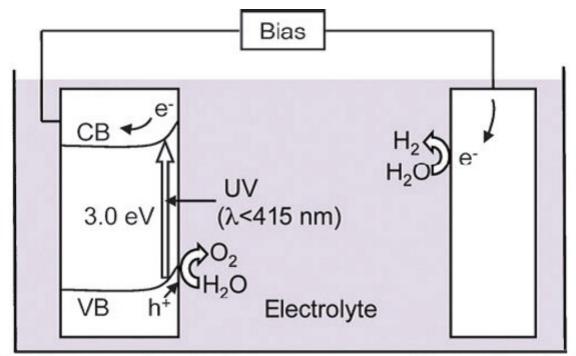
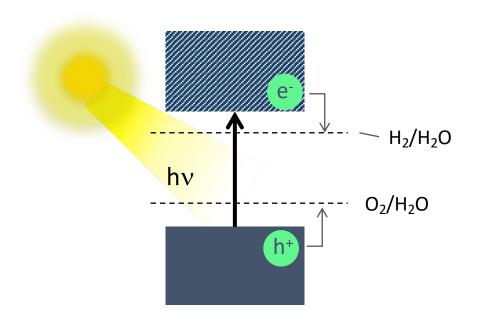

ChE 430 Nanomaterials for Chemical Engineering Applications

MODULE 9: PHOTO-ELECTROCHEMICAL AND PHOTO-CATALYTIC CELLS

- 9.0. Introduction and motivation
- 9.1. Panel-type cell
- 9.2. Particle-based reactors
- 9.3. New concepts using nanomaterials

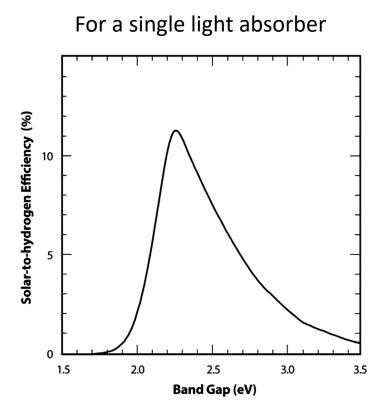


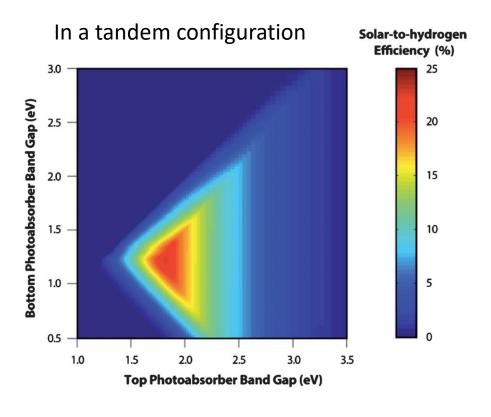
Ager et al. Energy Environ. Sci. (2015); Jaramillo et al. Nat. Commun. (2016); Turner, TG Deutsch Nat. Energy. (2017)


Honda and Fujishima (Nature 1972)

TiO₂ n-type semiconductor photoelectrode

Pt counter electrode


If we want to use one single light absorber



Ideal semiconductors to convert photons into highly reducing electrons and highly oxidative holes:

- Band gap (1.7-2eV)
- Efficient charge generation and separation
- Band edge position
- Photocorrosion

Two is better than one!

Pinaud et al. Energy Environ. Sci. 2013, 6, 1983

Solar-to-hydrogen (STH) refers to how many of the incident illumination power density is converted into hydrogen

What about matching with the catalyst?

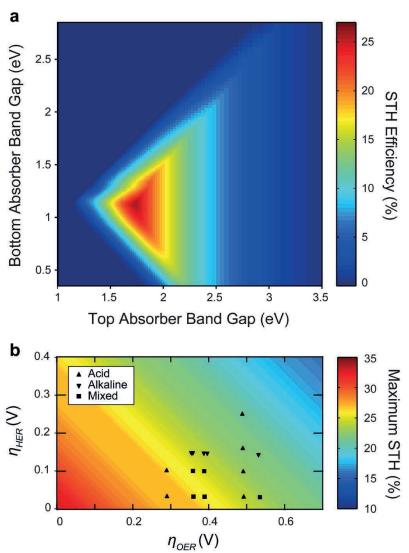
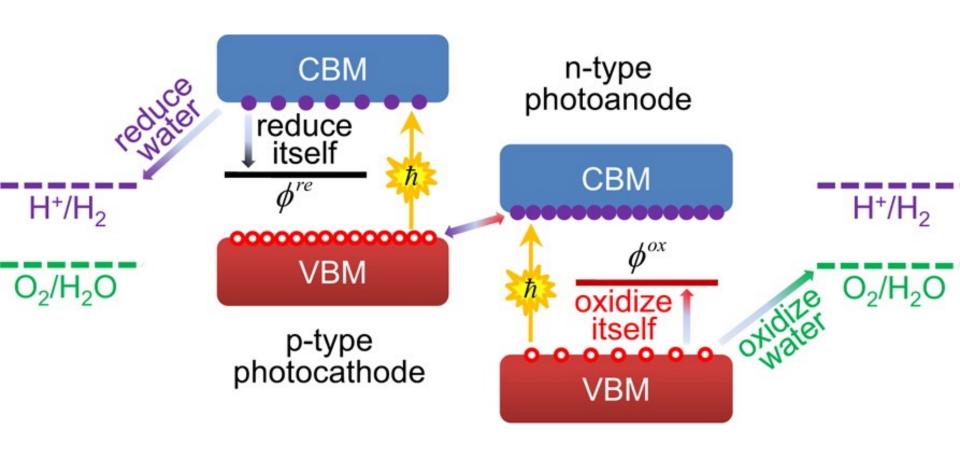



Figure 2 | STH efficiency contour plots as a function of bandgaps and electrocatalytic overpotentials for the top and absorbers of a dual (stacked) absorber PEC water splitting device. a, Calculated STH efficiencies are modelled using some of the most active catalysts for the HER (Pt) and the OER (NiFeO_x), and free energy losses equalling approximately 15-30% of the total bandgap of each semiconductor absorber. **b**, Dependence of the maximum achievable STH efficiency as a function of overpotential for the hydrogen evolution reaction (η_{HER}) and the oxygen evolution reaction (η_{OER}), based on published catalyst activities using geometric normalized current densities, with data points showing potential devices for acid alkaline only, or mixed systems_{29–39}.

