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Different fuel and engine –
different aftertreatment

source: ccrc.kaust.edu.sa

 Diesel is atomized
 High air/fuel ratio
 compression is sufficient to ignite
 WARM exhaust, 200-500oC

 Gasoline is more volatile
 Low air/fuel ratio
 ignition is induced (spark)
 HOT exhaust, 500-800oC

diesel gasoline



Gasoline exhaust gas

CHx + (1 + x/4)O2 → CO2 + x/2H2O + heat

 Exhaust contains variable amounts of CO (1-2 vol%), unburnt HC (500-1000 ppm) and H2 (0.3 
mol/molCO)

 High T combustion produces NOx (NO, NO2, N2O; 100-3000 ppm) from N2 in the air

 partial fuel combustion
(O2 deficiency)

 low NOx because of
lowe flame T

 nearly full fuel 
combustion

 low NOx because of low 
operation T



Air pollution

Guzzella, Ann. Rev. Control 33 (2009) 1; source: Dept. of Health and Environment ZH

20021995 NOx, Zurich

 1970 – Clean Air Act, USA
 1976 – CO and HC conversions larger than 90% required, 50’000 miles – high NOx standards
 late1980’s – catalytic converters in Europe
 1993 – introduction of European legislation (EuroI)
 1996 – emissions for 100’000 miles (USA)
 2014 - EuroVI

www.temis.nl



NOx emissions

Jan 2020 Mar 2020

Feb 2019 Feb 2021Feb 2020

Source: the European Space Agency



 Oxidation of CO and unburnt hydrocarbons

 Reduction of NOx (NO/NO2)

 Ancillary reactions

The basic reactions

CyHn + (1+n/4)O2 →  yCO2 + n/2H2O

CO + 0.5O2 →  CO2

CO + H2O →  H2 + CO2

NO + CO → 0.5N2 + CO2

NO + H2 → 0.5N2 + H2O

(2 + n/2)NO + CyHn → (1+ n/4)N2 + yCO2 + n/2H2O

CyHn + yH2O → (y + n/2) H2 + yCO

water gas shift reaction (WGS)

steam reforming (SR)



Composition of a TWC

Al

Zr

Pd

Ce

 Platinum group metals (PGM): Pt, Pd, Rh (0-1 wt.%)

 Metal oxide support: Al2O3

 Oxygen storage component: CeO2, ZrO2, CexZr1-xO2

 Honeycomb material: cordierite (Mg2Al4Si5O18), Al2O3

 Promoters, stabilizers (La, Ba, Ni, rare earth oxides (REO))

NO

N2

oxidation

CO2

reduction layeroxidation layer

HC, CO

10 nm

PGM



Three pollutants in one shot
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Terms and definitions

 Stoichiometric combustion in gasoline engines: 14.6 kg air for 1 kg gasoline (CHx with 
x= 1.85), thus the stoichiometric air-to-fuel (A/F) ratio is:

A/F = 14.6

 A/F ratio is also termed l (lambda):

l = dosed air mass / required air mass

l = 1, dosed air mass equals the required air mass, stoichiometric point (A/F = 14.6)
l < 1, too less air/oxygen → rich combustion (A/F < 14.6)
l > 1, too much air/oxygen → lean combustion (A/F > 14.6)
l ~ 1.4, ignition limit
l = 1.15-1.25, low fuel consumption
l = 0.9-0.95, maximum engine power



Terms and definitions

l= _______________________________________________(4 + x(2 - 2[H2] - 2[CO] - 8[C3H6] + 2[O2] + [NO])[O2] 

(4 + x)([H2] + [CO] + 9[C3H6] + 10[C3H8] - 2[O2] - [NO] + [O2])

with  = 2 - [H2] - [CO] + [C3H6]+ 2[C3H8]

source: Brinkmeier, PhD Thesis, Stuttgart

 Definition of lambda (engine)

