
ChE-403 Problem Set 1.2 
Week 2 

 
Problem 1 
Let’s take a typical reaction: 

A → C 
 
The reaction has first order kinetics. Can you calculate the concentration CA after it has 
gone through these two different reactor configurations? 

 
Solution: 
 
For A: 
 
PFR:  

𝑑𝐶&
𝑑𝜏 = 𝜐&𝑟 = −𝑘	𝐶& →

𝑑𝐶&
𝐶&

= −𝑘	𝑑𝜏 

ln 0
𝐶&
𝐶&,2

3 = −𝑘 𝜏4 

𝐶& = 𝐶&,2 exp(−𝑘𝜏4) 

 

CSTR: 

𝐶& − 𝐶&,2′ = 𝜐&𝑟	𝜏; = −𝑘	𝐶&	𝜏; 

𝐶& =
𝐶&,2′

1 + 𝑘	𝜏;
 

𝐶&,2> = 𝐶&,2 exp(−𝑘𝜏4) 

→ 𝐶& =
𝐶&,2 exp(−𝑘𝜏4)

1 + 𝑘	𝜏;
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For B: 
 
Here we don’t have to redo everything, we can just take the solutions and switch 𝐶&,2>  
and	𝐶&,2. 
 
CSTR: 

𝐶& =
𝐶&,2

1 + 𝑘	𝜏;
 

 
PFR:  

𝐶& = 𝐶&,2′	 exp(−𝑘𝜏4) 

With: 

𝐶&,2> = 	
𝐶&,2

1 + 𝑘	𝜏;
 

𝐶& =
𝐶&,2 exp(−𝑘𝜏4)

1 + 𝑘	𝜏;
 

The same thing! 

 
  



Problem 2 
Let’s take the same setups as for problem 1 but with the reaction: 
 

2A → C 
 
i) This time the reaction has second order kinetics. Can you calculate the concentration CA 
after it has gone through these two different reactor configurations? 
 

 
ii) Comparing your result with that of problem 1, can you conclude something about the 
applicability of using RTD functions for predicting concentrations for reactions that are 
order 2? 

 
Solution: 
i) 
 
For A: 
 
PFR:  

𝑑𝐶&
𝑑𝜏 = 𝜐&𝑟 = −𝑘	𝐶&; →

𝑑𝐶&
𝐶&;

= −𝑘	𝑑𝜏 

−
1
𝐶&
+

1
𝐶&,2

= −𝑘𝜏4 

1
𝐶&
= 𝑘𝜏4 +

1
𝐶&,2

 

𝐶& =
1

1
𝐶&,2

+ 𝑘𝜏4
=

𝐶&,2
1 + 𝐶&,2𝑘𝜏4
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CSTR: 

𝐶& − 𝐶&,2′ = 𝜐&𝑟	𝜏; = −𝑘	𝐶&;	𝜏; 

𝑘	𝐶&;	𝜏; + 𝐶& − 𝐶&,2> = 0 

𝐶& =
−1 +A1 + 4	𝑘	𝜏;	𝐶&,2>

2𝑘	𝜏;
 

𝐶&,2> =
𝐶&,2

1 + 𝐶&,2𝑘𝜏4
 

 

→	𝐶& =

−1 + C1 +	
4	𝑘	𝜏;	𝐶&,2
1 + 𝐶&,2	𝑘	𝜏4

2𝑘	𝜏;
 

 
For B: 
 
Again, we don’t have to redo everything, we can just take the solutions and switch 𝐶&,2>  
and	𝐶&,2. 
 
CSTR: 

𝐶& =
−1 +A1 + 4	𝑘	𝜏;	𝐶&,2	

2𝑘	𝜏;
 

 
PFR:  

𝐶& =
𝐶&,2>

1 + 𝐶&,2> 𝑘𝜏4
 

 

𝐶& =
−1 +A1 + 4	𝑘	𝜏;	𝐶&,2	

2𝑘	𝜏; + 𝑘𝜏4	D−1 + A1 + 4	𝑘	𝜏;	𝐶&,2	E
 

 

ii) 

Here configurations A and B do not lead to the same concentrations. If you had run a 

tracer experiment for case A and B you would have gotten exactly the same profile (same 

E(t)) because only the CSTR influences the shape of E(t) while a PFR just delays it by 	𝜏4 

so the order of the two reactors is irrelevant. However, if an order two reaction is 



underway the two configurations do not lead to the same exit concentration. This 

demonstrates the limitations of using RTD measurements to predict kinetics for certain 

reactions. 

 

A PFR and CSTR in series are an extreme example of non-uniform mixing (no mixing 

followed by complete mixing or vice-versa) and therefore reinforces what we said in 

class (i.e. that the RTD method does not give exact results in cases of non-uniform 

mixing and reaction order >1). Nevertheless, if you plug numbers into the results for case 

A and B, you see that we get fairly similar numerical results which indicates that the 

RTD method is not exact but reasonably accurate even for reaction orders >1. 

