MÉCANIQUE DES MILIEUX CONTINUS

BS - SGC - EPFL

Lausanne, 24 janvier 2019

Nom:	
Prénom:	

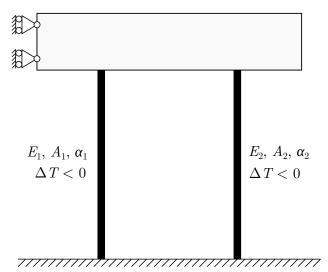
Examen: Partie Pratique

Notes de cours et exercices autorisés 1h30, 40 points (2/3 de la note finale)

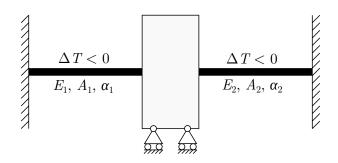
Exercice 1 (12 points)

Barres refroidies.

Deux barres verticales sont fixées au sol et à une poutre horizontale en haut (voir figure). La poutre se comporte comme un corps rigide dont on néglige la masse et est contrainte à rester horizontale. Elle se déplace verticalement sans frottement. Les barres sont composées d'un matériau élastique, homogène et isotrope. Leurs modules de Young sont E_1 et E_2 , leurs sections sont A_1 et A_2 et leurs coefficients de dilatation thermique sont α_1 et α_2 . Les barres sont soumises à un changement de température $\Delta T < 0$.



- 1. Écrire l'équation d'équilibre statique du système et le lien entre les déformations des deux barres. $(2 \ points)$
- 2. Quels sont les états de contrainte dans les barres 1 et 2? Les exprimer en fonction de ΔT , E_1 , E_2 , A_1 , A_2 , α_1 et α_2 . Que se passe-t-il à la limite où $E_2 \rightarrow 0$? Commenter. (4 points)
- 3. Répondre aux questions précédentes dans le cas de barres mises en série (voir figure ci-dessous). $(6 \ points)$



Exercice 2 (16 points)

Contraintes dans le sol sous un bâtiment.

Un bâtiment de largeur 2a exerce une pression verticale uniforme p sur le sol. On s'intéresse aux contraintes dans le sol, que l'on suppose constitué d'un matériau élastique linéaire isotrope.

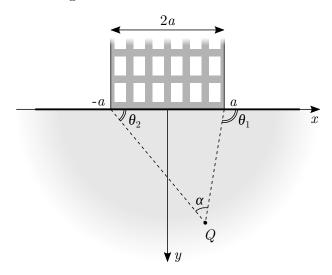
La solution est connue en tout point Q (voir figure) dans le sol :

$$\sigma_{xx} = -\frac{p}{2\pi} [2(\theta_1 - \theta_2) + (\sin 2\theta_1 - \sin 2\theta_2)]$$

$$\sigma_{yy} = -\frac{p}{2\pi} [2(\theta_1 - \theta_2) - (\sin 2\theta_1 - \sin 2\theta_2)]$$

$$\tau_{xy} = \frac{p}{2\pi} (\cos 2\theta_1 - \cos 2\theta_2)$$

où x, y, θ_1 et θ_2 sont définis dans la figure ci-dessous.



On rappelle les relations trigonométriques suivantes :

$$\cos^2 a + \sin^2 a = 1$$
$$1 - \cos 2a = 2\sin^2 a$$
$$\cos a \cos b + \sin a \sin b = \cos(a - b)$$

- 1. Diviser la surface du sol (y = 0) en trois régions. Quelles valeurs prennent θ_1 et θ_2 sur chaque région? Vérifier que la solution satisfait les conditions aux limites à la surface du sol. (4 points)
- 2. Vers quelles valeurs tendent les contraintes lorsque $y \to \infty$? Commenter. (1 point)
- 3. Quelle est la valeur de τ_{xy} le long de l'axe y? (Indication : exprimer la relation entre θ_1 et θ_2 lorsque x = 0) (1 point)
- 4. En déduire la valeur du cisaillement maximal $\tau_m = (\sigma_I \sigma_{II})/2$ le long de l'axe y, où σ_I et σ_{II} sont les contraintes principales. (2 points)
- 5. Calculer la valeur et l'emplacement du maximum de τ_m sur l'axe y. (Indication : considérer les valeurs que peuvent prendre θ_1 ou θ_2 sur l'axe y) (2 points)
- 6. On considère le tenseur des contraintes $\underline{\underline{\sigma}} = \begin{bmatrix} A & B \\ B & C \end{bmatrix}$. Écrire son polynôme caractéristique puis calculer σ_I , σ_{II} et τ_m exprimés selon A, B et C. (2 points)
- 7. En utilisant l'expression de τ_m trouvée dans la question 6, montrer que $\tau_m = \frac{p}{\pi} \sin \alpha$ dans le sol (dans tout le milieu semi-infini), avec $\alpha = \theta_1 \theta_2$. (2 points)
- 8. Pour quelle valeur de α le cisaillement maximal τ_m est-il le plus grand? Cela est-il en accord avec la question 5? Tracer le lieu géométrique correspondant au τ_m maximal. (2 points)

Exercice 3 (12 points)

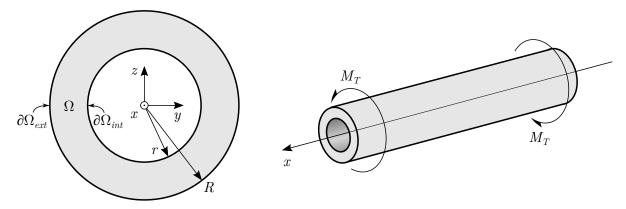
Tube circulaire en torsion.

Un tube, dont la section est montrée dans la figure ci-dessous, est soumis à un moment de torsion M_T à ses extrémités. On propose la fonction de contrainte suivante :

$$\Phi = \frac{1}{2} \left(R^2 - y^2 - z^2 \right) A$$

où A est une constante.

Nous rappelons que pour la torsion, l'équilibre s'écrit div $\underline{\underline{\sigma}} = 0$ avec $\sigma_{xy} = \frac{\partial \Phi}{\partial z}$, $\sigma_{xz} = -\frac{\partial \Phi}{\partial y}$ et tous les autres $\sigma ij = 0$.



- 1. Montrer que l'équation d'équilibre s'écrit $\Delta \Phi = cste$. Quelle valeur doit prendre A pour que $\Delta \Phi = -2\mu\theta'$? Vérifier que $\Phi = 0$ sur $\partial\Omega_{ext}$. Que vaut Φ sur $\partial\Omega_{int}$? (3 points)
- 2. Calculer le moment d'inertie J de la section sachant que

$$J = 2 \iint_{\Omega} \Phi \, dy \, dz + 2C_1 \|\Omega_1\|$$

où C_1 est la valeur de Φ sur le trou (c'est-à-dire sur $\partial\Omega_{int}$) et $\|\Omega_1\|$ est la surface du trou. (2 points)

- 3. Calculer les contraintes de cisaillement $\tau_{xy}(y,z)$ et $\tau_{xz}(y,z)$. Quel est le cisaillement maximal? Où se trouve-t-il? (3 points)
- 4. Dessiner les lignes isocontraintes de cisaillement. (1 point)
- 5. Comparer le tenseur des contraintes à celui d'un cylindre plein sous torsion. Pouvez-vous déduire s'il y a un gauchissement de la section? (3 points)