The stability issue in light absorbers

The stability issue in light absorbers

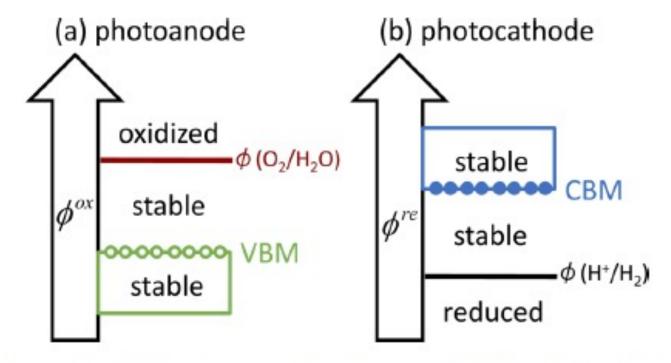
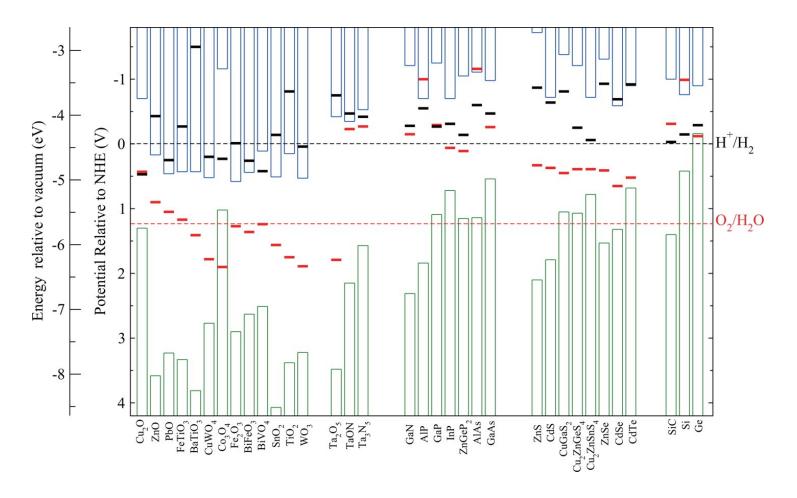
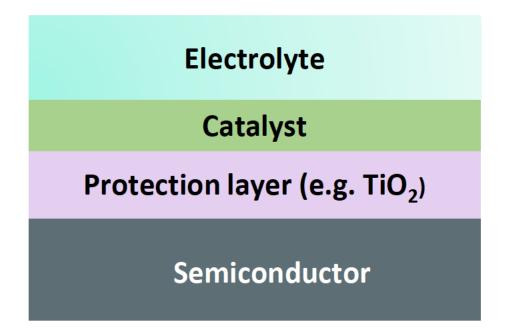
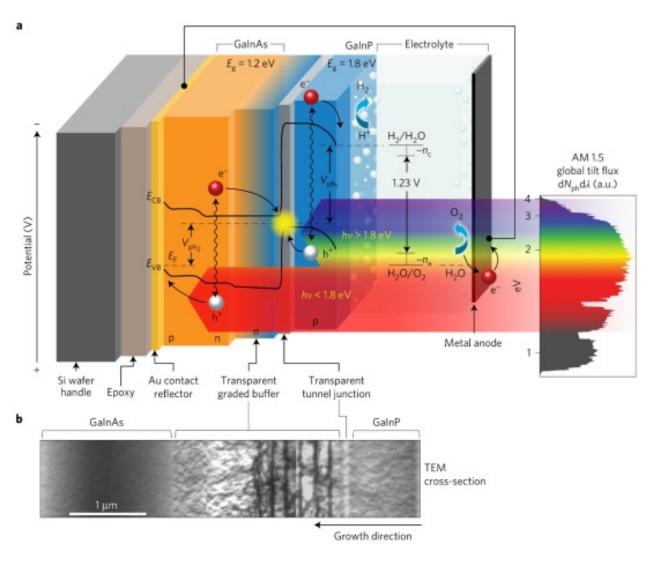



Figure 2. Stability change of the photoanode (a) as its oxidation potential ϕ^{ox} shifts up from below the VBM to above $\phi(O_2/H_2O)$ and of the photocathode (b) as its reduction potential ϕ^{re} shifts down from above the CBM to below $\phi(H^+/H_2)$.

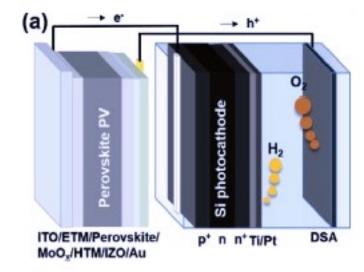

How to think about photocorrosion


Calculated oxidation potential ϕ^{ox} (**red bars**) and reduction potential ϕ^{re} (**black bars**) relative to the NHE and vacuum level for a series of semiconductors in solution at pH = 0, the ambient temperature 298.15 K, and pressure 1 bar.

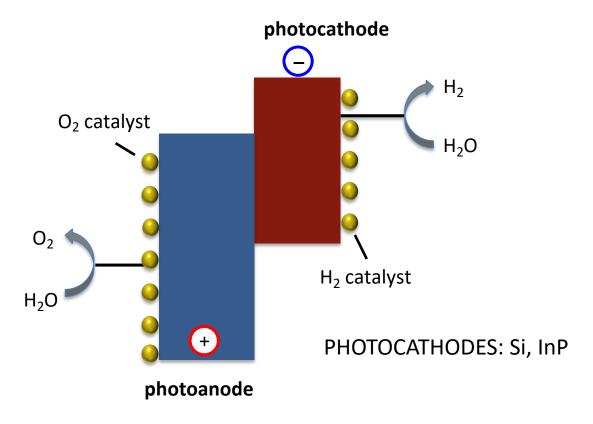
Protected Major Semiconductor Classes:

- Group IV, III-V, II-VI; MOx
- Planar, nanostructured, poly- and single-crystalline

Record efficiency of solar-hydrogen production: 16.2 %


ADVANCED ENERGY MATERIALS

Communication


Over 17% Efficiency Stand-Alone Solar Water Splitting Enabled by Perovskite-Silicon Tandem Absorbers

Siva Krishna Karuturi 🗷, Heping Shen 🗷, Astha Sharma, Fiona J. Beck, Purushothaman Varadhan, The Duong, Parvathala Reddy Narangari, Doudou Zhang, Yimao Wan, Jr-Hau He ... See all authors 🗸

Realizing solar-to-hydrogen (STH) efficiencies close to 20% using low-cost semiconductors remains a major step toward accomplishing the practical viability of photoelectrochemical (PEC) hydrogen generation technologies. Dual-absorber tandem cells combining inexpensive semiconductors are a promising strategy to achieve high STH efficiencies at a reasonable cost. Here, a perovskite photovoltaic biased silicon (Si) photoelectrode is demonstrated for highly efficient stand-alone solar water splitting. A p⁺nn⁺-Si/Ti/Pt photocathode is shown to present a remarkable photon-to-current efficiency of 14.1% under biased condition and stability over three days under continuous illumination. Upon pairing with a semitransparent mixed perovskite solar cell of an appropriate bandgap with state-of-the-art performance, an unprecedented 17.6% STH efficiency is achieved for self-driven solar water splitting. Modeling and analysis of the dual-absorber PEC system reveal that further work into replacing the noble-metal catalyst materials with earth-abundant elements and improvement of perovskite fill factor will pave the way for the realization of a low-cost high-efficiency PEC system.

Which light absorbers are used?

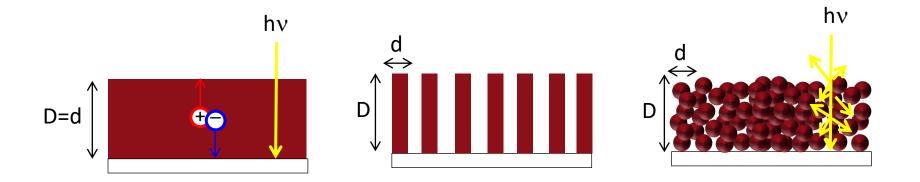
PHOTOANODES: WO₃, α -Fe₂O₃, BiVO₄

Here it is the big problem and where nanostructuring can help!

Challenges with metal oxides

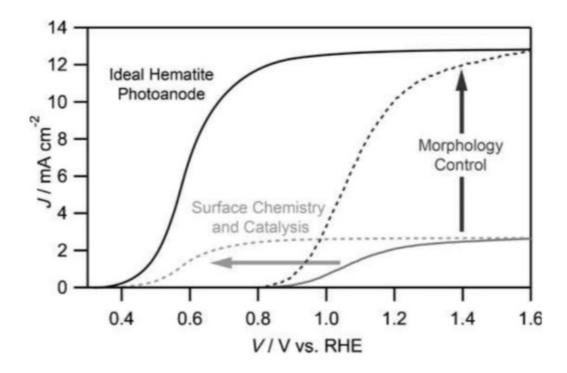
 Absorption of earth-abundant MO photoanodes is limited to the uv and blue-tail of the spectrum

 $(3.2 \text{ eV for anatase TiO}_2; 3.3 \text{ eV for ZnO}; 2.6 \text{ eV- for WO}_3)$

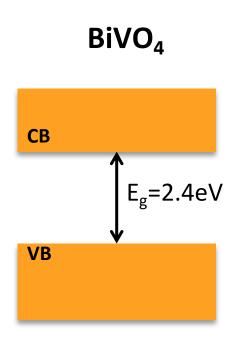

2. Short hole diffusion length

(from few nanometers to tens of nanometers for α -Fe₂O₃)

3. Indirect band gap


(anatase TiO_2 , WO_3 , α - Fe_2O_3)

Why nanostructuring can be helpful?


- Shorter carrier transport pathways
- Surface area-enhanced charge transfer
- Light trapping through random scattering

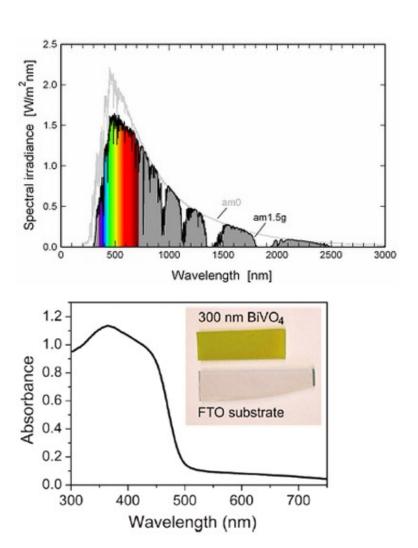

Nanostructuring in hematite

Figure 3. The two-part strategy for improving hematite performance is shown with respect to the photocurrent density, *J*, vs. voltage behavior for an idealized hematite photoanode (solid black trace) compared to the typical performance (solid grey trace) under AM 1.5G 100 mW cm⁻² simulated sunlight, and the expected effects of improving the surface chemistry and the morphology.