 More practical parameter (e.g. laboratory)

the redox ratio, or stoichiometry number (R or also S)

CHx + aO2 + bN2 →  bCO2 + dH2O + eH2 + fCO + gC3H6 + hC3H8 + mNO

red/ox = __________________________[CO] + [H2] + (2+0.5n/y)[CyHn]

[NO] + 2[O2]



Evolution

ox. cat.
Pt/Pd

engine air

NOx red. cat.
Rh/Pt

engine air

ox. cat.
Pt/Pd

tail-pipe

tail-pipe

precise feedback controlled air+fuel
metering system needed
 electronic fuel injection
 oxygen sensor
 microprocessor to control the loop

engine air

TWC

tail-pipe

oxidation catalyst

three-way catalyst |TWC

dual-bed catalyst

Main reasons
 increasingly stringent regulations
 precious metal price
 quality of fuel (S)
 air/fuel control

H.S. Gandhi (1941-2010)



Evolution

First generation (1976-1979)

 Oxidation catalyst only

 Noble metals (Pt, Pd,) excellent oxidation catalysts, but costly

 Transition metals (Cu, Cr, Ni, Mn…) also good oxidation catalysts, but

 much less active than noble metals (larger volume required)
 more susceptible to poisoning (high [S])

 First generation oxidation catalyst: Pt (and/or Pd) on stabilized g-Al2O3 (La or Ba) 



Evolution

Dual bed automotive catalyst

 Introduced with introduction of NO limits
 Engine runs slightly rich

 Ru as possible reduction metal, but
 forms RuO2 > 700oC which is volatile
 stabilization attempts with perovskite-type oxides (MRuO3, M= Ba, Sr, La)

 NOx reduction mainly to NH3

 lower NOx reduction activity
 never commercialized

 Pt and Pd reduce NOx preferentially to NH3

NOx red. cat.
Rh/Pt

engine air

ox. cat.
Pt/Pd

tail-pipe



NO reduction by Rh

conversions @ 400oC

COHC

8641Rh

9583Rh+Pt

9893Rh+Pd

Schlatter et al., J. Catal. 49 (1975) 42 

Rh-Pd/Al2O3

 separation of Rh and Pd/Pt is required → precursor of modern double layer washcoat

Ir

Rh

Pt Pd

Taylor et al., J. Catal. 63 (1980) 53 stoichiometric point

lean side



Evolution

precise feedback controlled air+fuel
metering system needed
 electronic fuel injection
 oxygen sensor
 microprocessor to control the loop

engine air

TWC

tail-pipe

ox. cat.
Pt/Pd

engine air

NOx red. cat.
Rh/Pt

engine air

ox. cat.
Pt/Pd

tail-pipe

tail-pipe

oxidation catalyst

dual-bed catalyst

Main reasons
 increasingly stringent regulations
 precious metal price
 quality of fuel (S)
 air/fuel control

three-way catalyst |TWC



Closed-loop control
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 improvements due to addition of oxygen storage compounds (rare-earth oxides, REO) and improved control
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 Pt, Pd and Rh are noble enough to stay metallic under most TWC reaction conditions

 resistance to poisoning (e.g. less stable sulfates)

 thermal stability

 non-volatile oxides

 lower interaction with support

…compared to transition oxides

Why precious metals?

Oxide stabilityRed. potential
Men+ →M0 (n)

MP 
(oC)

Unstable1.19 (2)1772Pt

Sintering and loss of Irmoderately stable1.16 (3)2410Ir

Stable0.92 (2)1552Pd

Stable0.76 (3)1966Rh

Loss of OsVery volatile- (2)3054Os

Loss of RuVery volatile0.45 (2)2310Ru

Sensitive to Pb, S, halideStable0.34 (2)1084Cu

Stable-0.28 (2)1495Co

Sensitive to Pb, S, halideStable-0.30 (2)1453Ni

Stable-0.44 (2)1535Fe

Twigg, Catal. Today 117 (2006) 407



Precious metals: metal or metal oxide?

