SÉANCE D'EXERCICE N°14

1 Impact d'une barre

Une barre de longueur L, de densité ρ et de module de Young E entre en collision avec un mur à l'instant t=0. Calculez la durée pendant laquelle la barre reste en contact avec le mur avant de rebondir.

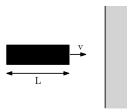


Figure 1: Projectile impactant un mur.

2 Elasticité bilinéaire d'une barre

Une onde de traction d'amplitude σ_0 et de durée infinie se propage à travers une barre unidimensionnelle. Le matériau de la barre suit une élasticité bilinéaire, comme illustré dans la Figure 2. Tracez l'évolution de la contrainte en fonction du temps au point x = L pour une onde de traction d'amplitude :

- 1. $\sigma_0 < \sigma_y$
- 2. $\sigma_0 > \sigma_y$

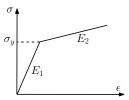


Figure 2: Loi constitutive bilinéaire

3 Rupture d'une barre

Une onde de compression imposée linéairement, d'amplitude $-4\sigma_0$, se propage à travers une barre de module élastique E et de densité ρ . L'onde est réfléchie à la frontière libre située à droite (voir la Figure 3). Déterminez la position moyenne x_r où la rupture se produira le long de la barre, sachant que la limite d'élasticité en traction est $2\sigma_0$.

Figure 3: Onde de compression a croissance linéaire dans une barre.