

# Adsorption processes for gas separation

Marina Micari

Lecture 8

05.11.2024



# **Intended learning outcome**

- Understand how separation via adsorption works
- Describe mass transfer mechanisms inside the adsorption column
- Learn how to simulate adsorption processes



# Agenda

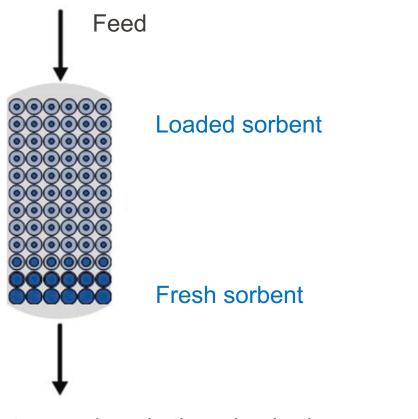
#### **THEORY**

- What is an adsorption column?
- What are the involved mass transfer mechanisms?
- How to model the adsorption column?
- How to design the adsorption-desorption cycle?

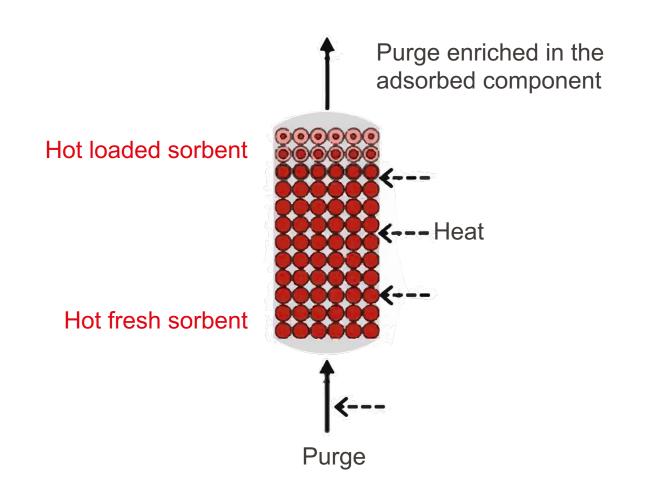
#### **EXERCISE**

✓ Calculate working capacity based on the adsorption isotherms

# **Adsorption process**



Outlet stream - lean in the adsorbed component





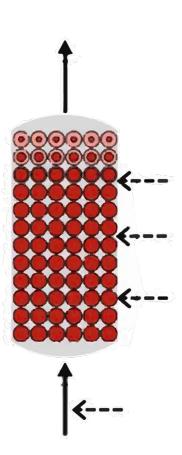
# **Adsorption process**



**Mass-separating agent**: solid sorbent

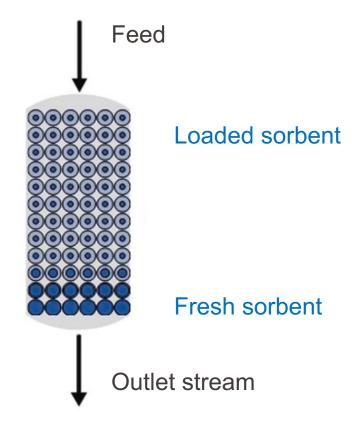
**Separating mechanism**: partitioning between fluid and solid phases

**Reversing agent**: pressure or temperature change



# **Adsorption – sorbent properties**

Speaker



- ✓ Surface area [m²/g]: influences the adsorption capacity of the material
- ✓ Porosity [-]: fraction of the particle volume that is empty. The higher the porosity, the lower the particle density
- ✓ Tortuosity [-]: ratio between the length of the tortuous flow path and the length of the straight line.
- ✓ Bulk density [kg/m³]: mass of sorbent per volume of the column. It depends on the porosity of the particles and on the packing inside the column