Bismuth Vanadate

van de Krol et al. J. Phys. Chem. C (2011)

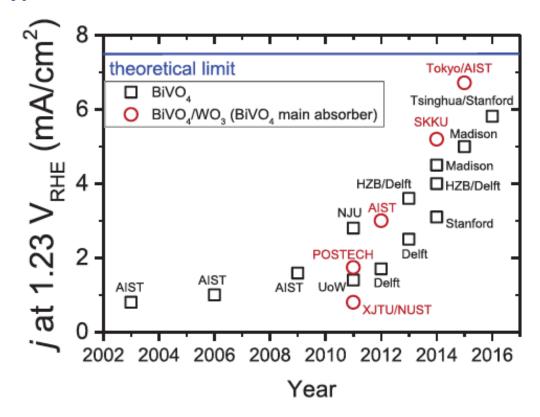
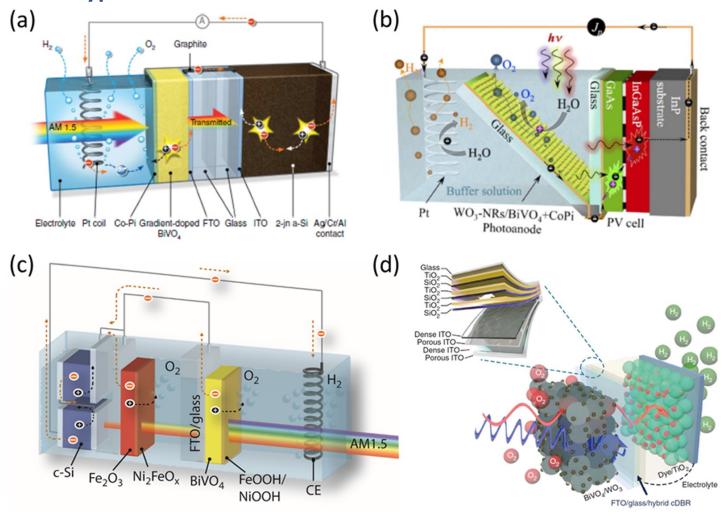
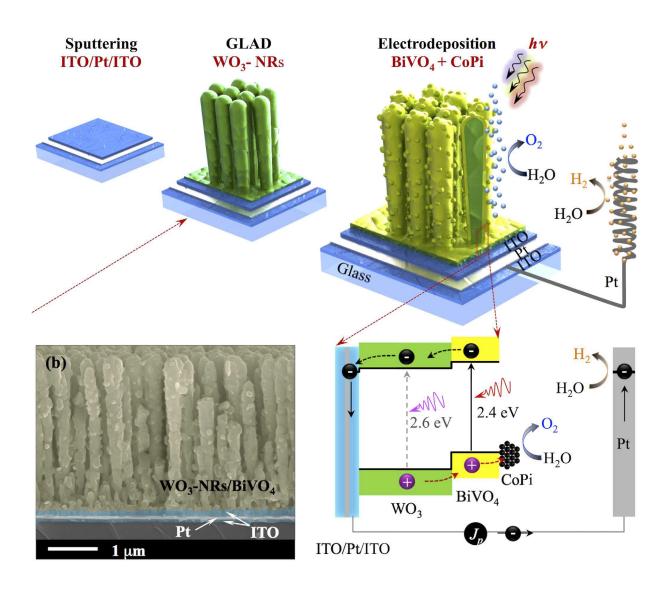
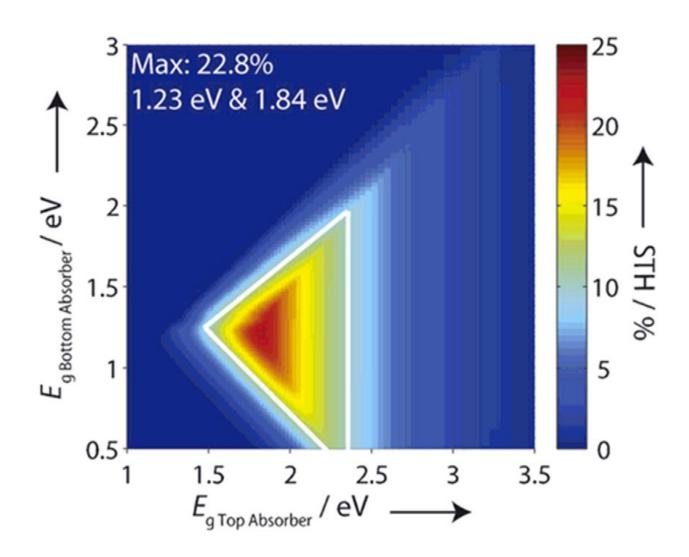




Figure 7. Reported photocurrent of BiVO₄ (black squares) and BiVO₄/WO₃ guest-host (red circles) photoanodes at 1.23 V versus RHE. Except for the first two points from AIST, the photocurrents were measured under AM1.5 illumination. Data were extracted from various reports in the literature [28, 31–33, 35–37, 56, 63–66, 73–79]. The theoretical maximum photocurrent for BiVO₄ based on its bandgap of 2.4 eV is shown as the horizontal blue line.

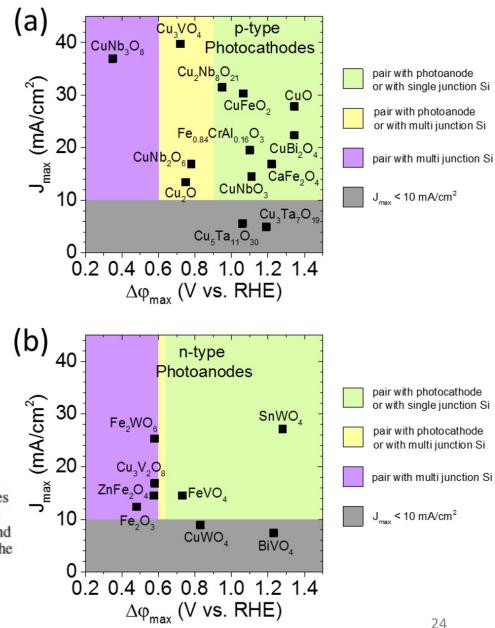


Various schematic structures of solar water splitting devices based on (a) BiVO4 photoanode and thin film amorphous silicon solar cell (b) BiVO4/WO3 nanorods photoanode and GaAs/InGaAsP solar cell, (c) BiVO4–Fe2O3 dual photoanode and crystalline silicon solar cell and (d) mesoporous BiVO4/WO3 photoanode, dye-sensitized solar cell (DSSC) and distributed Bragg reflector.

