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Housekeeping

* Assighment 2 due next week
* Office hours: please send me an email in advance



Outline

* Energy flows and current supply mix

* Renewables

* Definitions

* Most important types for achieving decarbonization
* Levelized Cost of Energy

* The challenge of integrating renewables into the grid
* The duck curve
* Energy storage
* Flexibility
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Electrification

* To reach net-zero
energy, we need
to electrify our
buildings

* Electricity
demand will rise
across all
sectors

* Building
electrification

* Electric vehicles

e etc...
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Supply

Overview of the EU28 energy system in million tons oil equivalent (MTOE)
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Supply

Solar
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Source: LLNL July, 2023. Data is based on DOE/EIA SEDS (2021). If this information or a reproduction of it is used, credit must be given to the Lawrence Livermore National Laboratory and the
Department of Energy, under whose auspices the work was performed. Distributed electricity represents only retail electricity sales and does not include self-generation. EIA reports consumption of
renewable resources (i.e., hydro, wind, geothermal and solar) for electricity in BTU-equivalent values by assuming a typical fossil fuel plant heat rate. The efficiency of electricity production is
calculated as the total retail electricity delivered divided by the primary energy input into electricity generation. End use efficiency is estimated as 0.65% for the residential sector, 0.65% for

the commercial sector, 0.49% for the industrial sector, and 0.21% for the transportation sector. Totals may not equal sum of components due to independent Rounding. LLNL-MI-410527
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Different definitions of energy production

* Renewable energy, IEA definition: “energy derived from natural
processes that are replenished at a faster rate than they are

consumed”
* Clean energy: Energy low in emissions

* Sustainable energy: Energy that limits permanent negative
Impact on future generations

* What’s an example of a clean energy that’s not renewable?

* What’s an example of a renewable energy that’s not necessarily
clean?
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Renewable energy
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Technology Primary Application % ;2':’[:

Traditional (gather and burn) Heating and cooking X
Biomass Commercial (refined and traded) Electricity and heat X X
Biofuels Transportation X X
Hydropower Dam turbines Electricity X
Run of river turbines Electricity X
Wind Turbines Electricity X
Thermal / direct use Space and water heating X
Solar Thermal electric Electricity
Photovoltaic (PV) Electricity
Steam cycle power plant Electricity X
Geothermal Direct use Space and water heating X
Ground source heat pump Space heating and cooling X
Tidal Electricity X
Ocean/Marine Wave Electricity X X

Source: Stanford University Thermal Electricity X
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Renewables overview — where the energy comes from
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(Primary Energy) (Secondary Energy) Hosting

>
> Oil > Hlectricity > Cooking
» Coal » Gasoline » lllumination
> Natural Gas > Biofuels > > Transport
» Nuclear (uranium) » Hydrogen > Refrigeration
» Biomass » Human & Animal Labor > HotShowers
» Space Cooling
» Hydro
» Water Pumping
= » Refining/Purification
» Geothermal » Welding
> Solar Energy Storage » Computing
» Ocean > Pumped Hydro » Phone
> Energy Efficiency > Baifnien » Defense
» Manufacturing

» Compressed Air

» lce/Steam

» Molten Salt




Refining our definition of “renewable”

* Renewable: Inexhaustible and naturally-replenishing. Using the
resource does not affect future availability of the resource
 Wind
e Solar
* Ocean

* Semi-renewable: Use of the resource can be renewable if
carefully managed so that use does not result in depletion

* Hydro
e Geothermal
e Biomass

Source: Stanford University
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How do we compare the cost of energy and
electricity?

* Standard industry method: Levelized Cost of Electricity (LCOE)
* LCOE: the cost of producing electricity over the lifetime of the
power-producing system divided by the total amount of energy it

produces
Total life cycle cost

Total electricity produced
* Tells you the amount of revenue a system would need to earn to
break even

* One problem: is the power produced next year worth the same to
me now as the power produced today?

LCOE =

16



Net present value

* Fundamental idea in valuing future costs and benefits: money is worth
more today than itis in the future
* Money you have today can be invested and grow

* Assign a discount rate to discount (reduce) the value of future costs
and benefits

* This gives you the net present value

1
NPV = - value

(1+7)

discount rate

17



LCOE: Definition

Total life cycle cost
LCOE =

Total electricity produced

* Total life cycle cost:
* (I=investment, M=maintenance, F=fuel expenditures)

no I+ M+ F;
Cost = Z -
£t=0 (1 —+ T')

 Sum of electricity produced:

. n E;
Production = Z

t=0 (1 + 1)t

18
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LCOE of major electricity technologies

Electricity costs according to data from Lazard
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Exercises

* An investment company is interested in developing a wind farm.
The upfront cost of installing the system is €3 million. The wind
farm is expected to produce 35,000 MWh of energy each year. The
operation and maintenance costs are estimated to be €5/MWh of
produced electricity. The wind farm is expected to last 10 years
(reduction for the purpose of simplifying the exercise). The

Investment firm uses a discount rate of 5% for valuing projects like
this. What is the LCOE?

