CIVIL 239: Engineering a sustainable built environment

Logistics

Lectures: Tuesdays 10:15-12:00

Exercises: 12:15-13:00 Location: GC B3 30

Instructor: Andrew Sonta, Assistant Professor of Civil Engineering, ETHOS Lab

Email: andrew.sonta@epfl.ch

Office hours: Tuesdays, 14:00-15:00 (or by appointment)

Office: GC G1 484

Course assistants:

Emilie Rausis, emilie.rausis@epfl.ch
Axel Cebille, axel.cebille@epfl.ch

Course description

This course explicitly addresses the issue of sustainability in the built environment through an engineering lens. It covers the sustainability and energy landscape, approaches to sustainability in civil engineering, and specific tools for enacting sustainability in civil engineering.

Content

The course introduces the intersections between different areas of civil engineering and sustainability topics, the engineering knowledge needed to address sustainability topics, and engineering tools that can be used to analyze and assess sustainability.

Topics covered include:

- The sustainability landscape
- Energy supply and demand
- Mobility and sustainability
- Materials and structures
- · Natural systems
- Sustainability in the civil engineering profession

Engineering knowledge and tools covered include:

- Energy
- Systems thinking
- Life cycle assessment
- Engineering economics and decision-making

Learning objectives

- Explain to an engineer, designer, policymaker, or other professional why sustainability is important in civil engineering.
- Assess / Evaluate and be critical of metrics used to measure sustainability.
- Analyze civil engineering systems in the context of sustainability.
- Quantify environmental, economic, and social impacts of the built environment.
- Construct models of systems to understand complexity of engineered civil systems.

Transversal skills

- Communicate effectively, being understood, including across different languages and cultures.
- Demonstrate the capacity for critical thinking
- Take account of the social and human dimensions of the engineering profession.
- Take responsibility for environmental impacts of her/his actions and decisions.

Coursework and assessment

Coursework will consist of graded exercises, one midterm exam, and one final exam.

- Graded exercises (20%)
 - o Five graded assignments @ 4% each 20% (see course schedule)
 - Assignments are due at the start of class on the day indicated in the schedule below
 - o Assignments submitted late lose 50% of the grade for the assignment
- Midterm exam (30%)
- Final exam (50%)

Course schedule (subject to change)

Week	Date	Course Content	Engineering knowledge and tools	Due
	Course introduction			
1	10-Sep	The climate crisis What is sustainability? Sustainability in civil engineering	The role of the built environment in sustainability	
2	17-Sep	Sustainability indicators New economic thinking	The importance of data	
	Buildings and energy			
3	24-Sep	Energy demand: buildings and	How design impacts energy	Assignment 1
		infrastructure	demand; Energy and load calcs	
4	1-Oct	Energy supply: Renewables, the	Interface between the built	
		grid, and grid integration	environment and energy systems;	
			time-series data analysis	
	Mobility	and sustainability		
5	8-Oct	Transportation systems	Link between transportation and	Assignment 2
			energy; systems thinking	
6	15-Oct	Sustainable urban design and	System dynamics	
		active mobility		
		Social systems		
7	22-Oct	No Class - Fall Break		
8	29-Oct	Midterm exam – CE 1 1		Assignment 3
	Materials, structures, and life-cycle assessment			
9	5-Nov	Guest lecture: Embodied	The phases of infrastructure life	
		carbon emissions and materials	cycles	
10	12-Nov	Life-cycle assessment	Environmental LCA;	
			Safety factors	
		systems and sustainability econom		
11	19-Nov	Guest lecture: Assigning value	Sustainability in natural systems;	
		to natural systems	Engineering and sustainability	
			economics	
12	26-Nov	Engineering with natural	Multi-criteria decision-making,	Assignment 4
		systems; geotechnical	resilience, sensitivity analysis,	
		engineering, water resources	nature-based solutions	
		engineering	_	
	Sustainability in the civil engineering profession			
13	3-Dec	Guest lecture: Safety and	Load combinations, safety and	
		reliability in civil engineering	reliability	
14	10-Dec	Guest lecture: Sustainable	Practical issues	
		engineering in the industry		
15	17-Dec	Course wrap up		Assignment 5
		Class debate		
16	27-Jan	Final Written exam		