Record device with BiVO₄

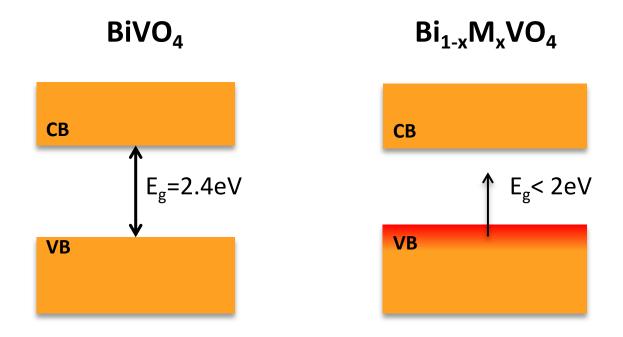
BEYOND BiVO₄

BEYOND BiVO₄: other metal vanadates with $E_{\rm g} < 2~eV$

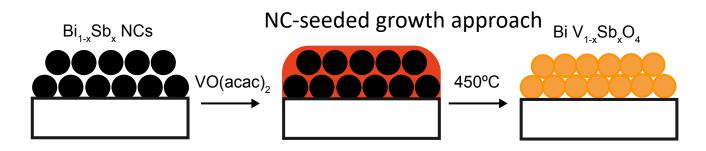

 FeV_2O_4 , Fe_2VO_4 , $Fe_2V_4O_{13}$

 β -Mn₂V₂O₇

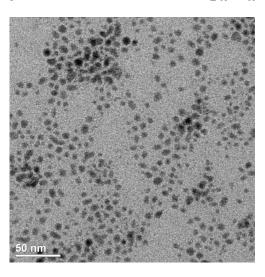
CuO- V₂O₅ system:

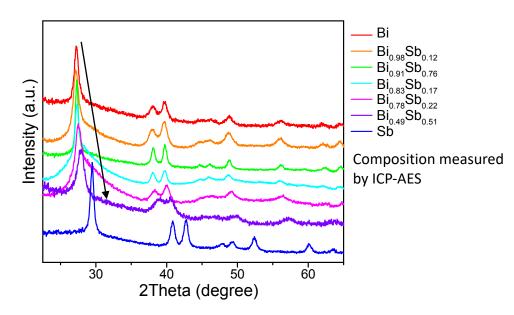

 α -Cu₂V₂O₇, β -Cu₂V₂O₇, γ -Cu₃V₂ O₈, Cu₁₁V₆O₂₆

Comparison of the $J_{\rm max}$ and $\Delta \varphi_{\rm max}$ values for (a) p-type photocathode and (b) n-type photoanode materials. Regimes with different colors represent different categories. Grey indicates photocurrent maximum lower than 10 mA cm⁻². Green, yellow and magenta differentiate the most suitable tandem configuration for the material.

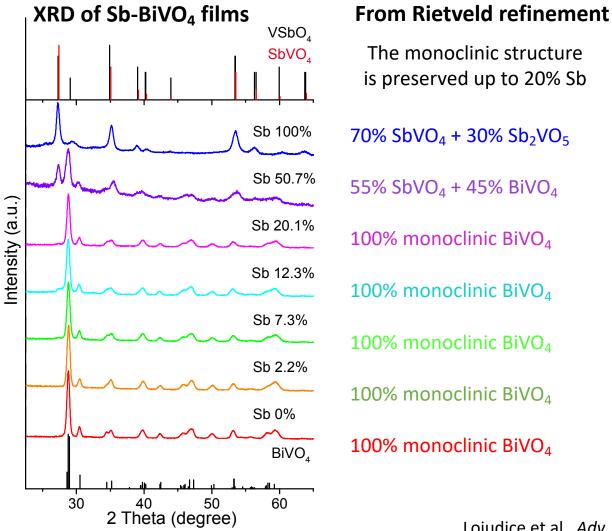


Abdi, Berglund, J. Appl. Phys. D (2017)


Nanocrystals to discover new materials

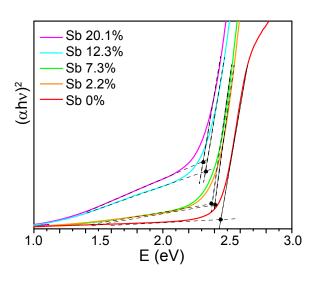

Nanocrystals to discover new materials

Representative TEM of Bi_{1-x}Sb_x NCs



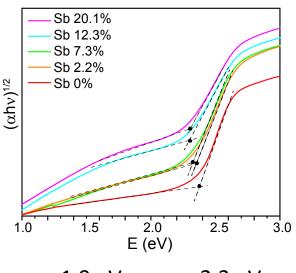
XRD of Bi_{1-x}Sb_x NCs with variable composition

Nanocrystals to discover new materials


Sb-BVO films with up to 20% of Sb were obtained

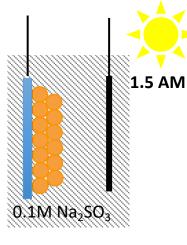
Loiudice et al. Adv. Mater. 2(2015)

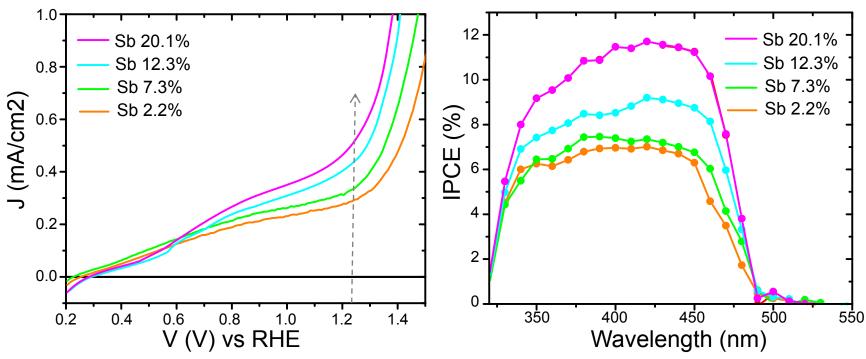
The optical band gap decreases monotonically with the increase in Sb


Direct Band Gap

Eg 2.2 eV ← 2.45 eV

Sb 20.1% ← 0%

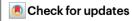

Indirect Band Gap


1.9 eV ← 2.3 eV

20.1% 0%

Photocatalytic performance improve with the increase of the Sb content

Article


Solar-to-hydrogen efficiency of more than 9% in photocatalytic water splitting

https://doi.org/10.1038/s41586-022-05399-1

Received: 19 January 2021

Accepted: 29 September 2022

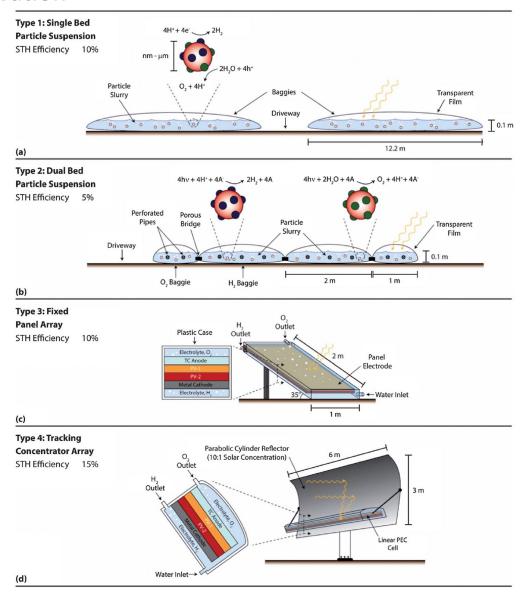
Published online: 4 January 2023

Peng Zhou¹, Ishtiaque Ahmed Navid¹, Yongjin Ma¹, Yixin Xiao¹, Ping Wang¹, Zhengwei Ye¹, Baowen Zhou¹, Kai Sun² & Zetian Mi¹⊠

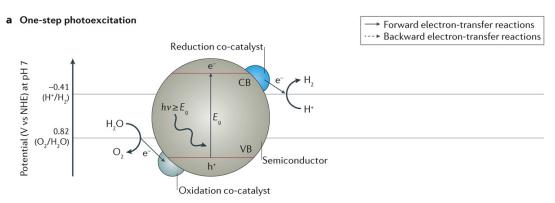
Production of hydrogen fuel from sunlight and water, two of the most abundant natural resources on Earth, offers one of the most promising pathways for carbon neutrality¹⁻³. Some solar hydrogen production approaches, for example, photoelectrochemical water splitting, often require corrosive electrolyte, limiting their performance stability and environmental sustainability^{1,3}. Alternatively, clean hydrogen can be produced directly from sunlight and water by photocatalytic water splitting^{2,4,5}. The solar-to-hydrogen (STH) efficiency of photocatalytic water splitting, however, has remained very low. Here we have developed a strategy to achieve a high STH efficiency of 9.2 per cent using pure water, concentrated solar light and an indium gallium nitride photocatalyst. The success of this strategy originates from the synergistic effects of promoting forward hydrogen-oxygen evolution and inhibiting the reverse hydrogen-oxygen recombination by operating at an optimal reaction temperature (about 70 degrees Celsius), which can be directly achieved by harvesting the previously wasted infrared light in sunlight. Moreover, this temperaturedependent strategy also leads to an STH efficiency of about 7 per cent from widely available tap water and sea water and an STH efficiency of 6.2 per cent in a large-scale photocatalytic water-splitting system with a natural solar light capacity of 257 watts. Our study offers a practical approach to produce hydrogen fuel efficiently from natural solar light and water, overcoming the efficiency bottleneck of solar hydrogen production.