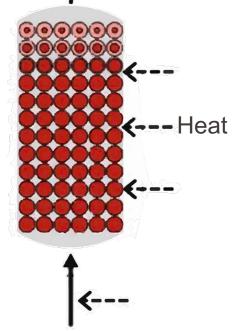


# **Adsorption process – definitions**

Speaker



Purge enriched in the adsorbed component



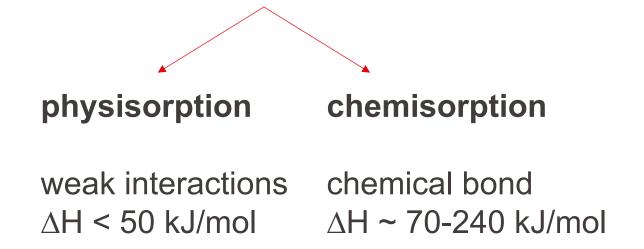
Purge

- ✓ working capacity [mol/kg]: total amount of the desired component obtained (desorbed) per kg of sorbent material
- ✓ product purity [-]: fraction of the desired component in the outlet desorption stream



# **Adsorption process - definitions**

✓ heat of adsorption [kJ/mol]: indicates the strength of the adsorption between the sorbent and the component



The higher the heat of adsorption, the higher the heat consumption of the process

# How to model adsorption?

Speake

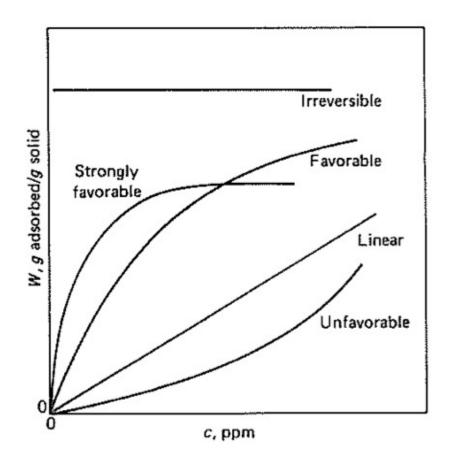
2 key facets:

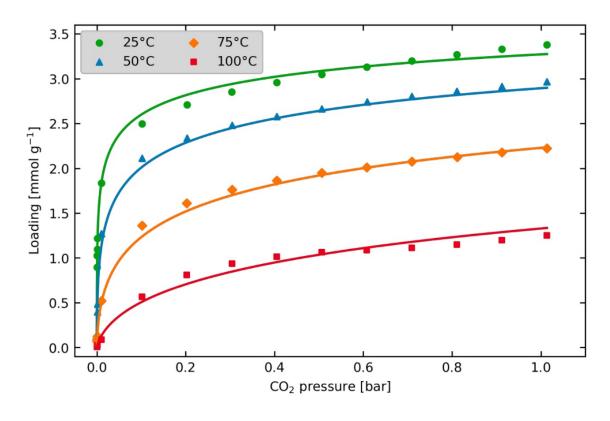
❖Adsorption equilibrium → adsorption isotherms

❖Dinamic behaviour → kinetic models for mass transfer

# **Adsorption equilibrium**

 Adsorption isotherms: equilibrium uptake of a component into the sorbent at a given temperature as a function of the partial pressure





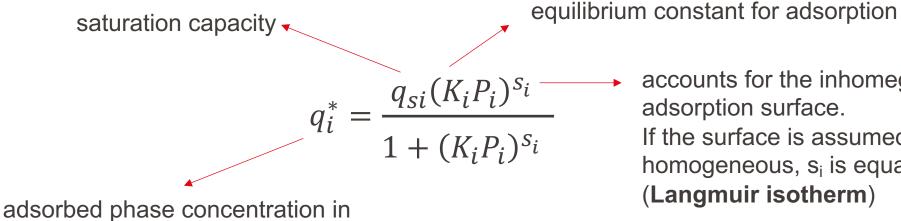
From Young et al., Energy and Environmental Science 2021



