
The Book

Available on Amazon for prices as low as \$40 (+ shipping)

Or it's Free!

http://authors.library.caltech.edu/25070/

Chapter 6

Outline of the course

Objective: Be able to analyze and understand a heterogeneous reaction (mechanism, kinetics etc...) from experimental data .

- 1. Basic concepts (about 4 weeks)
 - Kinetics (elementary reactions and transition state theory) Chapter 1 and 2 (partial)
 - Ideal reactors Chapter 3 (partial)
 - Non-ideal reactors Chapter 8 (most of it)
 - The Steady-State Approximation (SSA) Chapter 4 (most of it)
- 2. Heterogeneous catalysis (about 4 weeks)
 - What are heterogeneous catalysts?
 - Bulk and surface structures in heterogeneous catalysts
 - Surface reactivity

 - Elementary step kineticsKinetics of Overall Reactions
- 3. Transport effects in heterogeneous catalysis (about 4-5 weeks)
 - External transport
 - Internal transport
 - Combined internal and external transport
 - Analyzing rate data
- + 1 week of computer exercises

3

Course philosophy

We will follow the book = an excellent reference. My job is to help you understand it.

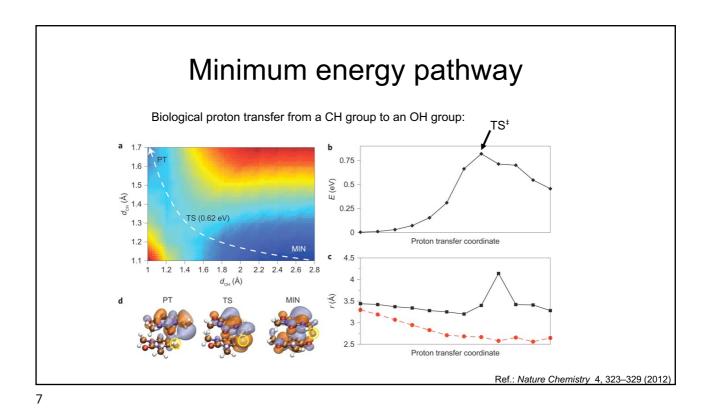
Most of the class will be taught on the blackboard. If you follow and write down what I write, you should have an organized summary of the textbook by the end of the semester.

We will do exercises right after I have taught the concept (exercises will be part of the course not after the course).

How to get an amazing grade:

- Read the book (before class)!
- Use class to reinforce/clarify/strengthen what you read.
- Ask questions.
- Do the exercises.

The grade will be based on a final written exam during the exam period.


4

Minimum energy pathway

Work on the transition state led to the Nobel prize of Ahmed Zewail in 1999.

Ref.: Science, Cover page, November 24th 1994.

Transition state

RX: $CH_3CH_2Br + OH^- \rightarrow CH_3CH_2OH + Br$ $H^{Fr} \rightarrow H^{CH_1} \rightarrow H^{CH_2} \rightarrow H^{CH_3} \rightarrow H^{CH_$

8