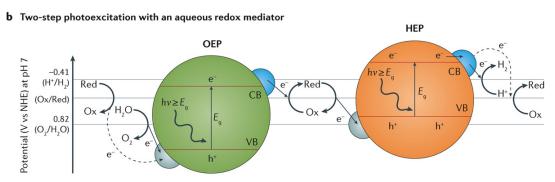
A new leaf unfolds in artificial photosynthesis

Toyota Central R&D Labs is scaling up an efficient system that uses sunlight, water and carbon dioxide to produce important carbon compounds, paving a path to the practical use of artificial photosynthesis.

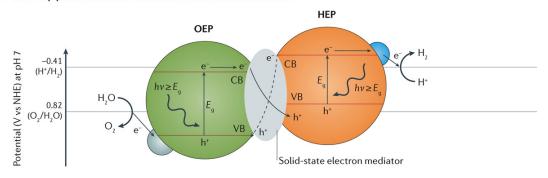

A cell with a solar-to-chemical conversion efficiency of 10.5% yields formate at a cost efficient production rate of 1.2 mole per hour. © Toyota Central R&D Labs., Inc.

In 2011, Toyota Central R&D Labs established a proof of principle for an artificial photosynthesis systems that produces carbon compounds from water, CO₂ and sunlight, without any other additives³.


"Artificial photosynthesis, however, is very challenging," says Morikawa. Their first one square centimetre system used two photocatalysts immersed in water that, when exposed to sunlight, produced a η STC of 0.04%, only one fifth of the η STC demonstrated by a plant such as switchgrass. In 2015, however, continued improvements led to the 'artificial leaf', a one square centimetre electrode device that achieved a η STC of 4.6%, exceeding that of typical plants.


The team aspires to establish technology for an industrial system at a scale of one square metre by the 2030s. "The focus is to improve the system so that it captures and converts high-concentrate CO₂ from industrial emissions," says Kato.

Panel-based or particle-based water splitting devices?



9.2. Particle-based reactors



c Two-step photoexcitation with a solid-state electron mediator

9.2. Particle-based reactors

9.2. Particle-based reactors

METRICS IN PARTICULATE PHOTOCATALYSIS:

External Quantum Efficiency (EQE) or Apparent Quantum Yield (AQE) is defined as two times the rate of collection of H_2 to the incident photon flux.

The solar-to-hydrogen (STH) energy conversion efficiency indicates the conversion of the energy in the incident solar irradiation to chemical bonds as H_2 through oxidation of water to O_2

Semiconductor (available wavelength)	Co-catalyst	Surface modification	Light source	Reactant solution	Efficiency*	Refs
Ultraviolet light						
SrTiO ₃ :Al (<390nm)	Rh, Cr,O,(Rh0.1wt%, Cr0.1wt%)	-	300 W Xe lamp (>300 nm)	H,O	AQY: 30% at 360 nm	64
Ga ₂ O ₃ :Zn(<280 nm)	Rh _{2-y} Cr _y O ₃ (Rh 1.0wt%, Cr 1.5 wt%)	-	450 W Hg lamp	0.001 M CaCl ₂ equeous solution	AQY: 71% at 254 nm	65
NaTaO3:La (<300 nm)	0.2 wt% NiO	-	400 W Hg lamp	H ₂ O	AQY: 56% at 270 nm	56
Ge ₃ N ₄ (<340 nm)	1wt% RuO ₂	-	450 W Hg lamp	H ₂ O (pH=0, H ₂ SO ₄ mediated)	AQY: 9% at 300 nm	152
Visible light						
(Zn _{0.12} Ga _{0.86})(N _{0.86} O _{0.12}) (<475 nm)	Rh ₂₋ ,Cr,O ₃ (Rh 1.0wt%, Cr 1.5 wt%)	-	450 W Hg lamp (>400 nm)	H ₂ O (pH=4.5, H ₂ SO ₄ mediated)	AQY: 5.9% at 420–440 nm	69, 153
GaN:Mg/InGaN:Mg (<475nm)	Rh/Cr ₂ O ₃	-	300 W Xe lamp (>400 nm)	H,O	AQY: 12.3% et 400–475 nm, STH: 1.8%	6, 154
TaON (<495 nm)	3wt% RuO_/2.5wt% Cr ₂ O ₃ -4wt% IrO ₂	ZrO ₂	450 W Hg lamp (>400 nm)	H,O	AQY:<0.1% at 420 nm	77
LaMg _{1/3} Ta _{2/3} O ₂ N (<600nm)	Rh _{2-y} Cr _y O ₃ (Rh 0.5 wt%, Cr 0.5 wt%)	TiO ₂ /SiO ₂	300 W Xe lamp (>420 nm)	H ₂ O	AQY: 0.18% et 440±30 nm	68, 94
SrTiO ₃ :Rh,Sb (<500nm)	3wt% IrO ₂	-	300 W Xe lamp (>440 nm)	H ₂ O (pH=3, H ₂ SO ₄ mediated)	AQY: 0.1% at 420 nm	75
CoO (<515nm)	-	-	AM1.5G solar simulator	H ₂ O	STH: 5%	78
BiYWO _s (<470 nm)	0.5 wt% RuO ₂	-	500 W Xe lamp (>420 nm)	H ₂ O	AQY: 0.17% at 420 nm	80
BiVO ₄ :ln,Mo (<496 nm)	3wt% RuO ₂	-	500 W Hg arc lamp (>420 nm)	H³O	AQY: 3.2% at 420–800 nm	81
C ₃ N ₄ (<442nm)	3wt% Pt-1wt% CoO _x	_	300 W Xe lamp (>420 nm)	H ₂ O	AQY: 0.3% at 405 nm	84
CDots-C ₁ N ₄ (<620 nm)	_	_	300 W Xe lamp (>420 nm)	H,O	AQY: 16% at 420 nm,	52

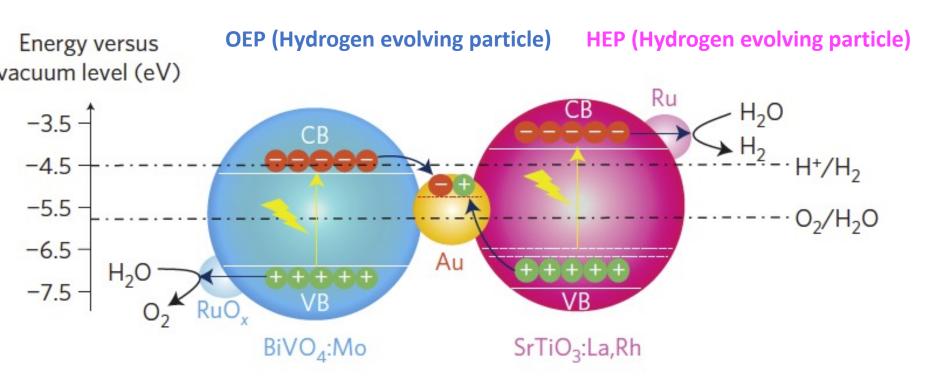
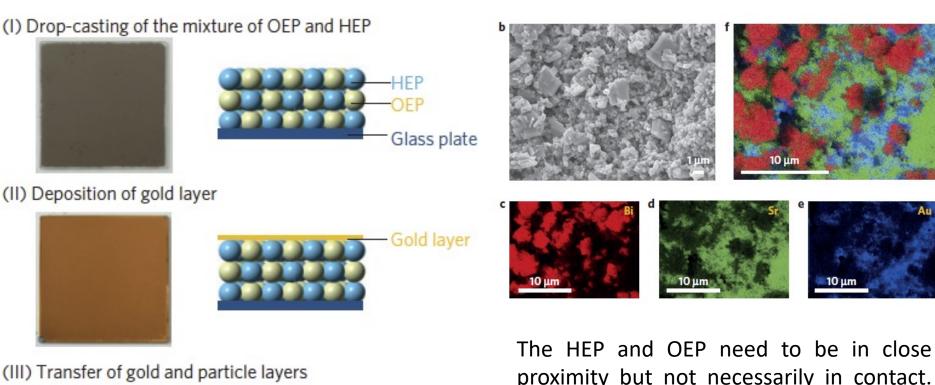

AQY, apparent quantum yield; CDots, carbon nanodots; STH, solar to hydrogen. *AQY was measured at a specific wavelength or within a certain wavelength range.

Table 2 | Representative particulate two-step overall water-splitting systems.

