ChE-403 Problem Set 3.2

Week 11

Problem 1

We determined that the diffusion of molecules in a single pore was governed by the following dimensionless equation:

$$\frac{d^2C_A{}'}{d\chi^2} - \phi^2C_A{}' = 0$$

With boundary conditions:

$$C_{A}' = 1 \ @ \ \chi = 0$$

$$\frac{dC_{A'}}{d\chi} = 0$$
 @ $\chi = 1$ (no flux at the end of the pore)

Can you solve this equation?

Solution:

This is a linear differential eq. of order 2 with constant coefficients of the type:

$$ay'' + by' + cy = g(x)$$
 where: $g(x) = 0$ and $b = 0$

It's characteristic equation is therefore:

$$ar^2 + c = 0$$
 where: $a = 1$ and $c = -\phi^2$

This leads to an equation of the type:

$$r^2 - \phi^2 = 0$$

 $r=\pm\phi$ according to the rule, we should have a formula of the form:

$$\rightarrow C_4' = cst1 e^{+\phi\chi} + cst2 e^{-\phi\chi}$$

(a)
$$\chi = 0$$
 $cst1 e^{0} + cst2 e^{0} = 1 \rightarrow cst1 = 1 - cst2$

(a)
$$\chi = 1$$
 $\phi cst1e^{\phi} - \phi cst2 e^{-\phi} = 0 \rightarrow cst1 = cst2 e^{-2\phi}$

$$cst2 (1 + e^{-2\phi}) = 1 \rightarrow cst2 = \frac{1}{(1 + e^{-2\phi})}$$

$$cst1 = \frac{e^{-2\phi}}{(1 + e^{-2\phi})}$$

$$C'_A = \frac{e^{-2\phi}}{(1+e^{-2\phi})} e^{\phi\chi} + \frac{1}{(1+e^{-2\phi})} e^{-\phi\chi}$$

Multiply all fractions by e^{ϕ} :

$$C_A' = \frac{e^{-\phi}}{(e^{\phi} + e^{-\phi})} e^{+\phi\chi} + \frac{e^{\phi}}{(e^{\phi} + e^{-\phi})} e^{-\phi\chi} = \frac{1}{(e^{\phi} + e^{-\phi})} \left(e^{-\phi(1-\chi)} + e^{\phi(1-\chi)} \right)$$

Note that:
$$\cosh x = \frac{e^x + e^{-x}}{2}$$

$$= \frac{1}{2 \cosh \phi} \left(e^{-\phi(1-\chi)} + e^{\phi(1-\chi)} \right)$$

$$= \frac{1}{2 \cosh \phi} 2 \cosh[\phi(1-\chi)]$$

$$C'_A = \frac{\cosh[\phi(1-\chi)]}{\cosh \phi}$$

Problem 2

The isothermal first order reaction of gaseous A occurs within the pores of a spherical catalyst pellet. The reactant concentration halfway between the external surface of the pellet and the center of the pellet is equal to $\frac{1}{4}$ of the concentration at the surface of the pellet (C_{AS}) . What is the concentration of A at the center of the pellet?

Solution:

For a first order reaction we have that:

$$C_A' = \frac{\sinh(\phi \, \bar{r}')}{\bar{r}' \sinh(\phi)}$$

Here at
$$\bar{r}' = \frac{\bar{r}}{R_p} = \frac{1}{2}$$
, we have $C_A' = \frac{1}{4}$

$$\frac{1}{4} = \frac{2 \sinh(\phi/2)}{\sinh(\phi)} \rightarrow \sinh(\phi) = 8 \sinh(\phi/2)$$

Using the identity: $\sinh(\phi) = 2 \sinh(\phi/2) \cosh(\phi/2)$

We have: $8 \sinh(\phi/2) = 2 \sinh(\phi/2) \cosh(\phi/2) \rightarrow \cosh(\phi/2) = 4$

Or $\phi = 2 \operatorname{arccosh}(4)$

We can use this to find ϕ : $\phi = 4.13$

Now let's calculate C'_A @ $\bar{r}' = 0$

$$C_A' = \frac{\sinh(\phi \, \bar{r}')}{\bar{r}' \sinh(\phi)}$$

Both the top and the bottom of the function equal zero. We need to use L'Hospital's rule:

$$\lim_{\bar{r}' \to 0} C_A' = \lim_{\bar{r}' \to 0} \frac{\left(\sinh(\phi \,\bar{r}')\right)'}{\left(\bar{r}' \sinh(\phi)\right)'} = \frac{\phi \cosh\left(0\right)}{\sinh(\phi)} = \frac{\phi}{\sinh(\phi)} = 0.133$$