# **Models for adsorption isotherms** (single component)

Langmuir and Sips isotherms

equilibrium with the gas phase



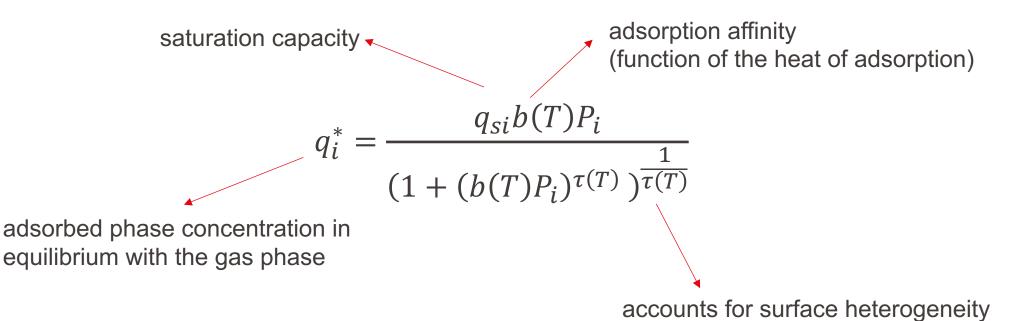
accounts for the inhomegeneity of the adsorption surface.

If the surface is assumed to be homogeneous, s<sub>i</sub> is equal to 1 (Langmuir isotherm)



# Models for adsorption isotherms (single component)

 Toth isotherm: extension of the Langmuir to improve the fit at high and low pressure ranges





# Models for adsorption isotherms (single component)

 Freundlich isotherm: takes into account the interactions between adsorbed molecules (often used in the low temperature regime)

$$q_i^* = b P_i^m$$

b, m are constant derived empirically

# Model for adsorption isotherms (multi-component)

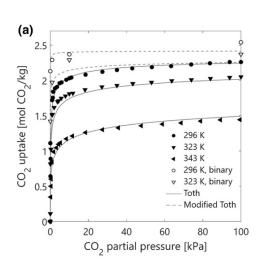
 Multicomponent Sips isotherm: extension of the pure component isotherm where the same coefficients of the pure isotherms can be used

$$q_i^* = \frac{q_{si}(K_i P_i)^{s_i}}{1 + \sum_i (K_i P_i)^{s_i}}$$

Empirical models based on Toth isotherm to describe co-adsorption

$$q_{\infty}(T, q_{\mathrm{H_2O}}) = q_{\infty}(T) \left(\frac{1}{1 - \gamma q_{\mathrm{H_2O}}}\right)$$

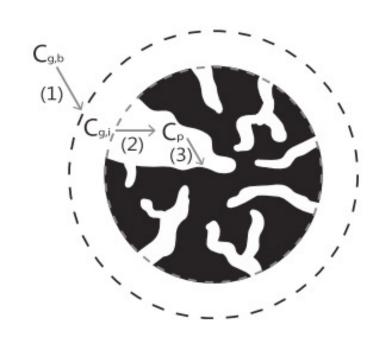
$$b(T, q_{\rm H_2O}) = b(T)(1 + \beta q_{\rm H_2O})$$



# **Dynamic - mass transfer mechanisms**

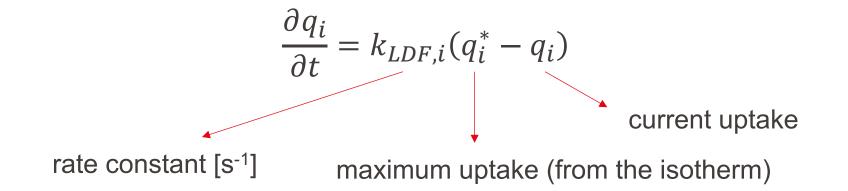
- Convection from the bulk to the surface film of the particle
- Diffusion through the fluid film around the particle
- Diffusion through the pores to internal adsorption sites
  Typically the rate-determining step
- Physical adsorption (practically instantaneous → fluid and surface at equilibrium)