HEP (available wavelength)	OEP (available wavelength)	Electron mediator (V vs NHE)	Light source	Reactant solution	Efficiency	Refs
Aqueous redox mediator						
$0.5\mathrm{wt}\%\mathrm{Pt/TiO_2}$ (anatase, <387 nm)	TiO ₂ (rutile, <410 nm)	IO ₃ -/l- (1.085 – 0.059 pH)	400 W high-pressure Hg lamp	H ₂ O (pH=11, NaOH mediated)	No data	104
0.4 wt% Pt/SrTiO ₃ :(Cr,Ta) (<700 nm)	1 wt% PtO _x /WO ₃ (<450 nm)	IO ₃ -/I- (1.085 – 0.059 pH)	300 W Xe lamp (>420 nm)	H ₂ O	AQY: 0.1% at 420 nm	110
1.0 wt% Pt/ZrO ₂ /TaON (<500 nm)	5 wt% lr/TiO ₂ / Ta ₃ N ₅ (<600 nm)	IO ₃ -/I- (1.085 – 0.059 pH)	300 W Xe lamp (420<λ<800 nm)	H₂O	No data	111
0.5 wt% Pt/ZrO ₂ /TaON (<500 nm)	0.5 wt% PtO _x /WO ₃ (<450 nm)	IO ₃ -/I- (1.085 – 0.059 pH)	300 W Xe lamp (420<λ<800 nm)	H ₂ O	AQY: 6.3% at 420 nm	109
0.4 wt% Pt/MgTa ₂ O _{6-x} N _y /TaON (<570 nm)	0.45 wt% PtO _x / WO ₃ (<450 nm)	IO ₃ -/I- (1.085 – 0.059 pH)	300 W Xe lamp (420<λ<800 nm)	H ₂ O	AQY: 6.8% at 420 nm	107
 1wt% Pt-2wt% IrO₂/Sm₂Ti₂S₂O₅ (<590 nm); 1wt% Pt/La₅Ti₂CuS₅O₇ (<650 nm); 1wt% Rh/La₆Ti₂S₈O₅ (<630 nm) 	0.45 wt% PtO _x /H-Cs-WO ₃ (<450 nm)	I ₃ -/I- (0.536)	300 W Xe lamp (>420 nm)	H ₂ O	STH: 0.003%	98
Dye-adsorbed 0.5 wt% Pt/ H ₄ Nb ₆ O ₁₇ (<700 nm)	0.5 wt% IrO ₂ -0.5 wt% PtO_/WO ₃ (<450 nm)	I ₃ -/I- (0.536)	300 W Xe lamp (>420 nm)	H ₂ O (pH = 4.5, without adjustment)	AQY: 0.05% at 480 nm for H ₂ evolution	101
3 wt% Pt/g-C ₃ N ₄ (<442 nm)	0.5 wt% PtO _x / WO ₃ (<450 nm) or BiVO ₄ (<520 nm)	IO_3^-/I^- (1.085 $-$ 0.059 pH) or Fe^{3+}/Fe^{2+} (0.771)	300 W Xe lamp (>395 nm)	H_2O (pH = 8.3) or H_2O (pH = 3.0, H_2SO_4 mediated)	No data	83
1wt% Ru/SrTiO ₃ :Rh (<520 nm)	BiVO ₄ (<520 nm)	Fe ³⁺ /Fe ²⁺ (0.771)	300 W Xe lamp (>420 nm)	H ₂ O (pH = 2.4, H ₂ SO ₄ mediated)	AQY: 4.2% at 420 nm, STH: 0.1%	8
0.7 wt% Ru/SrTiO ₃ :Rh (<520 nm)	Bi ₄ NbO ₈ Cl (<498 nm)	Fe ³⁺ /Fe ²⁺ (0.771)	300 W Xe lamp (>420 nm)	H ₂ O (pH = 2.5, HCl mediated)	AQY: 0.4% at 420 nm for O ₂ evolution	99


ONE EXAMPLE

Scalable water splitting on particulate photocatalyst sheets with a solar-to-hydrogen energy conversion efficiency exceeding 1%

Overall water splitting reaction

ONE EXAMPLE

proximity but not necessarily in contact.

This is because, unlike in photoelectrochemical systems, a continuous conductive network is not needed, owing to the absence of an external electric circuit.

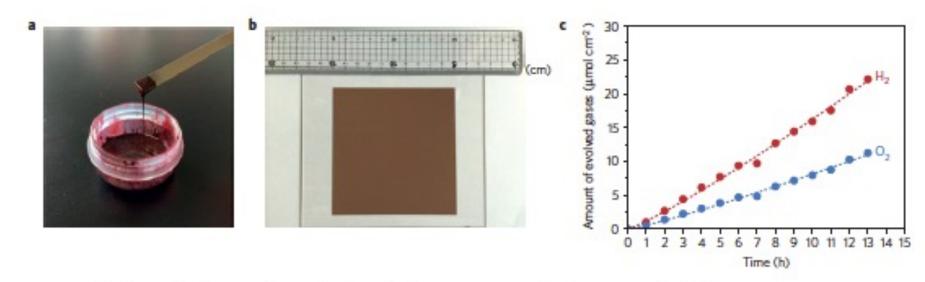


Figure 3 | Printed photocatalyst sheet. a, Photograph of the Ink used for screen printing the photocatalyst sheet. b, Photograph of a 10 × 10 cm SrTiO₃:La,Rh/Au nanoparticle/BiVO₄:Mo printed sheet. c, Time course of the water splitting reaction using a Ru-modified SrTiO₃:La,Rh/Au colloid (40 wt%)/BiVO₄:Mo printed sheet under simulated sunlight at 288 K and 5 kPa. The sample (6.25 cm²) was photodeposited with RuCl₃·3H₂O (0.17 μmol).

In conclusion, the authors demonstrate an efficient system based on nanoparticulate photocatalysts with AQE of 33%, STH of 1.1% in **pure water**

25 cm

a

Article

Photocatalytic solar hydrogen production from water on a 100-m² scale

https://doi.org/10.1038/s41586-021-03907-3

Received: 23 October 2020

Accepted: 12 August 2021

Hiroshi Nishiyama¹¹º, Taro Yamada¹¹º, Mamiko Nakabayashi², Yoshiki Maehara³⁴, Masaharu Yamaguchi¹, Yasuko Kuromiya¹, Yoshie Nagatsuma¹, Hiromasa Tokudome³⁵, Seiji Akiyama³⁶, Tomoaki Watanabe⁵, Ryoichi Narushima¹, Sayuri Okunaka³⁵⁶, Naoya Shibata², Tsuyoshi Takata⁶, Takashi Hisatomi⁶ & Kazunari Domen¹⁵ً

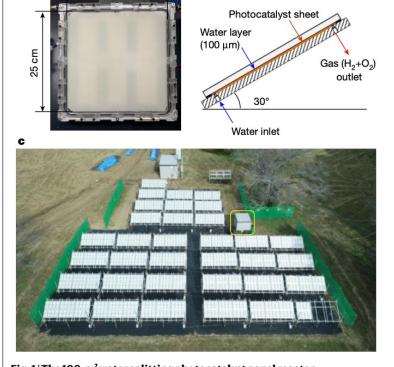
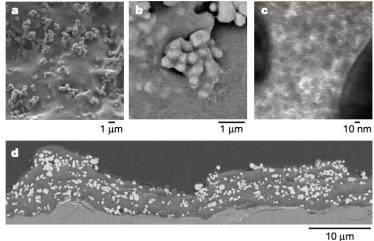



Fig. 1 | The 100-m² water splitting photocatalyst panel reactor.

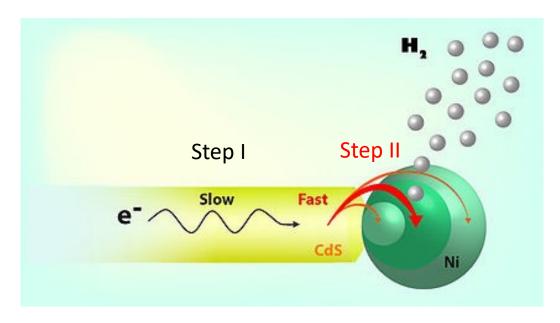
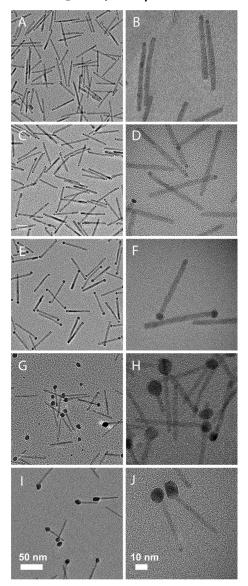

a, A photographic image of a panel reactor unit (625 cm²). **b**, The structure of the panel reactor unit viewed from the side. **c**, An overhead view of the $100 \cdot \text{m}^2$ solar hydrogen production system consisting of 1,600 panel reactor units and a hut housing a gas separation facility (indicated by the yellow box).

