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Electrochemical CO, Reduction (eCO,R)
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=PrL Copper is unique for C02 reduction
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Copper has the right binding energy BUT lack of selectivity!
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Norskov et al., J. Phys. Chem. Lett. (2013) ; Kuhl et al., Energy Environ. Chem. (2012)
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=PFL Going down to the nanoscale with well define
size and shape to improve selectivity
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=PFL  44nm cubes show the highest selectivity towards ethylene!
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A. Loiudice et al., ACIE (2016)



=PFL  Learning about the crystal structure of the cubes
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J. Huang et al., Nat. Comm. (2018)
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Edge- and plane-atoms behave as different catalytic sites

(111)

corners

Copper atoms along the edges or on the planes behave as different catalytic sites. The 44 nm
cubes give the optimal ratio between edge and plane sites (Cu_,../Cu =0.025)

edges planes
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Lab days organization

~ 40 nm
copper cubes

Day 1

Colloidal
Synthesis

Transmission
electron
microscopy
(TEM)

Day 2
Characterization

X-ray
diffraction
(XRD)

Dropcasting the electrodes
Electrochemistry experiment

Day 2
CO2ZRR tests

Inductively coupled
plasma - optical emission
spectrometry
(ICP-OES)

Colloidal Synthesis



COLLOIDAL SYNTHESIS



=PFL  Recap on Colloidal Synthesis

What: Wet chemistry approach in organic solvent and (often) carried out under inert atmosphere in
presence of organic surfactants where decomposition of precursors lead to monomers and then to NCs

Semiconductors - QDs
PhCSBr

225

Metal Nanocrystals

Metal-Oxide
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=PFL  Rule of thumb in colloidal chemistry

Metal
precursor

_ Some chemicals can
Solvent Colloidal Reducing play more than one role!

SYUUESE agent
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How:
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Shape-Controlled Synthesis - Simple Chemistry Meets
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Shape selectivity with Cu Nanocrystals -
Key role of the ligands
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=PrL  |dentification of monomers
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Plateau at 80°C
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TOPO and TOP both act as complexing agents, forming complexes of different properties

that then act as intermediates for the monomers

M. Strach*, V.Mantella*, J. R. Pankhurst,* R. Buonsanti et. al. J. Am. Chem. Soc. (2019)
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=P*L " The chemical nature of the Cu(l)-complexes explains
the different disproportionation kinetics
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=PrL The monomer flux is key to differentiate between
thermodynamic and kinetic products...
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Conclusions

** Nanocube or Nanosphere synthesis by monomer flux control.
¢ The added ligand, TOP or TOPO, complex with the precursor forming
complexes with different properties
¢ TOP complexing results in a dimeric complex for which disproportionation
happens easily and gradually
constant monomer flux, thermodynamic regime = spherical shape

s TOPO complexing results in a monometallic complex for which fast
disproportionation happens at higher T and suddenly
fast monomer flux, kinetic regime = cubic shape
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=PFL - WhyXRD and TEM ?

Information we can gain from:

X-Ray Diffraction (XRD)

Transmission Electron
Microscopy (TEM)

Crystal structure Shape

Lattice parameters Size

Phase composition Distribution

B ChE430 — Lab Project

Characterization



=PFL  Adiffraction pattem results from constructive interference of *
the scattered waves

Characterization

Diffraction of X-Rays by planes of atoms
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=PFL  Crystallographic planes. Miller indices.

Characterization

Crystallographic planes - set of parallel and equally spaced planes that may be supposed to pass
through the centers of atoms in crystals.

Miller indices (hkl) are determined from the reciprocals of axial intercepts X, vy, z.

Crystallographic planes are specified by three Miller indices as (hkl).

(100) (110) (111)

Interplanar spacing dnk - the magnitude of the distance between two adjacent and parallel planes of
atoms

B ChE430 — Lab Project



=P*L " An X-ray powder diffraction pattem is a plot of the intensity of
X-rays scattered at different angles by a sample
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Schematic diagram of an x-ray diffractometer

Intensity (Counts)

Diffraction pattern
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35

40 45 50
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The detector moves in a circle around the
sample

The detector position is recorded as the angle
2theta (20)

The detector records the number of X-rays

observed at each angle 20

N
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XRD pattem of a single crystal (preferred orientation)
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=PFL  XRD pattem of a polycrystalline sample (random
orientation)
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a.u

XRD peaks: intensity and width contain important

information on the crystal structure
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TEM: powerful technique to visualize nanometer features

Light Microscopy
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=L What gives different contrast in TEM images?

Thickness

Thicker regions will scatter more electrons than
thinner regions of the same average Z.

Different atomic numbers (2)

High-Z (i.e., high-mass) regions of a specimen
scatter more electrons than low-Z regions of the
same thickness

B ChE430 — Lab Project

Introduction



=PFL  XRD and TEM are the main techniques to characterize the
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colloidal nanocrystals

Transmission Electron Microscopy (TEM)
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ELECTROCHEMICAL
C0, REDUCTION
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“Regular” testing is done in liquid H-type cell

288

Working
electrode

To Vent Liquid-fed reactor
, ,_‘ « Continuous flow (CO,) electrochemical cell
/B Tf? « 0.1 M KHCO, aqueous electrolyte
« -1.1to-1.4V vs. RHE (reversible hydrogen
electrode)
 Products analysis: gas chromatography
and high-performance liquid

chromatography
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Electrochemical CO, reduction



“""- Cu nanocubes are deposited on flat
glassy carbon to make a working electrode

- 1. Desired
- —-— guantity of
. nanocubes

solution

2. Drop-
casting

Microscope (SEM) image of the

3. Prepared working electrode
working electrode
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“"*L The setup is composed of the gas supply, cell and
product analysis parts together with potentiostat

<+«—— Potentiostat Gas line

Electrochemical CO, reduction

« CO, is supplied from the bottle
and fed through the cell

« Obtained gas mixture is sent to the
Gas chromatograph

1

[% detect hydrocarbons and CO

chromatograph for products analysis

| l.\dmgIn generator

Gas chromatograph

 Flame ionization detector (FID) to

: « Thermal conductivity detector (TCD)
o

to detect hydrogen
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=~ Faradaic efficiency is calculated as fraction of
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charge consumed to form given product

Qproduct . N 19

roduct * n'product * F

FEproduct (%) —
Qtotal

ltotal * tsampling

Nproauct = Moles of detected product
Nyroauct = NUMber of electrons required for reaction

F = Faraday’s constant (96485 C/mol)

ltotal = Average total current during sampling time

tsampling = Sampling time

(=]
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Electrochemical CO, reduction
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Thanks for attention!




