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Housekeeping

• Assignment 2 due next week
• Office hours: please send me an email in advance
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Outline

• Energy flows and current supply mix
• Renewables
• Definitions
• Most important types for achieving decarbonization

• Levelized Cost of Energy
• The challenge of integrating renewables into the grid
• The duck curve
• Energy storage
• Flexibility
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Source: Stanford BDLA
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Electrification

• To reach net-zero 
energy, we need 
to electrify our 
buildings
• Electricity 

demand will rise 
across all 
sectors
• Building 

electrification
• Electric vehicles
• etc…
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Different definitions of energy production

• Renewable energy, IEA definition: “energy derived from natural 
processes that are replenished at a faster rate than they are 
consumed”
• Clean energy: Energy low in emissions
• Sustainable energy: Energy that limits permanent negative 

impact on future generations
• What’s an example of a clean energy that’s not renewable?
• What’s an example of a renewable energy that’s not necessarily 

clean?
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Non-
renewable 
energy

Source: International Renewable Energy Agency
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Renewable energy

Source: International Renewable Energy Agency
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Category Technology Primary Application Small 
Scale

Large 
Scale

Biomass

Traditional (gather and burn) Heating and cooking X

Commercial (refined and traded) Electricity and heat X X

Biofuels Transportation X X

Hydropower
Dam turbines Electricity X X

Run of river turbines Electricity X

Wind Turbines Electricity X X

Solar

Thermal / direct use Space and water heating X

Thermal electric Electricity X

Photovoltaic (PV) Electricity X X

Geothermal

Steam cycle power plant Electricity X

Direct use Space and water heating X

Ground source heat pump Space heating and cooling X

Ocean/Marine

Tidal Electricity X

Wave Electricity X X

Thermal Electricity XSource: Stanford University
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Renewables overview – where the energy comes from

Biomass

Solar

Ocean 
Thermal

Hydro

Tides

Waves

Wind

Geothermal

Renewable

Semi-renewable

Photosynthesis

Water  Cycle

Source: Stanford University

Fossil 
fuels
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Refining our definition of “renewable”

• Renewable: Inexhaustible and naturally-replenishing. Using the 
resource does not affect future availability of the resource
• Wind
• Solar
• Ocean

• Semi-renewable: Use of the resource can be renewable if 
carefully managed so that use does not result in depletion
• Hydro
• Geothermal
• Biomass

Source: Stanford University
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How do we compare the cost of energy and 
electricity?
• Standard industry method: Levelized Cost of Electricity (LCOE)
• LCOE: the cost of producing electricity over the lifetime of the 

power-producing system divided by the total amount of energy it 
produces

LCOE =
Total	life	cycle	cost

Total	electricity	produced
• Tells you the amount of revenue a system would need to earn to 

break even
• One problem: is the power produced next year worth the same to 

me now as the power produced today?
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Net present value
• Fundamental idea in valuing future costs and benefits: money is worth 

more today than it is in the future
• Money you have today can be invested and grow

• Assign a discount rate to discount (reduce) the value of future costs 
and benefits
• This gives you the net present value

𝑁𝑃𝑉 =	

𝑁𝑃𝑉 =
1

(1 + 𝑟) + 𝑣𝑎𝑙𝑢𝑒

discount value

discount rate
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LCOE: Definition

LCOE =
Total	life	cycle	cost

Total	electricity	produced
• Total life cycle cost:

• (I=investment, M=maintenance, F=fuel expenditures)

𝐶𝑜𝑠𝑡 =H
!"#

$ 𝐼! +𝑀! + 𝐹!
(1 + 𝑟)!

• Sum of electricity produced:

𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 =H
!"#

$ 𝐸!
(1 + 𝑟)!
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LCOE of major electricity technologies

Source: Wikimedia Commons
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Exercises

• An investment company is interested in developing a wind farm. 
The upfront cost of installing the system is €3 million. The wind 
farm is expected to produce 35,000 MWh of energy each year. The 
operation and maintenance costs are estimated to be €5/MWh of 
produced electricity. The wind farm is expected to last 10 years 
(reduction for the purpose of simplifying the exercise). The 
investment firm uses a discount rate of 5% for valuing projects like 
this. What is the LCOE?
• For future thinking: what financial risks are present for fossil fuel 

power plants (e.g., natural gas) that are not present for renewable 
power plants?
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Wind turbines

• Enabled by Bernoulli’s 
principle: Higher velocity 
flow yields lower 
pressure

Lift

Source: NASA
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Wind turbine physics

• Energy is extracted from the total kinetic energy of the moving air

• Kinetic energy: !
"
𝑚𝑣"

• Rate of kinetic energy arriving at turbine (power units): !
"
𝑚̇𝑣"

• Rate of mass of air arriving at turbine: 𝑚̇ = #
$
= 𝐴(m") = 𝜌(%&

'!) = 𝑣(
'
(
)

• Total power in arriving air: !
"
𝐴𝜌𝑣)