Fig. 2| **Electron microscopy images of photocatalyst sheets. a, b,** Top-view secondary electron (**a**) and backscattered electron (**b**) images acquired by scanning electron microscopy. **c**, A cross-sectional image acquired by transmission electron microscopy. **d**, A cross-sectional backscattered electron image acquired by scanning electron microscopy. These specimens were fabricated by depositing the photocatalyst on frosted glass sheets using a program-controlled sprayer.

time and dropped below 0.40% in 280 h. Photocatalyst sheets fabricated on the frosted glass were more active and durable (Extended Data Fig. 4b), reaching after activation an STH efficiency of 0.51% that remained above 0.40% over 1,600 h (a timespan equivalent to seven months under an outdoor insolation of 7.6 kWh m^{-2} per day, or to almost

Hybrid colloidal nanocrystals for HER: model systems to understand structure/property relationships

Step I (charge separation by diffusion)


Step II (interface crossing)

Is the size of the co-catalyst important to maximize HER?

9.2. Particle-based photoelectrochemical reactors

Hybrid colloidal nanocrystals for HER

CdSe@CdS/Ni hybrids

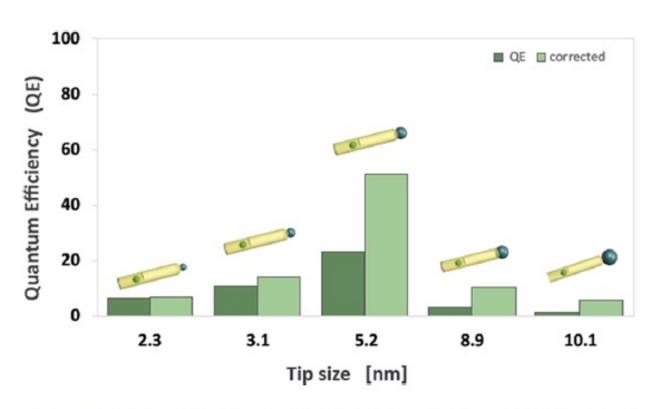
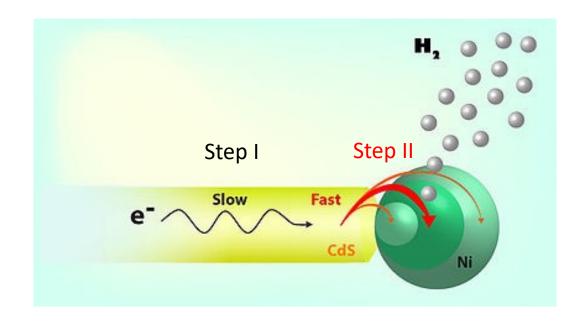
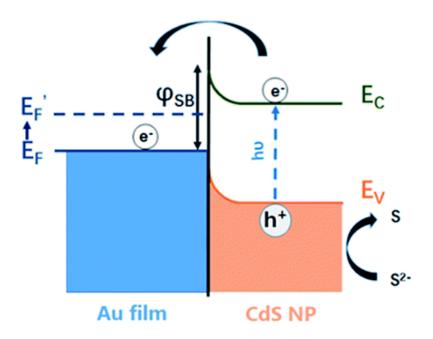



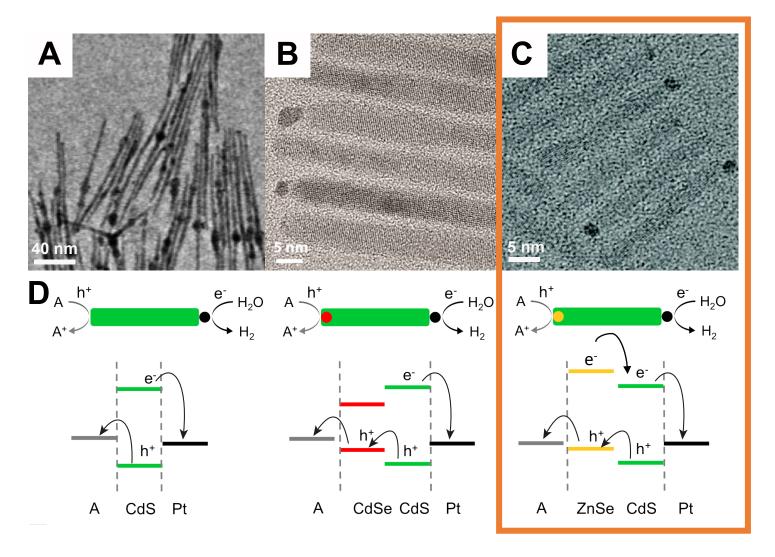
Figure 2. Photocatalytic quantum efficiency for the water reduction half reaction obtained with CdSe@CdS nanorod photocatalysts decorated with different-sized Ni tips. Experimental quantum efficiency in dark green bars, and quantum efficiency corrected for metal absorption in light green bars.


Hybrid colloidal nanocrystals for HER: model systems to understand structure/property relationships

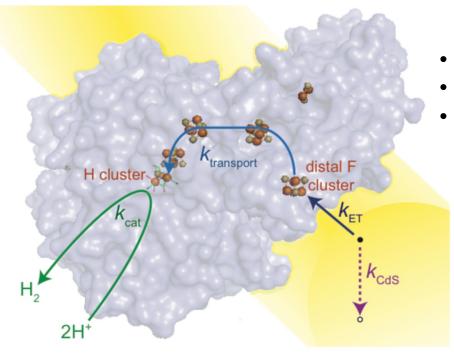
Step I (charge separation by diffusion) is not affected by the size of the co-catalyst

Step II (interface crossing) is affected by the size of the co-catalyst: the Coulomb blockade prevails at smaller sizes, the Schottky barrier at bigger sizes; the best is in the middle.

Schottky junction



blue light excitation

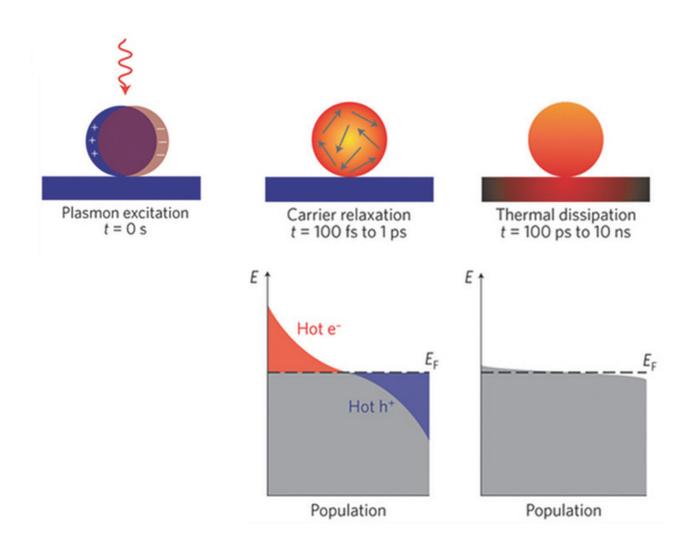

Coulomb Blockade Effect:

The charging effect which blocks the injection of a single charge into or from a nanoparticles. This effect increases as the size becomes smaller

colloidal HER: model Hybrid nanocrystals for systems to understand structure/property relationships