* For future thinking: what financial risks are present for fossil fuel

power plants (e.g., natural gas) that are not present for renewable
power plants?

20
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Wind turbines

blades
nacelle

* Enabled by Bernoulli’s hub
principle: Higher velocity
flow yields lower
pressure -

steel tubular tower ——

Lift

concrete pedestal \

concrete \f\ ]
foundation Source: NASA
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Wind turbine physics

* Energy is extracted from the total kinetic energy of the moving air

* Kinetic energy: %mv2

* Rate of kinetic energy arriving at turbine (power units): lTiwz

* Rate of mass of air arriving at turbine: i = — = A(m?) - p( ) v(—)
* Total power in arriving air: %Apv3

. 8
* Maximum power that can be extracted: EA,mﬂ (Betz’s Law)



Wind turbine
size and
power

Wind Speeds Increase with Height
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How the Haliade-X compares

Empire State
Building
1,454 ft

Eiffel
Tower
1,063 ft New GE
Haliade-X
853 ft

Tallest Block Island
onshore offshore wind
Average US turbine project
onshore 574 ft 590 ft

Statue of
Liberty
305 ft

I

Source: GE, Vox research

US turbine
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This map is published by the World Bank Group, funded by ESMAP, and prepared by DTU and Vortex. For more information and terms of use, please visit http://globalwindatlas.info
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SOlar energy Solar thermal

/4

Al
* Energy from the sun =x= “hotovoltaics
arrives as light /
(electromagnetic)
energy and can be Direct solar
converted into heating
electricity or heat (Passive solar)

through a variety of
mechanisms




Passive solar heating
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Solar thermal

* The sun’s energy is
good at heating things

up

* Aside from directly
heating buildings, it
can be used to heat
water for use in
buildings and other
uses

27

solar collectors

pump and
controller

?

hot
water
_} _—— . hot water
\____/
‘ cold water
4_
4— cold water storage
tank
~

Source: U.S. Energy Information Administration

Note: This is a simplified diagram of a drainback-type solar water heating system.

eia
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Sunlight energy causes some
electrons in N-type layer to break
free from silicon lattice, these flow

Solar photovoltaics

Sunlight
N-type silicon: extra Antl Reflecting f{at I/ \/ -
electrons, negative charge < 4
n-type Silicon Semiconductor type §
P-type silicon: electron Hotes + éE*tema' Coad
. . o, o El p H 1 +
deficit (holes), positive sction Pake € J - Eectrons > p-njunction
charge p-type Silicon Semiconductor type
No emissions or moving ! D o aetr
parts .

Solar Cell
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Solar cells, modules, and
arrays
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Cell Efficiency (%)
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Concentrated solar thermal for electricity

* Heat from the sun can
be concentrated
(through mirrors) to
create steam that runs
through a turbine

* Need very reliable W
sunlight |

* Typically, much more
expensive than PVs
and wind
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SOLAR RESOURCE MAP

PHOTOVOLTAIC POWER POTENTIAL
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Hydropower — driven by the sun

gvaporation & transpiration
runcf

i
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Hydropower

HYdfOpOWEf Plant GENERATOR  view from above
MAGNETS — g

Ies'

COPPER COILS \v‘w »
RESERVOIR ROTATING — e -m-- L5 ,«M l

Intake

Storage hydro Run of river hydro
(small or large scale) (small scale)

Sources: need.org; DOI 10.1080/10286608.2021.1893310



Hydropower
physics

(a) low head (b) medium head (c) high head

* Energy is extracted from the energy potential of flowing water
* Potential energy: mgh

. : .k
* Rate of mass of water arriving at turbine: pV (Tg

* Turbine power: pV - g - Ah - 1

\ turbine efficiency

35
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Hydropower in Switzerland

* Hydropower is about
57% of electricity
produced in
Switzerland

* Switzerland has
tapped much of its
hydropower potential




HYDROPOWER IN SWITZERLAND ¥

Types of hydropower plants
B run-of-river plant

B storage plant

B pumped-storage plant

) (Genéve
{] ).
"l
Installed turbine capacity [in MW]
== 1285
~]/~1000
. 500
~100

25 0 25 50 75 100 km  Data provided by swisstopo (VEC200) and the Federal Office
of Energy FOE Switzerland. State of the data: 01/01/2018.
Created with QGIS 3.2.