source: Brinkmeier, PhD Thesis, Stuttgart

 under the redox lambda oscillations, Pd and Rh will repeatedly oxidize/reduce

at sufficiently high T DG>0 → MeO spontaneously reduces

low T → DG<0, oxidation possible

metal is favored

 Thermodynamics of:    nMe + mO2 → MenO2m



Evolution

p-TWC

engine

tail-pipe

u-TWC

air

fuel

electronic control unit

O2 sensor

TWC

engine

tail-pipe

O2 sensors

 Today



On Board Diagnostic - OBD

active catalyst – large difference front-rear EGO
spent catalyst – small difference front-rear EGO

amplitude damping by oxygen
storage compound

1- short lean period: OSC component is fully oxidized
2- short rich phase
3- the time taken for the gas to become rich after the catalyst is the measure of OSC



N2O

How to measure performance

 Conventional microreactor
 powder samples
 monolith samples
 various lambda values
 various gas feed compositions

 Gas analytics
 mass spectrometry (fast! but complex)
 infrared spectroscopy (fast, but no H2, O2, N2)
 chemoluminescence (NOx)
 eletrochemical cell (O2)
 thermal conductivity (H2)
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How to measure performance
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Pd-only TWC; 56.6 g/ft2; 600 cpsi

Ferri et al., Appl. Catal. B 220 (2018) 67

l= 1



How to measure performance

Schlatter et al., Ind. Eng. Chem. Prod. Res. Dev. 22 (1983) 51

 Test under oscillating conditions
 powder samples
 monolith samples
 various lambda values
 various gas feed compositions



Characterization of a catalyst

The following properties can be derived at laboratory scale:

 Activity
 CO, NO and HC conversion
 temperature ramp
 lambda sweep

 Stability
 thermal/hydrothermal ageing (high temperature)
 poisoning

 Selectivity
 product selectivity: N2, N2O and NH3

 Oxygen Storage Capacity (OSC)

Temp.: 200 - 1000oC, typically 200-600oC 
GHSV: typically 50000-200000 h-1 (for monoliths) 
Feed composition: variable CO, NO, HC (various), H2 and O2, 5-10 vol% H2O, 5-10 vol% CO2

and N2



Oxygen Storage Capacity

 The attitude to undergo a rapid change of oxidation state upon a change
of redox potential

 The change of oxidation state is associated with the reversible removal
and addition of oxygen

 Typical OSC compound: CeO2

 CeO2: cubic structure preserved, small volume change
 Additional properties of CeO2 interesting to TWC (but not only!!!):

 it prevents SSA loss of TWC upon thermal treatment
 it stabilizes PM in finely dispersed state
 it enhances WGS reation to remove CO under rich conditions

Yao et al., J. Catal. 86 (1984) 254 

rich exhaust:             2CeIVO2 + CO → Ce2
IIIO3 + CO2

lean exhaust:             Ce2
IIIO3 + 0.5O2 → 2CeIVO2

20 nm20 nm Pd/CZ

50 nm20 nm Pd/A 



Oxygen Storage Capacity

 Oxygen storage capacity complete (OSCC) - total amount of O2

consumed in re-oxidation
 Pulse injection technique (@ given TOSC):

 20 vol% O2/He (1 h) → He (5’) → consecutive H2/CO (50 
mmol) pulses → consecutive O2 (10 mmol) pulses until
saturation

 Oxygen Storage Capacity (OSC) - amount of most reactive O2

 Pulse injection technique (@ given TOSC):
 20 vol% O2/He (1 h) → He (5’) → one H2/CO (50 mmol) 

pulse → consecutive O2 (10 mmol) pulses until saturation

 Dynamic Oxygen Storage Capactiy (DOSC)
 Step gas concentration switch technique (@ given TOSC):

 1.5 vol% O2/He (30’’) → He (30’’) → 3 vol% CO/3 vol% 
Ar/He (30’’) → He (30’’) → repeat

