COBRA cheat sheet

Important information COBRA Toolbox is contained in matTFA matTFA/ext/Cobra205_vDec2014

Thus, adding matTFA and its subfolders to the MATLAB-Path variable will allow you access to all COBRA functions.

Starting up MATLAB with COBRA and CPLEX:

Model variables (used / not used in exercises)

rxns	Reaction abbreviations
mets	Metabolite abbreviations
S	Stoichiometric matrix
rev	Reversibility
lb	Lower bound (reaction flux)
ub	Upper bound (reaction flux)
С	Objective function (reaction)
metCharge	Metabolite charges (at physiological pH)
rules	Rules how gene associate with reactions
genes	Genes associated with reactions
rxnGeneMat	
grRules	
subSystems	Metabolic subsystems present
confidenceScores	
rxnReferences	
rxnECNumbers	Enzyme Commission number of reaction
rxnNotes	
rxnNames	Full reaction names
metNames	Full metabolite names
metFormulas	Chemical formula of metabolites
metChEBIID	ChEBI identifier of metabolites
metKeggID	KEGG identifier of metabolites
metPubChemID	PubChem identifier of metabolites
metInchiString	Inchi string of metabolites
b	
description	

COBRA functions

changeRxnBounds	Change upper or lower bounds of a reaction or a set of reactions
optimizeCbModel	Solve a flux balance analysis problem
<u>changeObjective</u>	Changes the objective function of a constraint-based model
<u>singleGeneDeletion</u>	Performs single gene deletion analysis using FBA, MOMA or linearMOMA
<u>fluxVariability</u>	Performs flux variablity analysis

changeRxnBounds

changeRxnBounds Change upper or lower bounds of a reaction or a set of
reactions

```
model = changeRxnBounds (model, rxnNameList, value, boundType)
```

INPUTS

model COBRA model structure

rxnNameList List of reactions (cell array or string)

value Bound values

Can either be a vector or a single scalar value if the same

bound value is to be assinged to all reactions

OPTIONAL INPUT

boundType 'u' - upper, 'l' - lower, 'b' - both (Default = 'b')

Bound type can either be a cell array of strings or a string with as many letters as there are reactions in

rxnNameList

OUTPUT

model COBRA model structure with modified reaction bounds

Markus Herrgard 4/21/06

optimizeCbModel

optimizeCbModel Solve a flux balance analysis problem

```
Solves LP problems of the form: max/min c'*v subject to S*v = b : y lb <= v <= ub : w

FBAsolution = optimizeCbModel (model, osenseStr, minNormFlag)
```

INPUT

model (the following fields are required - others can be supplied)

S Stoichiometric matrix

b Right hand side = dx/dt c Objective coefficients

lb Lower bounds
ub Upper bounds

OPTIONAL INPUTS

osenseStr Maximize ('max')/minimize ('min') (opt, default = 'max')

minNorm $\{(0), \text{ 'one'}, > 0 , \text{ n x 1 vector}\}, \text{ where } [m,n]=\text{size}(S);$

O Default, normal LP

'one' Minimise the Taxicab Norm using LP.

The remaining options work only with a valid QP solver: ----

> 0 Minimises the Euclidean Norm of internal fluxes. Typically 1e-6 works well.

```
min ||v||
s.t. S*v = b
c'v = f
```

```
lb <= v <= ub
               n x 1
                       Forms the diagonal of positive definiate
                       matrix F in the quadratic program
                               min 0.5*v'*F*v
                               st. S*v = b
                                   c'*v = f
                                   lb <= v <= ub
 allowLoops
               {0,(1)} If false, then instead of a conventional FBA,
               the solver will run an MILP version which does not allow
               loops in the final solution. Default is true.
               Runs much slower when set to false.
               See addLoopLawConstraints.m to for more info.
OUTPUT
 FBAsolution
  f
           Objective value
  Х
            Primal
            Dual
            Reduced costs
   7,77
             Slacks
             Solver status in standardized form
   stat.
              1 Optimal solution
              2
                Unbounded solution
                Infeasible
              \cap
             -1 No solution reported (timelimit, numerical problem etc)
   origStat Original status returned by the specific solver
```

changeObjective

changeObjective Changes the objective function of a constraint-based model

Monica Mo & Markus Herrgard - 8/21/06

singleGeneDeletion

```
singleGeneDeletion Performs single gene deletion analysis using FBA, MOMA
or
  linearMOMA

[grRatio,grRateKO,grRateWT,delRxns,hasEffect] =
singleGeneDeletion(model,method,geneList,verbFlag)
```

```
INPUT
```

model COBRA model structure including gene-reaction associations

OPTIONAL INPUT

method Either 'FBA', 'MOMA', or 'lMOMA' (Default = 'FBA') geneList List of genes to be deleted (default = all genes)

verbFlag Verbose output (Default false)

uniqueGene Run unique gene deletion (default = 0).

OUTPUTS

grRatio Computed growth rate ratio between deletion strain and wild

type

grRateKO Deletion strain growth rates (1/h)

grRateWT Wild type growth rate (1/h)

hasEffect Does a gene deletion affect anything (i.e. are any

reactions

removed from the model)

delRxns List of deleted reactions for each gene KO

fluxSolution FBA/MOMA/lMOMA fluxes for KO strains

Markus Herrgard 8/7/06

Aurich/Thiele 11/2015 unique gene deletion option (delete all alternate transcripts and if solKO.stat not 1 or 5, grRateKO(i) = NaN;)

fluxVariability

fluxVariability Performs flux variablity analysis

[minFlux,maxFlux] =

fluxVariability(model, optPercentage, osenseStr, rxnNameList, verbFlag,
allowLoops)

INPUT

model COBRA model structure

OPTIONAL INPUTS

optPercentage Only consider solutions that give you at least a

certain

percentage of the optimal solution (Default = 100

or optimal solutions only)

osenseStr Objective sense ('min' or 'max') (Default = 'max')

rxnNameList List of reactions for which FVA is performed

(Default = all reactions in the model)

verbFlag Verbose output (opt, default false)

allowLoops Whether loops are allowed in solution. (Default = true)

See optimizeCbModel for description

OUTPUT

minFlux Minimum flux for each reaction maxFlux Maximum flux for each reaction

OPTIONAL OUTPUT

Vmin Matrix of column flux vectors, where each column is a

separate minimization.

Vmax Matrix of column flux vectors, where each column is a

separate maximization.