Step by step MATLAB tutorial with exercises

Stefano Andreozzi, Julien Racle, Ljubisa Miskovic

(v.10.10.2011)

This tutorial is a short introduction to MATLAB, explaining the basic concepts

needed. It is not intended to give a complete view on the broad capacities of
MATLAB. Do not forget to use the very well documented help.

800 MATLAB 7.8.0 (R2009a)
File Edit Debug Desktop Window Help
Ing & ® 9 & & f B @ CurrentDirectory: | /Users/stefano/Desktop/TP3 R
7 Shortcuts (2] Howto Add (2] What's New
X _a w O Current Directory X 2 w0 Command Window x a » 0 Workspace
o= e L e e =
@ # [0« Desktop » TP3 M solutions, and indices in vector SOL.ie specify which event oc BwEw® -
[) [Name & Date Modified bl Ak L
.DS_Store 9/27/10 1:44.. Example Ha [1,3,4,0,0. -
€ exercise.. 9/27/10 1:22.. [t,y]=oded5 (evdp1, [0 20],[2 01); i [5:7:8,4,4. 2
#) exercise.. 9/26/10 4:21 plot(t,y(:,1)); He 4 4
Lo e solves the system y' = vdpl(t,y), using the default relative
exercise.. 9/26/10 4:20.. tolerance le-3 and the default absolute tolerance of le-6 fc
Introduc.. 9/26/10 3:50.. component, and plots the first component of the solution.
matlab-p.. 9/27/10 2:16..
[¥ matode.p.. 9/27/10 1:44.. Class support for inputs TSPAN, Y0, and the result of ODEFUN(T
] float: double, single
motion.m~ 9/26/10 4:15..
See also
other ODE solvers: ode23, odell3, odel5s, ode23s, ode23
implicit ODEs: odel5i
options handling: odeset, odeget
output functions: odeplot, odephas2, odephas3, odeprin
evaluating solution: deval
ODE examples: rigidode, ballode, orbitode [

d

motion.m (M-File) v

@ motion(t, x)

function handles: function_handle

NOTE:
The interpretation of the first input argument of the ODE sc
some properties available through ODESET have changed in MAT
Although we still support the v5 syntax, any new functionali
available only with the new syntax. To see the v5 help, tyg
the command line

more on, type ode45, more off

Reference page in Help browser
doc ode45

4 start

x a + 0 Command History

plot(t, x(:,2))

plot(t, x(:,3))
plot(x(:,1), X(:,2)]
$-- 9/27/10 1:16 PM

exercisel(7,3)
exercisel(7,10)
exercisel(7,100)
help ode45

clc

c=4

a=[1 34000 234
clec

help

help ode45
2 0

c

b=a+c;

The MATLAB main window is composed by

a)

Top left: the current directory panel lists all the files in the current folder;

the latter can be changed browsing the disk structure visualized at the top of

the panel.
b)
c)

Bottom left: details on the selected file
Center: command window that allows entering the commands and seeing

the output from the programs. The prompt is written as >>.

d)

Top right: the workspace lists the variables currently defined, as well as

their content. Double click on a variable to see it in more detail.

e)

previously used.

Bottom right: the command history shows the ordered list of the commands

In this part we give some instructions you should follow step by step in order to
develop the sufficient skills needed for the exercises.

MATLAB_tutorial

1)

2)

3)

4)

5)

Define and initialize variables, writing each line on the MATLAB command
prompt, followed by ENTER:

>> a =5
>> b = 2
> c =a + Db

Note that in MATLAB we directly initialize the variables giving their content
in this way. There is no need, in contrary to some other programming
language, to tell that, for instance, a is of the type of integers or doubles, etc.
MATLAB will directly define the proper type for the variable, accordingly
with its content.

Names of variables, commands and functions in MATLAR are made of letters,
numbers and underscores, starting always with a letter or underscore.
Note also that these names are cAsE sEnSiTiVe.

The up and down arrows allows to retrieve previously typed commands. Use
them to modify the value of b to 3. Note that it is also possible to start typing
the initial part of a previous command and then use the arrows to scroll only
through the commands starting with the typed part.

Typing an operation with an ending semicolon will result in hiding the
output of the given command from the command window. Try:

>> a = 3;

With the semicolon it is possible to write also many commands in the same
line. Pressing ENTER at the end, they will be processed sequentially.

If you want to put many commands in the same line, but displaying the result
of each of them, use the comma instead of the semicolon:

>> a, c

Note that ¢ has a value of 7, because its value was computed when a was 5
and b was 2. After that c is not anymore linked to the values of a and b
(there is no symbolic relationship).

