ChE-403 Problem Set 3.2

Week 11

Problem 1

We determined that the diffusion of molecules in a single pore was governed by the following dimensionless equation:

$$\frac{d^2C_A{}'}{d\chi^2} - \phi^2C_A{}' = 0$$

With boundary conditions:

$$C_A{}' = 1 @ \chi = 0$$

$$\frac{dC_{A'}}{d\chi} = 0 \ \ @ \ \chi = 1 \quad \text{(no flux at the end of the pore)}$$

Can you solve this equation?

Problem 2

The isothermal first order reaction of gaseous A occurs within the pores of a spherical catalyst pellet. The reactant concentration halfway between the external surface of the pellet and the center of the pellet is equal to $\frac{1}{4}$ of the concentration at the surface of the pellet (C_{AS}) . What is the concentration of A at the center of the pellet?

Problem 3

Demonstrate that the solution for the following differential equation seen in class for diffusion in a spherical catalyst pellet):

$$\frac{d^2 C_{A'}}{d\bar{r'}^2} + \frac{2}{\bar{r'}} \frac{dC_{A'}}{d\bar{r'}} - \phi^2 C_{A'} = 0$$

With boundary conditions

$$C_A{}' = 1 @ \bar{r}' = 1$$

$$\frac{dC_{A'}}{d\bar{r}'} = 0$$
 @ $\bar{r}' = 0$

has a solution:

$$C_A' = \frac{\sinh(\phi \, \bar{r}')}{\bar{r}' \sinh(\phi)}$$

With:
$$\sinh(x) = \frac{e^x - e^{-x}}{2}$$

Hint: This is a second order differential equation with non-constant coefficients, which is quite difficult to solve. However, try doing a variable change (with a new variable y) where: $y = C'_A \bar{r}'$ or $C'_A = y/\bar{r}'$. You might get a familiar equation...

Annex:

A small translated portion from the "Formulaire et tables":

Linear 2nd order differential equations with constant coefficients:

An equation of the type: ay'' + by' + cy = g(x) with $a \neq 0$

Case where g(x) = 0

The general solution depends on the *characteristic equation*: $ar^2 + br + c = 0$

If this equations has	The solution to the differential eq. is
2 real solutions r_1 and r_2	$y = c_1 e^{r_1 x} + c_2 e^{r_2 x}$
1 real solution r	$y = (c_1 x + c_2)e^{rx}$
2 complex solutions $p \pm q i$	$y = e^{px}[c_1\cos(qx) + c_2\sin(qx)]$