# Syllabus



Principles and Applications of Systems Biology

Vassily Hatzimanikatis September 2024



## **Assistants**



Asli Sahin





Omar Keshk



**David Liaskos** 



Omid Oftadeh

## Syllabus (approximate)

| Date  | Lecture                                                                                                          | Exercise          |
|-------|------------------------------------------------------------------------------------------------------------------|-------------------|
| 14.09 | Introduction to Systems Biology                                                                                  | -                 |
| 20.09 | FBA, Objective functions, Growth trade off (FAB1) Phenotypic phase plane, alternative flux distributions (FBA2), | -                 |
| 27.09 | Practical (Software; Simulation exercises)                                                                       | Q/A MATLAB,Python |
| 04.10 | Thermodynamics flux balance analysis, and GCM (TFA2)                                                             | Q/A               |
| 11.10 | Data integration of Stoichiometric models                                                                        | Q/A               |
| 18.10 | Data integration of Stoichiometric models                                                                        |                   |
| 01.11 | Enzyme kinetics/Large-scale modelling + Kinetic modeling of cancer metabolism                                    | Q/A               |
| 08.11 | Large-scale modelling + Kinetic modeling of cancer metabolism / Data (Maria)                                     | Q/A               |
| 15.11 | Sigma / Signal transduction systems                                                                              | Q/A               |
| 22.11 | Stochastic and Spatial effects on the intracellular level<br>// ME-models (Omid)                                 | Q/A               |
| 29.11 | ME-models (cont'd if needed) / Communities                                                                       |                   |
| 06.12 | Work on projects                                                                                                 |                   |
| 13.12 | Work on projects/Final Presentations                                                                             |                   |
| 20.12 | Final Presentations                                                                                              |                   |

#### Brief course description

The course introduces and develops the key concepts from systems biology and systems engineering in the context of complex biological networks.

The lectures elaborate on **techniques** and **methods** to **model** and **analyze** complex biological problems.

(Focus on Metabolism – and some signaling!)

Examples and projects apply the model-based and systems engineering integration and analysis of big data from biological systems.

#### **TOPICS**

- Mathematical and computational analysis of metabolic reaction networks
- Analysis of metabolomics and bioenergetics data in the context metabolic networks
- Mathematical and computational analysis of protein expression
- Methods and technologies for the analysis of signaling networks
- Computational models of microbial communities
- Interpretation and analysis of single cell data
- Mathematical modeling of spatial effects in biological systems

### **METHODS**

- Metabolic Flux balance analysis (FBA)
  - (Linear programming)

metabolic networks

- (Mixed-integer linear programing). Kinetic models
- (Ordinary differential equations)
- Metabolic control analysis
- (Local and global sensitivity analysis)
- Stochastic simulation algorithm (SSA) and
- (Stochastic simulation)
- - Particle based simulation methods

Thermodynamics based flux balance analysis (TFA) of

- Parameter estimation for biological systems
- (System identification methods)

#### **RECOMMENDATIONS**

The building of working groups will make it possible for people with partial knowledge in these fields to contribute depending on their formation.

#### **COURSES**

#### SV courses:

- Dynamical systems in biology BIO-341
- Numerical analysis MATH-251

#### ChemE courses:

- Dynamics and kinetics CH-310
- Biochemical engineering ChE-311
- Bioreactor modelling and simulation ChE-320
- Numerical methods ChE-312

#### **RECOMMENDATIONS**

The building of working groups will make it possible for people with partial knowledge in these fields to contribute depending on their formation.

#### **COURSES**

#### SV courses:

- Dynamical systems in biology BIO-341
- Numerical analysis MATH-251

#### ChemE courses:

- Dynamics and kinetics CH-310
- Biochemical engineering ChE-311
- Bioreactor modelling and simulation ChE-320
- Numerical methods ChE-312

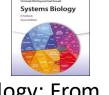
#### Important concepts to start the course

- For the computational exercises,
   MATLAB® and PYTHON will be the platforms of choice.
- An introductory session on the platforms and software used is part of the course.

#### **Learning Outcomes**

By the end of the course, the student must be able to:

- Formulate mass balances of reaction networks
- Solve mass balance equations using linear programing solvers
- Construct kinetic models of biological reactions
- Create and analyze stochastic models of biological reactions
- Analyze papers on modeling and analysis of biological networks
- Assess / Evaluate alternative methods for the study of biological networks


#### Transversal skills

- Plan and carry out activities in a way which makes optimal use of available time and other resources.
- Access and evaluate appropriate sources of information.
- Summarize an article or a technical report.
- Demonstrate the capacity for critical thinking
- Negotiate effectively within the group.

## Literature

 Foundations of System Biology, Edited by Hiraoki Kitano. MIT Press 2001 (classic reading)

• Systems Biology, a textbook, Edda Klipp



- Fundamentals of Systems Biology: From Synthetic Circuits to Whole-Cell Models, by Markus Covert
- Systems Biology : Constraint-Based Reconstruction and Analysis

   Systems Biology

  Reconstruction and Analysis

  The Constraint-Based

  Reconstruction and Analysis
- Systems Biology: Simulation of Dynamic Network States

- An Introduction to Systems Biology: Design Principles of Biological Circuits, by Uri Alon. Chapman and Hall/CRC 2006
- Computational Modeling of Genetic a section is a section in the section in the section in the section is a section in the section in the section in the section is a section in the section
- Receptors: Models for Binding, Trafficking, and Signaling by Douglas A. Lauffenburge
   Jennifer Linderman
- Cellular Signal Processing: An Introduction
   the Molecular Mechanisms of Signal Transduction
- Computational Modeling of Signaling Networks



## Grading

- Project based evaluation:
  - Analyze and reproduce the results of a paper (A paper will be assigned to each group)
- TAs will be available to solve the questions during exercise sessions
- One grade per group
- Final presentation 100%

## Groups and Project presentations

- Groups:
  - 3-4 People
  - Send one e-mail per group to david.liaskos@epfl.ch
     with the full names of all group members until the 27<sup>th</sup> Sep
  - If you are not part of a group by that time, we will assign you to a group

- Project presentation:
  - After forming a group, a paper will be assigned to you
  - Goal: Replicate the key results from the article
  - Propose extensions to the work presented