 
  



Problem 3 
A typical autocatalytic reaction can look like: 

A + B → 2B 
 
The reaction has second order kinetics. 
 
Starting from a mass balance of the reactor, can you derive an expression for conversion 
of A (XH) as a function of residence time and k in a CSTR and a PFR with 𝐶&2 = 𝐶I2 =
1JKL

M
	? 

  

        
Solution: 
 
CSTR: 
 
𝑑𝐶&
𝑑𝑡 = 0 = 𝐶&2D𝑉̇E − 𝐶&(𝑉̇) +	𝜐Q𝑟𝑉 

 

With: 
𝑉
𝑉̇
= 𝜏 

𝑋& =
𝐶&2 − 𝐶&	
𝐶&2

 
 

𝑋& = −
𝜐&𝑟		
𝐶&2

𝜏 =
𝑘	𝐶&𝐶I		
𝐶&2

𝜏 

 
𝐶& = 𝐶&2(1 − 𝑋&) 
 
𝐶I = 𝐶I2 + [𝐶&2 − 𝐶&] = 𝐶I2 + 𝐶&2𝑋& 
 
𝑋& = 	𝑘	(1 − 𝑋&)(𝐶I2 + 𝐶&2𝑋&)𝜏 = 𝑘	(1 − 𝑋&)(1 + 𝑋&)𝜏 = 𝑘	(1 − 𝑋&;)𝜏 
 

𝑋&; +
1
𝑘𝜏 𝑋& − 1 = 0 

 

𝑋& =
−(𝑘𝜏)U4 + A(𝑘𝜏)U; + 4

2  
  

P, T, V, Ci = Cst 

Perfect mixing 

Ni 

Ni
0 

. 

. 

dVR 

Ac 

dL        

Ni + dNi 
. . 

Ni 
. 



PFR: 
 
𝑑𝑁̇&
𝑑𝑡 = 𝑑𝑁̇& +	𝜐&𝑟𝑑𝑉W  

 
𝑑𝑁̇&
𝑑𝑉W

= 	 𝜐&𝑟 
 

With: 

𝑑𝑁̇& = 𝑉̇𝑑𝐶&			𝑎𝑛𝑑			
𝑑𝑉W
𝑉̇

= 𝑑𝜏 

 
We can write: 
𝑑𝐶&
𝜐&𝑟

= 𝑑𝜏 

 
𝑑𝐶&
𝜐&𝑟

= −	
𝑑𝐶&
𝑘	𝐶&𝐶I

=
−(−𝐶&2	𝑑𝑋&)

𝑘	𝐶&2	(1 − 𝑋&)(𝐶I2 + 𝐶&2𝑋&)
=

	𝑑𝑋&
𝑘	(1 − 𝑋&)(1 + 𝑋&)

 

 
Rearranging we now can integrate: 

	𝑑𝑋&
	(1 − 𝑋&)(1 + 𝑋&)

= 𝑘𝑑𝜏 

 
This expression is hard to integrate as is (even if you can just pull the well-known result 
out of an integration table). Let’s try to separate it into two expressions so that: 
 

	1
(1 − 𝑋&)(1 + 𝑋&)

=
𝛼

(1 − 𝑋&)
+

𝛽
(1 + 𝑋&)

=
𝛼(1 + 𝑋&) + 𝛽(1 − 𝑋&)
(1 − 𝑋&)(1 + 𝑋&)

 

 
We can get 2 equations from this: 
𝛼 + 𝛽 = 1 This satisfies the constants 
𝛼𝑋& − 𝛽𝑋& = 0 This satisfies the variables 
 
From this we quickly see that	𝛼 = 𝛽 = 1/2 
 
Our equation becomes: 
 
𝑑𝑋&

(1 − 𝑋&)
+

𝑑𝑋&
(1 + 𝑋&)

= 2𝑘𝑑𝜏 

 

]
𝑑𝑋′&

(1 − 𝑋′&)
+

𝑑𝑋′&
(1 + 𝑋′&)

^_

2
= 2𝑘𝜏 

 

ln `
1 + 𝑋&
1 − 𝑋&

a = 2𝑘𝜏 



1 + 𝑋&
1 − 𝑋&

= exp(2𝑘𝜏) 

 
𝑋& = −1 + exp(2𝑘𝜏) (1 − 𝑋&) 
 
𝑋&(1 + exp(2𝑘𝜏)) = exp(2𝑘𝜏) − 1 
 

𝑋& =
exp(2𝑘𝜏) − 1
1 + exp(2𝑘𝜏) =

1 − exp(−2𝑘𝜏)
1 + exp(−2𝑘𝜏) = tanh	(𝑘𝜏) 

 

⚠ In both solutions, we got rid of 𝐶&2 = 𝐶I2 = 1JKL
M

 to simplify our algebra (and that’s 
fine!). However, we have to make sure that if we plug in a value for k, we use the right 
units otherwise, the result is incorrect (so getting rid of these values explicitly can be 
dangerous). 
 