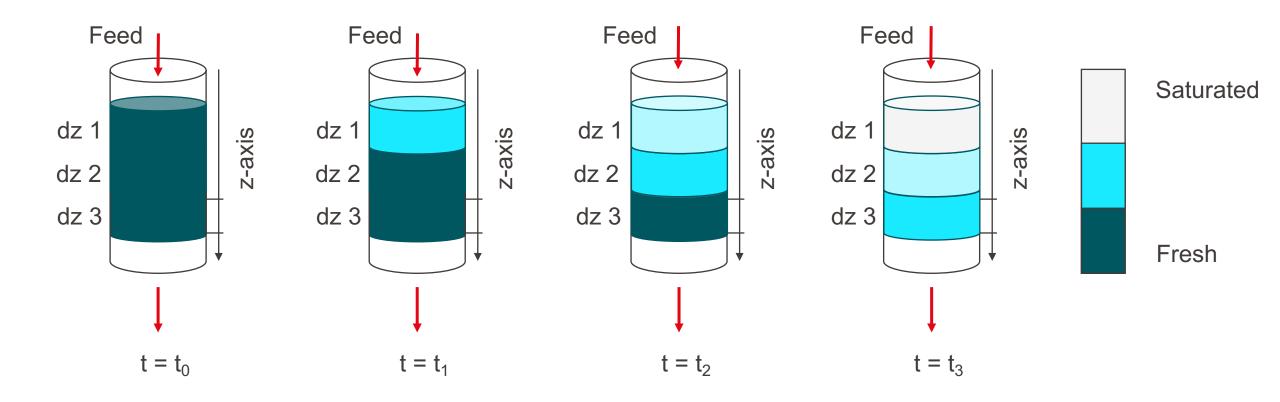


# Mass transfer equation

Linear Driving Force model: simplified approach to lump the kinetic resistances



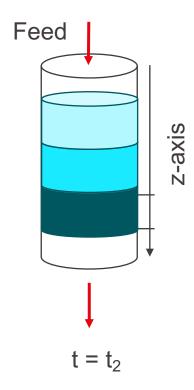
# Modelling of an adsorption column



**Variation in time and space** 



# Modelling of an adsorption column



#### **Assumptions**

- the fluid is an ideal gas,
- the flow is described by an axially dispersed plug flow model,
- negligible temperature and concentration gradient along the radius,
- thermal equilibrium between the fluid and the sorbent,
- heat of adsorption, heat capacities and mass transfer coefficient are temperature independent,
- mass transfer resistance described using a linear driving force model (LDF).

### Mass balances

Total mass balance:
 c in mol/m³

$$\frac{dc}{dt} = convective \ term \ (u, c) - adsorption \ term \left(\frac{dq_{tot}}{dt}\right)$$

convective term accumulation adsorption term

if *u* is constant this is discretized as:

$$\frac{u_o c - u_o (c + dc)}{\Delta L}$$

$$\frac{\partial}{\partial z}(u\,c) + \varepsilon_t \frac{\partial c}{\partial t} + (1 - \varepsilon_b)\rho_p \sum_i \frac{\partial q}{\partial t} = 0$$

total void fraction in the column

void fraction in the bed

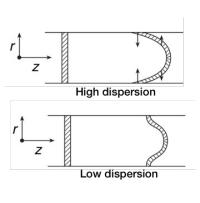
density of the particle [kg<sub>sorbent</sub>/m<sup>3</sup><sub>sorbent</sub>]

$$\varepsilon_t = \varepsilon_b + \varepsilon_p (1 - \varepsilon_b)$$

void fraction in the particle

### Mass balances

Mass balance on the component



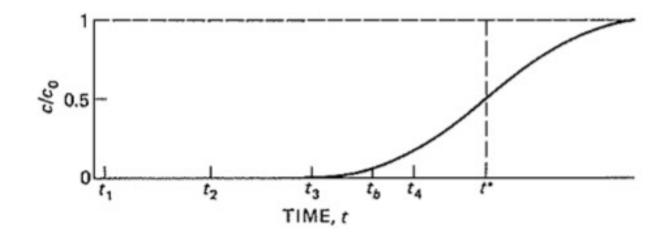
dispersion term convective term accumulation adsorption term

$$-D_L \varepsilon_B \frac{\partial^2 c_i}{\partial z^2} + \frac{\partial}{\partial z} (u c_i) + \varepsilon_t \frac{\partial c_i}{\partial t} + (1 - \varepsilon_b) \rho_p \frac{\partial q_i}{\partial t} = 0$$

axial dispersion (backmixing) coefficient [m<sup>2</sup>/s]: measure of the deviation from the ideal plug flow (spread of the concentration profile along the axial direction)

