MÉCANIQUE DES MILIEUX CONTINUS

BS - SGC - EPFL

Lausanne, 13 Janvier 2014

Nom:	
Prénom:	

$Examen: Partie\ Th\'{e}orique$

Notes de cours et livre non autorisés Toutes les réponses doivent être données sur la feuille 45 minutes, 16 points (1/3 de la note finale)

Exercice 1 (2 points)

Ces expressions ont-elles un sens mathématique ? Sachant que \boldsymbol{A} et \boldsymbol{B} sont des tenseurs d'ordre 2, $\boldsymbol{u},\boldsymbol{v}$ des vecteurs,

 α , β des scalaires :

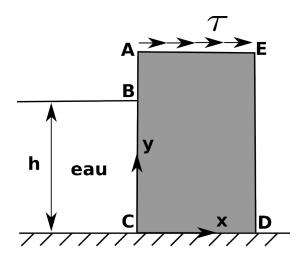
$$-\operatorname{div}(oldsymbol{A}oldsymbol{B})$$
 - $oldsymbol{v}=oldsymbol{0}$

$$-\operatorname{grad}(\boldsymbol{u}) = \alpha \boldsymbol{A}$$

$$-\operatorname{grad}(\boldsymbol{B}\boldsymbol{u})=\boldsymbol{v}$$

$$oldsymbol{A}_{ii}=lpha$$

$$- oldsymbol{A}_{ij} oldsymbol{B}_{jk} = oldsymbol{u}_i \ oldsymbol{v}_k$$


$$-\alpha + \boldsymbol{v}_i = \boldsymbol{u}_i$$

Exercice 2 (2 points)

Considérons un potentiel électrostatique donné par $\varphi = \alpha(x\cos\theta + y\sin\theta)$ où α et θ sont des constantes. – Calculez le champ électrique $\boldsymbol{E} = -\nabla\varphi$

– Trouvez le déplacement électrique
$$\boldsymbol{D}$$
 si $\boldsymbol{D} = \epsilon \boldsymbol{E}$ avec $\epsilon = \begin{bmatrix} \epsilon_1 & 0 & 0 \\ 0 & \epsilon_2 & 0 \\ 0 & 0 & \epsilon_3 \end{bmatrix}$

– Trouvez pour quel angle θ , la magnitude de \boldsymbol{D} est maximum.
Exercice 3 (2 points)
Sachant que $\sigma_{ij} = 2\mu\epsilon_{ij} + \lambda\epsilon_{kk}\delta_{ij}$, que sont μ et λ ? Quelle est la signification physique de ϵ_{kk} ? Calculez en fonctions des composantes de ϵ , et sous la forme la plus simplifiée possible, $W = \frac{1}{2}\sigma_{ij}\epsilon_{ij}$ et $P = \sigma_{ij}\sigma_{ij}$.
Exercice 4 (2 points) Donnez le théorème du minimum en énergie potentielle.
Exercice 5 (2 points)
Une structure est plongée dans l'eau sur une hauteur h . Donnez pour tous les côtés les valeurs des composantes du tenseur des contraintes de Cauchy qui sont imposées par les conditions aux limites, ainsi que les déplacements imposés.

Exercice 6 (2 points)

 ${\bf Expliquez}:$

– Description Eulérienne

– Description Lagrangienne

– Quelle équation permet de passer d'une description à l'autre?

Exercice 7 (2 points)

Donnez en détail, en précisant les équations importantes, les étapes de résolution d'un problème par la méthode des contraintes.

Exercice 8 (2 points)

Soit un tenseur des contraintes de la forme :

$$\boldsymbol{\sigma} = \begin{bmatrix} 0 & \tau & 0 \\ \tau & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \tag{1}$$

Trouvez les contraintes principales par

1. Le cercle de Mohr

2. Le calcul des valeurs propres