Sustainability 2018, 70(10), 3594; https://doi.org/10.3390/su10103594



https://doi.org/10.3390/su10103594
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Negative environmental impacts of hydro

* Upstream:

* Reservoirs transform river ecosystems into lake
ecosystems

* Submerged vegetation can release CO, and
methane

* I[nundation of land causes human displacement
* Impedes fish passage ¥ - ‘
« Sediment buildup reduces dam capacity over time sh ladder

e Downstream:

* Halts sediment flow and changes river
morphology

* Ecosystem alteration
* Water quality issues
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THE CONTROL OF NATURE

THE LOST CANYON
UNDER LAKE POWELL

Drought is shrinking one of the country’s largest reservoirs,

revealing a hidden Eden.

* When Glen Canyon Dam was built, there was a rush to document
dwellings, petroglyphs, and pottery left behind by generations of
Native Americans

* With recent droughts, the water levels in Lake Powell have
dropped, and some of these sites have reemerged

Sources: The New Yorker, KNAU



Supply and demand challenges

* We are electrifying (buildings and transport)
* This adds more demand to the electricity grid

* We are replacing electricity generation
* Removing constant producers like natural gas and coal
* Adding intermittent producers like wind and solar

* Major challenge: balancing the grid

41



Electricity
consumption
by sector,
Europe
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What drives energy demand variation?

* Lights, HVAC, and
electrical
appliances are
driven by occupant
behavior,
especially in
residential sector

Residential electricity consumption by end use, 2015
percent of total

air conditioning

17%

reviousl ‘
P : new sl

published end uses NN

end uses =0
=

space heating
15%

water heating
14%
not elsewhere

refrigerators o .
gerator classified 13%

Cla\ 7%

Note: US Data
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lighting 10%
.‘Vs and related 7%

clothes dryers 5%

ceiling fans

air handlers (heating)
separate freezers
cooking
dehumidifiers
microwaves

pool pumps

air handlers (cooling)
humidifiers
dishwashers

clothes washers

hot tub heaters
evaporative coolers
hot tub pumps
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Electricity Demand and Supply Status Quo (no wind/solar)
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Wind and Solar Penetration
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The Duck Curve

Y-axis is load on grid after renewable electricity production

California's duck curve is getting deeper
CAISO lowest net load day each spring (March—May, 2015-2023), gigawatts

25
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Renewables need flexible backup, not baseload

Estimated power demand over a week in 2012 and 2020, Germany
Source: Volker Quaschning, HTW Berlin

80 Gigawatts
A week in May 2012 A week in May 2020

Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed Thu Fri Sat Sun

Conventional Renewables
I Pumped Storage Solar
I Coal and gas I Wind

I Nuclear I Biomass
I Hydro

Energy Transition  energytransition.org  (€0) &v =
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High Wind and Solar Penetration
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High Wind and Solar Penetration with Storage
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Storage

* Two primary methods
for storing electricity
* Batteries
* Pumped hydro power

50

<]v<A>4[> Reservaoirr,
£TA battery, etc.
Charge
Excess Stoered ¢
Renewable enelqy: Electric
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Pumped hydro power

e Two reservoirs

* Pump water up to the
higher reservoir (charge
the battery) when
electricity is clean and/or
cheap

* Run water down through
turbine when renewables

are not producing
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High Wind and Solar Penetration with Shifted Demand
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Naderi, S., Pignatta, G., Heslop, S., MacGill, I., & Chen, D. (2022). Demand response via pre-cooling and solar pre-cooling: a review. Energy and Buildings, 272, 112340.
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Microgrids and resiliency

* Renewables are
well-situated to @ o~
power microgrids, oliilnle Y
which provide & Faciltes
power on the scale
of a neighborhood

or campus ,’::%

* Can help with
resiliency when the
larger grid fails
(e.g., from large
storms)

Electricity Grid

EXAMPLE
MICROGRID

Microgrid
Controller

54

e

Clean Energy

Oo

Heat & Power

Generator

Source: Climate X Change



Electricity production profiles for hydropower, wind energy and solar energy
Switzerland 2017-2018 (% of annual production)
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A 100% Renewable Europe?

primary electricity generation [TWh]
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Michael Child, C. Breyer, et al. Renewable Energy 139 (2019) 80-101



Resources

* Hourly “demand-driven” mix in CH:
https://horocarbon.ch/mix.php
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