If the result of the last successful operation (if any) was not assigned to a
variable, it is then stored in the variable ans.

5

>> 2 + 3
a =2 ans

>>

Note that the first operation follows the mathematical hierarchical rules: the
product is performed before the addition. To use these operations in a
different order, place round brackets properly-e.g. (2 + 3) * 5

2 MATLAB_tutorial

6) In order to see which variables have been defined, use the command who, or
whos (whos gives additional information on the size and types of the
variables).

Once you quit MATLAB, all variables are lost. If you want to keep them for a
later time, use the save command, followed by the name of the “mat-file”
where to save and the name of the variables to save (or no variable name to
save all variables present). You can then load again your data by using the
load command followed by the name of the mat-file (the variables are
saved in a MATLAB specific format “.mat”).

In case you want to delete a variable use the clear command, followed by
the name of the variable you want to erase. Delete the b variable. Note that
clear alone will erase all the variables in the workspace (it works like
clear all).Save your variables, delete them all and load them again.

7) In MATLAB it is also very easy to define row and column vectors. We just
need to put values between squared brackets, separated by commas, in case
of row vectors, or semicolons, in case of column vectors. Note that commas
can be omitted (use a simple space instead). Use this to create:

v=(1 2 3 4) w=

)

0 9 N W

8) A vector of equally spaced values can be created this way:

>> s = 2:10
(as only the extremes are given, the step between them is implicitly 1)

>t =1:0.1 : 3
(vector between 1 and 3 with elements spaced by 0.1)

9) Try to sum s and t. This sum is not consistent because s has 9 elements and
t has 21 elements. This does not return a value, but an error message. If an
erroneous operation is included in the flow of an MATLAB program, it will
terminate the execution of it. Try then to construct two vectors of the same
dimension and sum them.

10) Try to do v*w and w*v. What do they give?

11) As you have seen in the previous point, w*v results in a 4x4 matrix.
In order to build a matrix directly, you simply have to use the square
brackets with each element of a row separated by space or comma and each
row by a semicolon. For example, the matrix:

SEH)

1 2
4 5

3 MATLAB_tutorial

has to be entered in the command windows as:
> A =[123; 45 6]

12) To obtain a transpose of a matrix just write an apostrophe after the matrix
name. Find out how to create the matrix B as the double of matrix A. Then
create C as the transpose of B. Having the three matrices A, B and C,
perform the following operations:

>> A + B
>> A * C
>> A * B

The last operation will give you an error. Why?

13) If instead of doing a matrix multiplication (or division or power) you want
MATLAB to work element by element, simply add a point before the operator
(this kind of element-wise operation in MATLAB is very useful):

> A . * B
14) Elements of a matrix can be extracted or assigned using the round brackets:

Element at row 2, column 1 of A
>> A(2,1)
>> A(2,1) = -2

If you provide only one index, the resulting element will be the one at the
position given counting from top to bottom, starting from the first column to
the last, as if the columns of the matrix would be placed one after the other

in a unique column vector.
>> B(4)

Using the colon you can refer to more than one element of the matrix at a
time. If you use the colon alone, it means “all the row” or “all the column”.
The keyword “end” means “to the last line or column”.

> A(1, 2 : 3)

> A(1,)

>> C(2 end , :)
> A(: , 2) =20

In the latter command, the scalar value 0 is assigned to each element of the
second column.

>> A(100, 1)
What is the error?

15) There exist some ready-made matrices you can use:

>> ones (2, 5)
>> zeros (3, 2)

4 MATLAB_tutorial

>> eye (3)

16) Till now we have entered all our commands directly in the command
window, but it can be useful to store our commands in some external files
that can be used again some later time. For this we use “m-files” that can
contain scripts or functions.

In order to know which files to read, MATLAB will first look if it finds the
appropriate file in the current directory (use pwd to see in which directory
you currently are; you can use the same syntax as in Unix systems to
navigate through directories, with commands like cd myFolder, 1s, ...).

If it does not find the file in the current directory, it will look in the folder
present in the saved path. You can use the command path to see all folders
in which MATLAB is looking (many are folders with the native functions from
MATLAB). If you know you will always use some m-files present in a given
folder, you can add this folder to the search path with the command

>> addpath (‘/path to the folder/myFolder’);
>> savepath

The first command adds myFolder to the search path (take care, you need
to give the absolute path to myFolder) and the second command saves the
search path (in the default file) to use it again in the next MATLAB sessions.