• Maximum power that can be extracted: *
"+
𝐴𝜌𝑣) (Betz’s Law)
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Wind turbine 
size and 
power

S W Wasiati et al 2020 J. Phys.: Conf. Ser. 1517 012064
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Solar energy

Direct solar 
heating
(Passive solar)

Photovoltaics

Solar thermal

• Energy from the sun 
arrives as light 
(electromagnetic) 
energy and can be 
converted into 
electricity or heat 
through a variety of 
mechanisms
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Passive solar heating

Winter day Winter night Summer day
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Solar thermal

• The sun’s energy is 
good at heating things 
up
• Aside from directly 

heating buildings, it 
can be used to heat 
water for use in 
buildings and other 
uses
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Solar photovoltaics

N-type silicon: extra 
electrons, negative charge

P-type silicon: electron 
deficit (holes), positive 
charge

Sunlight energy causes some 
electrons in N-type layer to break 
free from silicon lattice, these flow  

-+

No emissions or moving 
parts
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Solar cells, modules, and 
arrays
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Crystalline silicon cells 
have the best efficiency-

cost ratio for most 
purposes on Earth
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Concentrated solar thermal for electricity

• Heat from the sun can 
be concentrated 
(through mirrors) to 
create steam that runs 
through a turbine
• Need very reliable 

sunlight
• Typically, much more 

expensive than PVs 
and wind
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Ivanpah CST 
power plant 
from last slide
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Hydropower – driven by the sun

33



Hydropower

Sources: need.org; DOI 10.1080/10286608.2021.1893310

Storage hydro
(small or large scale)

Run of river hydro
(small scale)
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Hydropower 
physics

35

• Energy is extracted from the energy potential of flowing water
• Potential energy: 𝑚𝑔ℎ
• Rate of mass of water arriving at turbine: 𝜌𝑉̇	(%&

(
)

• Turbine power: 𝜌𝑉̇ = 𝑔 = ∆ℎ = 𝜂

turbine efficiency



Hydropower in Switzerland

• Hydropower is about 
57% of electricity 
produced in 
Switzerland
• Switzerland has 

tapped much of its 
hydropower potential
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Sustainability 2018, 10(10), 3594; https://doi.org/10.3390/su10103594
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Negative environmental impacts of hydro

• Upstream:
• Reservoirs transform river ecosystems into lake 

ecosystems
• Submerged vegetation can release CO2 and 

methane
• Inundation of land causes human displacement
• Impedes fish passage
• Sediment buildup reduces dam capacity over time

• Downstream:
• Halts sediment flow and changes river 

morphology
• Ecosystem alteration
• Water quality issues

Fish ladder
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Grand 
Canyon, 
Arizona, 

USA

Lake Powell, 
Reservoir 
from Glen 
Canyon Dam
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Sources: The New Yorker, KNAU

• When Glen Canyon Dam was built, there was a rush to document 
dwellings, petroglyphs, and pottery left behind by generations of 
Native Americans
• With recent droughts, the water levels in Lake Powell have 

dropped, and some of these sites have reemerged
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Supply and demand challenges

• We are electrifying (buildings and transport) 
• This adds more demand to the electricity grid

• We are replacing electricity generation
• Removing constant producers like natural gas and coal
• Adding intermittent producers like wind and solar

• Major challenge: balancing the grid
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Electricity 
consumption 
by sector, 
Europe 
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What drives energy demand variation?

• Lights, HVAC, and 
electrical 
appliances are 
driven by occupant 
behavior, 
especially in 
residential sector

Note: US Data
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The Duck Curve

QUACK

Y-axis is load on grid after renewable electricity production
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Storage

• Two primary methods 
for storing electricity
• Batteries
• Pumped hydro power

Source: Wikimedia Commons
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Pumped hydro power

• Two reservoirs
• Pump water up to the 

higher reservoir (charge 
the battery) when 
electricity is clean and/or 
cheap 
• Run water down through 

turbine when renewables 
are not producing
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Load shifting

• Altering the demand side of 
the equation in addition to 
changing the supply side
• Changing time of use of 

certain residential 
appliances (e.g. dishwasher, 
washing machine)
• Pre-cooling or pre-heating 

buildings

53

Naderi, S., Pignatta, G., Heslop, S., MacGill, I., & Chen, D. (2022). Demand response via pre-cooling and solar pre-cooling: a review. Energy and Buildings, 272, 112340.



Microgrids and resiliency

• Renewables are 
well-situated to 
power microgrids, 
which provide 
power on the scale 
of a neighborhood 
or campus
• Can help with 

resiliency when the 
larger grid fails 
(e.g., from large 
storms)
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Source: Climate X Change



Seasonal 
variations
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A 100% Renewable Europe?

Michael Child, C. Breyer, et al. Renewable Energy 139 (2019) 80-101
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Resources

• Hourly “demand-driven” mix in CH: 
https://horocarbon.ch/mix.php 
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