Costa et al., J. Catal. 219 (2003) 259

m
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Oxygen Storage Capacity

Ce0.63Zr0.37O2

Pd/Ce0.63Zr0.37O2

Bedrane et al., Catal. Today 73 (2002) 233

OSC

OSCC

OSC

OSCC

PdO↔Pd

 OSCC is not OSC: total available oxygen vs reactive oxygen



Oxygen Storage Capacity

 Alternated step concentration switches

CO2

Lambrou et al., Appl. Catal. B: Environmental 86 (1984) 254

1.5 vol% O2/He
↓

He
↓

3 vol% CO/3 vol% Ar/He
↓

He
↓

repeat

mmolCO2s/g



Oxygen Storage Capacity

Kaspar et al., Catal. Today 50 (1999) 285

CeO2

Rh/CeO2

(a) re-ox. @ 973K

(c) re-ox. @ 973K

194 m2/g

10 m2/g

 Ceria H2-TPR



Oxygen Storage Capacity

Kaspar et al., Catal. Today 50 (1999) 285

CeO2

Rh/CeO2

(a) re-ox. @ 973K

(c) re-ox. @ 973K

fresh

thermally aged
1173K

l sweeps @ 823K

194 m2/g

10 m2/g

 CeO2 is not thermally stable → loss of surface area and metal dispersion
 Possible formation of CeAlO3 in CeO2-Al2O3 catalysts
 Loss of TWC activity upon ageing

 Ceria H2-TPR



Oxygen Storage Capacity

 Ceria-zirconia

 Metastable phases
 Synthesis method is

crucial (material science)
 Necessity to disperse 

homogeneously Zr in 
CeO2

 Zr decreases overall
lattice parameter

 Zr progressively
increases structural
defects

ionic radius: Ce4+ (0.97 nm) - Zr4+ (0.84 nm)

high SSA

low SSA



Oxygen Storage Capacity

Bedrane et al., Catal. Today 75 (2002) 401

bulk diffusion
limitation

CeO2 surface reduction

Ir

Ru
Rh

Pt

Pd

Me/CeO2

Me/Ce0.63Zr0.37O2

metal reduction

mmolCO2/g mmolO/g

500oC

bulk
reduction

involved
layers



Oxygen Storage Capacity

Ce0.63Zr0.37O2

Pd/Ce0.63Zr0.37O2

Pt/Ce0.63Zr0.37O2

Bedrane et al., Catal. Today 73 (2002) 233

Pt/CeO2

fresh

aged

aged
fresh

OSC

OSCC

OSC

OSCC

PdO↔Pd

Thermal ageing
 Ceria vs. ceria-zirconia

 OSC originates from the bulk
 Zr stabilizes ceria against ageing



Oxygen Storage Capacity

Boaro et al., Catal. Today 77 (2003) 407; Sugiura, Catal. Surveys Asia 7 (2003) 77

 Ceria-zirconia Rh/CexZr1-xO2

x

 ZrO2 promotes bulk
reduction

 PM enhances this effect

Rh/CeO2

Rh/Ce0.6Zr0.4O2

H2-TPR



Oxygen Storage Capacity

Boaro et al., Catal. Today 77 (2003) 407; Sugiura, Catal. Surveys Asia 7 (2003) 77

 Ceria-zirconia

Reducibility and OSC depend on:
 crystal structure
 particle size - surface area
 synthesis method - pretreatment history
 PM dispersion

Rh/CexZr1-xO2

x

 ZrO2 promotes bulk
reduction

 PM enhances this effect

Rh/CeO2

Rh/Ce0.6Zr0.4O2

M-CZ: precipitation
S-CZ: milling
R-CZ: precipitation+reduction at 1473K+oxidation at 773K

H2-TPR



Oxygen Storage Capacity

co-precipitation

surfactant route

 Improved thermal resistance

k-CeZrO4 phasesolid solution