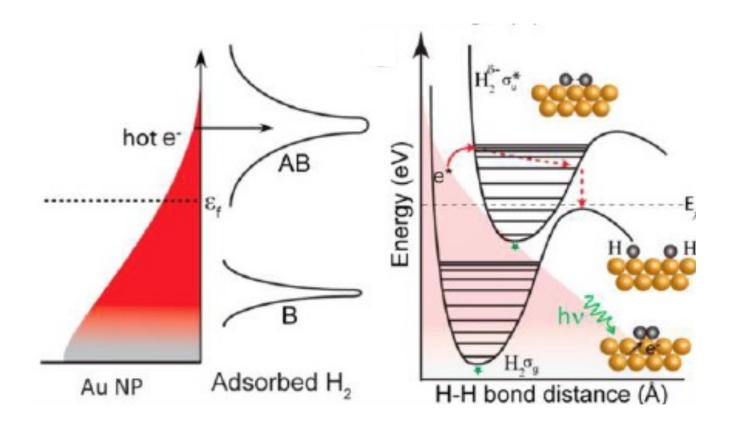
Coupling of semiconductor nanocrystals with enzymes

Figure 5. Schematic of the electron pathway resulting in H_2 generation by photoexcited CdS—CaI complexes. The enzyme surface is shown in blue with the Fe and S atoms of the F-clusters and the H-cluster shown as orange and yellow spheres, respectively. Enzyme coordinates are from CpI (PDB ID: 3C8Y), which has high homology and sequence similarity with CaI. The CdS NR surface is shown in yellow and surface-capping ligands are omitted for clarity. The rate of internal electron decay in CdS is denoted by $k_{\rm CdS}$, the rate of electron injection from CdS to CaI by $k_{\rm ET}$, the rate of electron transport through CaI to the H-cluster by $k_{\rm transport}$ and the rate of H_2 production by $k_{\rm cat}$.

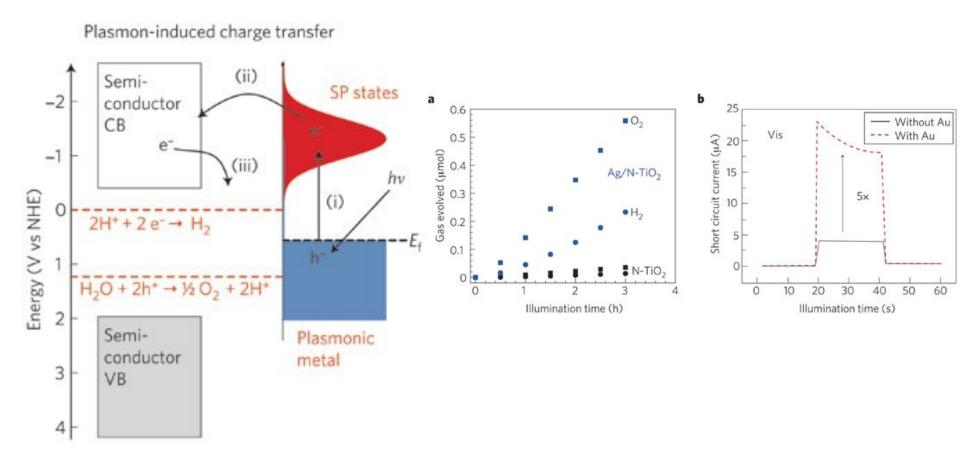

Photocatalyst: CdS

Catalyst: Enzime

Donor acceptor: Ascorbic acid


9.3. New concepts using nanomaterials

Plasmon-enabled photochemistry: coupling of photonic and thermal stimuli to drive chemical transformation

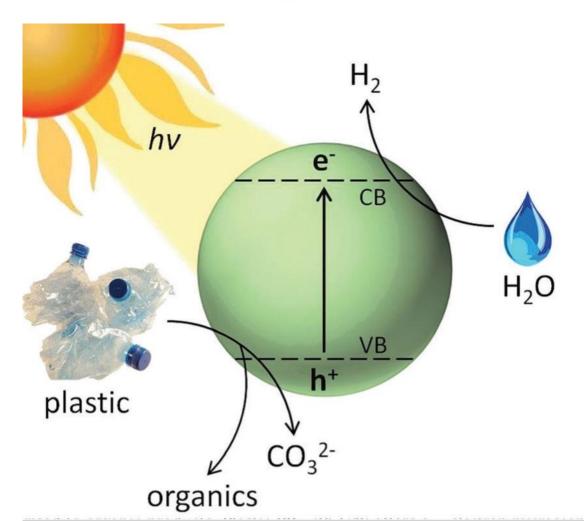

9.3. New concepts using nanomaterials

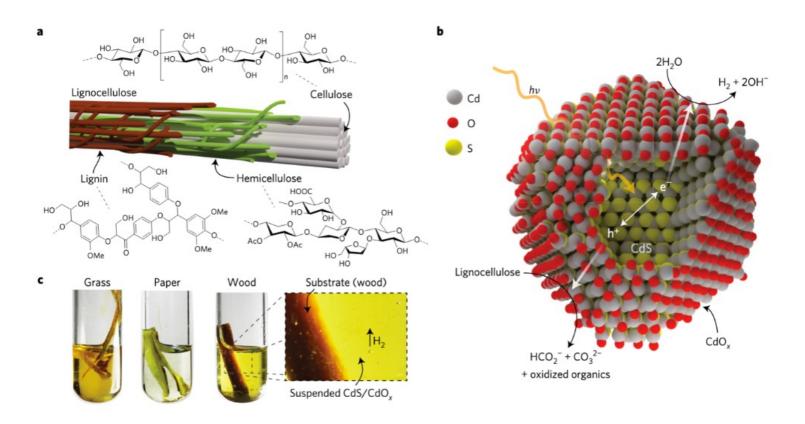
Plasmon-enabled photochemistry: coupling of thermal and photonic stimuli to drive chemical transformation

9.3. New concepts using nanomaterials

Hot electron transfer to semiconductors to enhance activity

Cite this: Energy Environ. Sci., 2018, 11, 2853

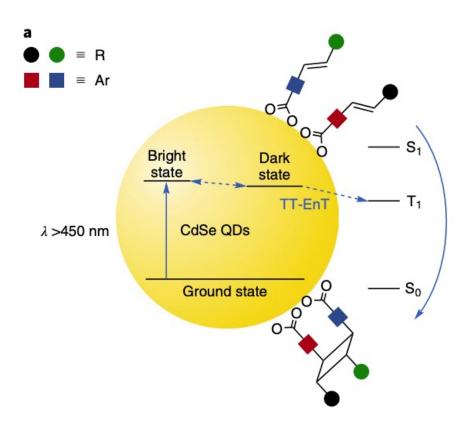

Received 14th May 2018, Accepted 6th August 2018


DOI: 10.1039/c8ee01408f

rsc.li/ees

Plastic waste as a feedstock for solar-driven H₂ generation†‡

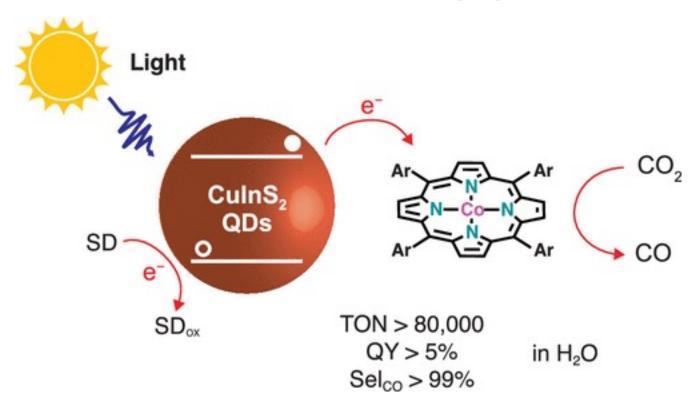
Taylor Uekert, ^{10 a} Moritz F. Kuehnel, ^{10 *ab} David W. Wakerley^a and Erwin Reisner ^{10 *a}


Solar-driven reforming of lignocellulose to H_2 with a CdS/CdO $_X$ photocatalyst.

Wakerley, D. W.; Kuehnel, M. F.; Orchard, K. L.; Ly, K. H.; Rosser, T. E.; Reisner, E. *Nat. Energy*, **2017**, *2*, 17021.

Regio- and diastereoselective intermolecular [2+2] cycloadditions photocatalysed by quantum dots

Yishu Jiang¹, Chen Wang⁰², Cameron R. Rogers¹, Mohamad S. Kodaimati¹ and Emily A. Weiss⁰^{1*}



pubs.acs.org/JACS Article

Quantum Dot-Sensitized Photoreduction of CO₂ in Water with Turnover Number > 80,000

Francesca Arcudi, Luka Đorđević, Benjamin Nagasing, Samuel I. Stupp, and Emily A. Weiss*

FINAL remarks:

Daniel Nocera

"The Sustainocene: era of personalized energy"