Problem 3

Demonstrate that the solution for the following differential equation seen in class for diffusion in a spherical catalyst pellet):

$$\frac{d^2 C_{A'}}{d\bar{r'}^2} + \frac{2}{\bar{r'}} \frac{dC_{A'}}{d\bar{r'}} - \phi^2 C_{A'} = 0$$

With boundary conditions

$$C_{A}' = 1 \ \ @\ \bar{r}' = 1$$

$$\frac{dC_{A'}}{d\bar{r}'} = 0$$
 @ $\bar{r}' = 0$

has a solution:

$$C_A' = \frac{\sinh(\phi \, \bar{r}')}{\bar{r}' \sinh(\phi)}$$

With:
$$\sinh(x) = \frac{e^x - e^{-x}}{2}$$

Hint: This is a second order differential equation with non-constant coefficients, which is quite difficult to solve. However, try doing a variable change (with a new variable y) where: $y = C'_A \bar{r}'$ or $C'_A = y/\bar{r}'$. You might get a familiar equation...

Solution:

$$\frac{dC_{A}'}{d\bar{r}'} = \frac{d(y/\bar{r}')}{d\bar{r}'} = \frac{1}{\bar{r}'} \frac{dy}{d\bar{r}'} - \frac{y}{\bar{r}'^{2}}$$

$$\frac{d^{2}C_{A}'}{d\bar{r}'^{2}} = \frac{d^{2}(y/\bar{r}')}{d\bar{r}'^{2}} = \frac{d}{d\bar{r}'} \left(\frac{1}{\bar{r}'} \frac{dy}{d\bar{r}'} - \frac{y}{\bar{r}'^{2}}\right) = \frac{1}{\bar{r}'} \left(\frac{d^{2}y}{d\bar{r}'^{2}}\right) - \frac{1}{\bar{r}'^{2}} \left(\frac{dy}{d\bar{r}'}\right) - \frac{1}{\bar{r}'^{2}} \left(\frac{dy}{d\bar{r}'}\right) + \frac{2y}{\bar{r}'^{3}}$$

Let's substitute this back into the original differential equation:

$$\frac{1}{\bar{r}'} \left(\frac{d^2 y}{d \bar{r}'^2} \right) - \frac{2}{\bar{r}'^2} \left(\frac{dy}{d \bar{r}'} \right) + \frac{2y}{\bar{r}'^3} + \frac{2}{\bar{r}'^2} \frac{dy}{d \bar{r}'} - 2 \frac{y}{\bar{r}'^3} - \frac{\phi^2 y}{\bar{r}'} = \frac{1}{\bar{r}'} \left(\frac{d^2 y}{d \bar{r}'^2} \right) - \frac{\phi^2 y}{\bar{r}'} = 0$$

Which simplifies to:

$$\frac{d^2y}{d\overline{x'^2}} - \phi^2y = 0$$

This is the same equation as for problem 1, with the boundary conditions switched.

$$\rightarrow y = cst1 e^{+\phi \bar{r}'} + cst2 e^{-\phi \bar{r}'}$$

We can multiply by $\bar{r}^{\prime 2}$ to get an equation that's easier to solve:

$$\bar{r}'(\phi cst1e^{0} - \phi cst2 e^{-0}) - cst1e^{0} - cst2 e^{-0} = -cst1e^{0} - cst2 e^{-0} = 0$$

$$\rightarrow cst1 = -cst2$$

(a)
$$\bar{r}' = 1$$
 $cst1e^{\phi} + cst2 e^{-\phi} = cst1e^{\phi} - cst1 e^{-\phi} = 1 \rightarrow cst1 = \frac{1}{e^{\phi} - e^{-\phi}}$

$$y = \frac{1}{e^{\phi} - e^{-\phi}} \left(e^{\phi \bar{r}'} - e^{-\phi \bar{r}'} \right) = \frac{2 \sinh(\phi \bar{r}')}{2 \sinh(\phi)}$$

$$C'_A = y/\bar{r}' = \frac{\sinh(\phi \bar{r}')}{\bar{r}' \sinh(\phi)}$$