts, bibliothèques et leurs accès, halles de fabrication	2) 3)	2) 3)
F	Surfaces de stationne- ment et surfaces acces- sibles aux véhicules de poids < 3,5 t	Parkings à étages, surfaces de parc, garages	2 ³⁾	20 3) 4)
G	Surfaces de stationne- ment et surfaces acces- sibles aux véhicules de 3,5 t à 16 t	Rampes d'accès, zones de livraison, zones accessibles aux véhicules du service du feu	5 ³⁾	90 3) 4)
Н	Toitures non accessibles 5)	Toits uniquement accessibles pour des travaux d'entretien	0,4	1 ¹⁾

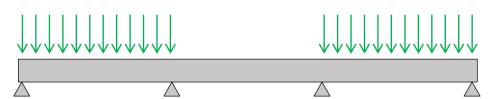
¹⁾ Surface d'application 50 mm x 50 mm; Q_k ne doit pas être combiné avec q_k. Pour les surfaces d'entrepôts équipées d'étagères ou les surfaces accessibles aux engins de levage, on fixera la valeur Q_k en tenant compte des spécificités du projet.

²⁾ Voir le chiffre 8.2.2.

³⁾ On admettra que Q_k et q_k agissent simultanément.

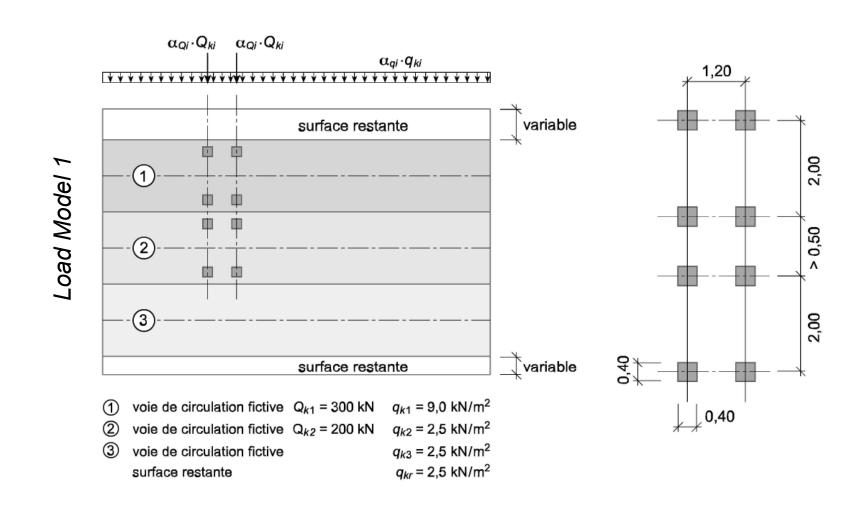

⁴⁾ Deux charges concentrées Q_k/2 distantes de 1,8 m sur des surfaces d'application de 200 mm x 200 mm.

⁵⁾ Selon leur utilisation, les toits accessibles aux personnes et aux véhicules seront considérés comme des surfaces des catégories A à G.

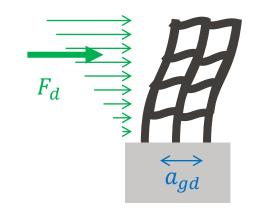

Live load (buildings)

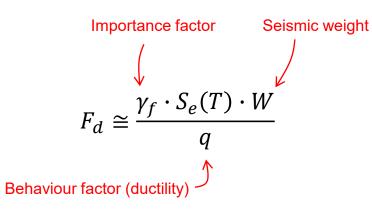
 In general, live load should be applied where it is least favourable (patterning)

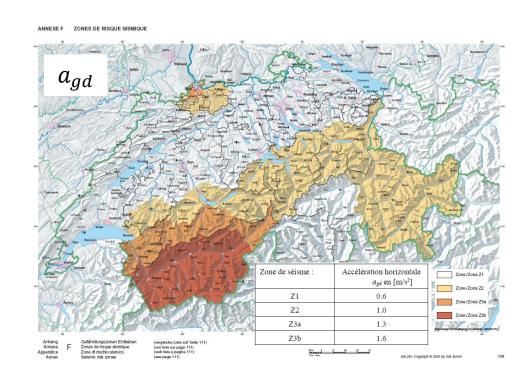
Influence diagram for negative moment in middle span

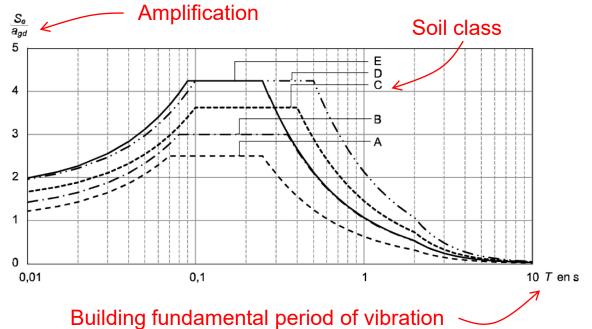

Load producing worst case negative moment

- For tall buildings, it is unlikely that all floors will be fully loaded; the load may be reduced according to the area loaded (live load reduction)
- Different codes take different approaches SIA261 applies ψ_1 to all but 2 floors


Traffic loads


- Represented by different idealized static load models (including dynamic effects)
- Braking, accelerating, and centrifugal forces also to be considered
- Similar for rail loads


Seismic load


- Earthquake is considered an accidental action
- Inertial forces from ground shaking are transformed into equivalent static loads

* Not exactly correct for low and high period, see code!

Impact, fire, explosion

- Preventative measures are usually more costeffective than designing for very rare hazards
 - E.g., install physical bollards to prevent against vehicle impact

- Impact Modelled as a static load applied at height of impact
- Fire Safety ensured by time-based fire rating
- Explosion Specific considerations where required

QUESTIONS?