MÉCANIQUE DES MILIEUX CONTINUS BS - SGC - EPFL

Lausanne, 24 janvier 2019

Nom:	
Prénom:	

Examen : Partie Théorique

Aucun document autorisé Répondre directement sur les papiers donnés Brouillon à disposition 45 minutes, 20 points (1/3 de la note finale)

Question 1 (3 points)

Donner la définition d'un tenseur d'ordre 2. Une projection sur un plan est-elle un tenseur d'ordre 2? Et une rotation autour d'un axe? Le produit de deux rotations est-il commutatif? Quel est que le gradient d'un champ scalaire? Et la divergence d'un champ scalaire?

Question 2 (3 points)

Expliciter : représentation Lagrangienne, représentation Eulerienne. Soit le champ de vitesse spatial : $v_x = x^2 - y^2$ et $v_y = -2xy$. Calculer l'accélération des particules.

Question	3	(3	points)

Soit le champ de déplacement suivant : $u_1 = kX_1^2$, $u_2 = kX_2X_3$, $u_3 = k(2X_1X_3 + X_1^2)$, avec $k = 10^{-6}$. Nous considérons un élément initialement en (1,0,0). Justifier l'hypothèse des déformations infinitésimales. Quelle est l'élongation maximale d'un élément de matière en ce point?

Question 4 (2 points)

Comment peut-on mesurer expérimentalement les composantes du tenseur de déformation infinitésimales?

Question 5 (2 points)

Une pression appliquée sur la surface d'un solide peut-elle déboucher sur du cisaillement sur cette même surface ? Pourquoi ? (donnez un exemple si vous le jugez nécessaire)

Question 6 (3 points)
Montrer que pour un matériau linéaire élastique isotrope, les directions principales du tenseur des contraintes de Cauchy et celles du tenseur des déformations infinitésimales coïncident.
de Cauchy et cenes du tenseur des deformations infinitesimates confedent.
Question 7 (2 points)
Quelles sont les étapes de résolution d'un problème de MMC avec l'approche par contraintes?
Question 8 (2 points)
Donner le principe du minimum de l'énergie potentielle. Expliquer en quoi il peut-être utile pour trouver une solution approchée à un problème quand une solution analytique n'est pas à disposition.