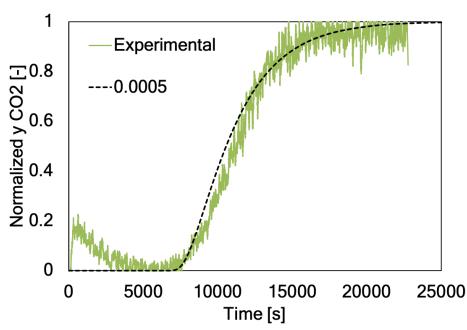
$$D_L = \gamma_1 D_m + \gamma_2 d_p u / \varepsilon_b$$
  $D_m$  molecular diffusion [m<sup>2</sup>/s]  $\gamma_1, \gamma_2$  account for the tortuosity and the turbulent mixing (0.7 and 0.5)

# **Breakthrough curve Derivation of the mass transfer coefficient**



k<sub>LDF</sub> is derived from fitting the simulated breakthrough to the experimental one

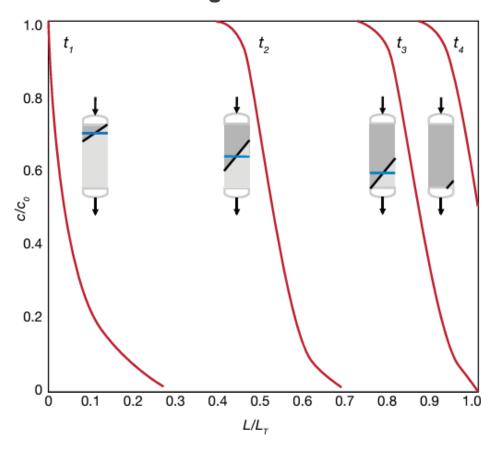
Breakthrough curve: outlet concentration vs. time



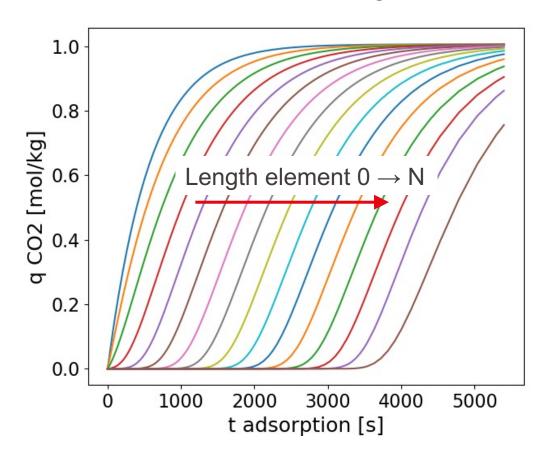


# **Concentration and uptake patterns**

Concentration in the fluid phase as function of **bed length** at different times



Uptake in the solid phase as function of **time** at different lengths



Mass transfer zone moves along the length of the column with time

# **Energy balance**

accumulation term (phases in equilibrium)

T variation convection with P

adsorption term

heat transfer with the wall

dispersion term

$$(\varepsilon_{t}C_{G} + \rho_{b}C_{s} + \rho_{b}C_{ads})\frac{\partial T}{\partial t} - \varepsilon_{t}\frac{\partial p}{\partial t} + uC_{G}\frac{\partial T}{\partial z} - \rho_{b}\sum_{i}(-\Delta H_{i})\frac{\partial q_{i}}{\partial t} + 2\frac{h_{L}}{R_{i}}(T - T_{w}) - \varepsilon_{b}\frac{\partial}{\partial z}\left(K_{L}\frac{\partial T}{\partial z}\right) = 0$$

term

heat heat heat capacity capacity capacity of the of the of the fluid solid adsorbed species

heat of adsorption (exotermic reaction)

h<sub>L</sub>: heat transfer coefficient from inside the column to the wall R<sub>i</sub>: internal radius

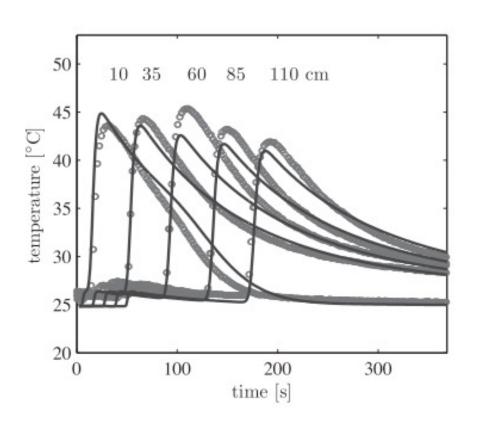
K₁: axial thermal conductivity [W/(m K)]