17) Till now we have entered all our commands directly in the command
window, but it can be useful to store our commands in some external files
that can be used again some later time. For this we use “m-files” that can
contain scripts or functions. Open now a new m-file named tutorial.m
(there are several ways to do it; for now just type edit tutorial.m in
the command window). The editor window, showing the content of the file,
will appear. Type in the following lines:

x=0:0.1 : 10 ;
y =1 ./ (1 + x) ;
plot(x,y)

Save it and launch it (type tutorial in the command window, i.e. the same
name as the “m-file” but not writing the extension “.m”). Now, back to the
editor window, modify the file, replacing the expression for y with the
following structure (initialization; for loop and some comments, marked
with %; note that each comment line has to start with the symbol & or #):

i=1;

kmin = 1;

kmax = 5;

for k = kmin : kmax %$evaluation of y for diff

%k values
y(i,:) =k ./ (1 + x);
i = 1+1 ;
end

5 MATLAB_tutorial

For a good readability of the code, indent the lines inside your scripts, and
always add lots of comments.

Save and launch the script.

18) m-files can also contain functions instead of scripts. A generic function can
be seen as:

Inputl

Outputl
Input2 myfunction

Output2
Input3

In order to define this function, you have to create an m-file having the
same name as the function.
The function must be defined on the top of the m-file in the following way:

function [Outputl, Output2]= myfunction
(Inputl, Input2, Input3)

o\°

any comment before the body will be used as
content of the help associated with the new
% function (try help myfunction)

o°

body of the function;
end
Note that the three dots ... are used when you want to format a single
command to be written in more lines, for the sake of readability of the code.

The function can then be called in another m-file script or function in the
following way:

[a, b] = myfunction (c, d, e);

Make sure that inputs have the same number, type and, eventually, size, of
the ones declared in the function m-file.

Modify the script of point 17 to make it a function taking kmin and kmax as
input arguments and outputting x and y.

Try to call your function more than once, with different inputs. If you just call
the function without assigning the output to variables - e. g. myfunction (1,
-2, 3); - it will compute the operations in the body of the function
without returning the outputs (the first one will be available in ans).

19) Create a function that takes the amplitude and period as inputs and plots
sine and cosine with that amplitude and period.

6 MATLAB_tutorial

Some suggestions:

- A function without any output argument is defined this way:
function myfun (Inputl, Input2)

- Use the keyword hold on before the second plot command in order to
keep the content of the figure while drawing a new one; use hold off
to disable this feature. The keyword hold all (instead of hold on)
will also change the color of each plot within the same figure window
(this is only working in MATLAB). In order to create a figure in a new
window, use the keyword figure before plotting the second figure.

- For different colors and line styles check help plot. Try:

plot(x, vy, ‘c—-——-%Y);

- Other elements of the figure (such as variable range, x and y labels, title
of the figure, legend) can be added with the following commands:

x1im ([0 ©61]);

xlabel ('x');

ylabel ('sine, cosine’);
title(‘Figure of the tutorial’);
legend(‘'sine’, ‘cosine’) ;

20) Use a while loop to find all powers of 2 below 10000. How many powers of 2
are smaller than 100007 The format of while is as follows:
while condition
commands;

end

21) Use a for loop to find the sum of the odd numbers between 99 and 577.
Repeat the same task but omit in the sum the numbers having the last digit 3
(use the command mod). The format of for is as follows:

for variable=start:step:end
commands;

end
The format of i f-elseif-else statement is as follows:
if condition
commands;
elseif condition
commands;
else
commands;
end

22) Solve the equation sin x=e”x -5 using fzero (syntax: type help

fzero). Verify the result by plotting the function f (x) =0. Can this equation be
solved with fsolve. What is the difference between fsolve and fzero?

7 MATLAB_tutorial

23) Generate 10 values of a cosine curve y=cos (x) between 0 and 2pi. Use these
10 points and MATLAB’s command interpl to find the values of the
underlying function y at 200 equally spaced points within the same interval.
Refer to MATLAB'’s help to understand the usage of this command. (Remark: to
create a vector with equally spaced points, the command linspace can be
helpful).

24) Use MATLAB'’s function polyfit to find the coefficients of polynomials

a) y=ax+b

b) y=ax’+bx+c

¢) y=ax’+bx*+cx+d

d) y=ax*+bx’+ox*+dx+e
that approximate the vector of 10 cosine values given in 23). Plot the
corresponding approximating curves using polyval function. Refer to help
polyfit and help polyval for the usage.

25) Use MATLAB's function quad to show that the area of a circle with unitary radius is

pi. Use trapz to compute the underlying area of the 10-points dataset sample given
in 23).

8 MATLAB_tutorial

