MÉCANIQUE DES MILIEUX CONTINUS

BS - SGC - EPFL

Lausanne, 26 Janvier 2018

Nom:	
Prénom:	
•	

Examen : Partie Théorique

Aucun document autorisé Répondre directement sur les papiers donnés Brouillon à disposition 45 minutes, 17 points (1/3 de la note finale)

Exercice 1 (5 points)

Sachant que:

- C est un tenseur d'ordre 4,
- A et B sont des tenseurs d'ordre 2,
- u et v sont des vecteurs,
- α et β sont des scalaires
- a) Les expressions suivantes sont-elles des scalaires, des vecteurs, ou des tenseurs d'ordre 2 (2 points)?
 - $\alpha \left(\operatorname{div} \left(\operatorname{grad} \left(\operatorname{tr} \left(\boldsymbol{A} \right) \right) \right) \right)$
 - $\operatorname{div}\left(\operatorname{rot}\left(\boldsymbol{u}\right)\right)$
 - $(\operatorname{tr}(\boldsymbol{A}))\boldsymbol{u}\cdot\boldsymbol{v}$
 - $(\boldsymbol{u} \times \boldsymbol{v}) \otimes \boldsymbol{A} (\beta \boldsymbol{u})$
- b) Valider ou invalider (en vous justifiant) les expressions suivantes (2 points):
 - $\bullet \ A_{ij}B_{jk}u_k = u_iA_{ik}v_k$
 - $\delta_{ii} = 0$
 - $v_i = B_{ij}u_j$
 - $u_i + v_i = \alpha A_{ii} u_i$
- c) Contracter/Simplifier (1 point):
 - $\delta_{ij}\delta_{jk}\delta_{ki}\delta_{ll}$
 - $\delta_{il}A_{ji}\delta_{jk}$

Exercice 2 (2 points)
Expliquer ce que l'on appelle les symétries mineures et majeure du tenseur d'élasticité, C_{ijkl} . D'où proviennent-elles (une réponse brève suffit, preuve non nécessaire)?
D'où proviennent-enes (une reponse breve sunit, preuve non necessaire):
Exercice 3 (1 point)
Sans le démontrer, d'où provient la symétrie du tenseur des contraintes de Cauchy?
Exercice 4 (2 points)
Ecrire en indiciel la loi constitutive directe, $\sigma(\varepsilon)$, ainsi que la loi inverse, $\varepsilon(\sigma)$, pour les matériaux linéaires
élastiques isotropes.

Exercice 5 (3 points)
Démontrer que en petites déformations le changement relatif de volume est donné par $\operatorname{tr}(\varepsilon)$.
Exercice 6 (2 points)
Soit un cube constitué d'un matériau linéaire élastique isotrope dont les arêtes sont alignées avec les axes e_1 , e_2 , et e_3 . Les faces du cube perpendiculaires à e_1 sont chargées en traction (contrainte de valeur P_1) les faces perpendiculaires à e_2 , sont chargées en compression (valeur P_2), et les faces perpendiculaires à e_3 sont chargées en compression avec P_3 , avec $P_3 < P_2 < P_1$.
Expliciter les composantes du tenseur des contraintes dans le systèmes d'axes (e_1, e_2, e_3) . Tracer le tri-cercle de Mohr. Quelle est la composante de cisaillement maximale? Sur quel plan agit-elle?

Exercice 7 (2 point)

Pour un problème de torsion, qu'appelle-t-on fonction de gauchissement? Quelle est son origine? (pourquoi avons-nous du introduire cette fonction?)