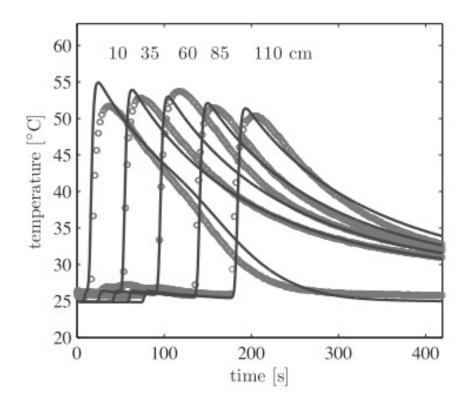
$$K_L = D_L C_G$$

# **Temperature patterns**

Speaker

What could be the reason of the difference between the two charts?





## **Pressure drops**

Ergun equation → to derive gas velocity in the column for a given pressure gradient

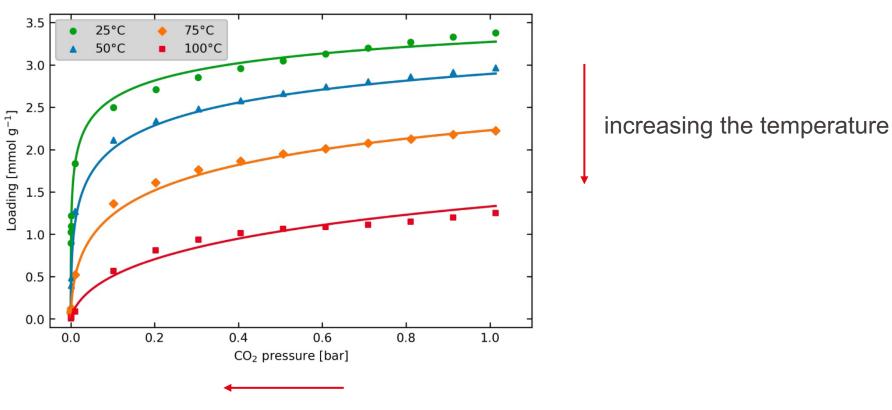
$$\frac{\partial p}{\partial z} = -\frac{150 \,\mu (1 - \varepsilon_b)^2}{\varepsilon_b^3 d_p^2} u - \frac{1.75(1 - \varepsilon_b)\rho}{\varepsilon_b^3 d_p} |u| u$$

 $\mu$ : dynamic viscosity of the fluid [Pa s]

 $\rho$ : fluid density [kg/m<sup>3</sup>]

# How to perform desorption

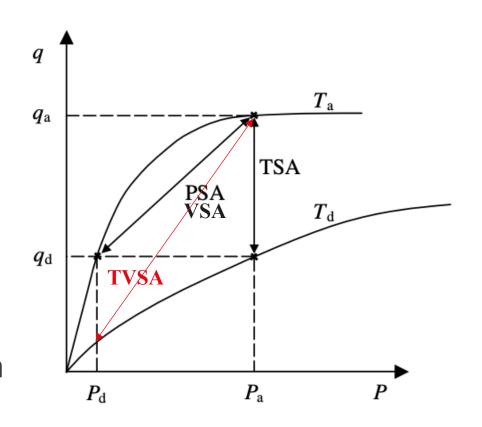
We need operating conditions that do not favour adsorption: the **equilibrium uptake decreases** and the adsorbed components tend to desorb



decreasing the pressure

# **Adsorption-desorption cycle**

- PSA: pressure swing adsorption
- VSA: vacuum swing adsorption
- TSA: temperature swing adsorption
- TVSA: temperature vacuum swing adsorption





# Impact of the properties on the process

Speake

Adsorption isotherms

Working capacity

Mass transfer coefficient

> Rate of mass transfer

Density (bulk and particle)

➤ Mass of sorbent per column

Heat capacity

➤ Heat required to increase T

Heat of adsorption

> Heat required to perform desorption

Heat transfer coefficient

> Rate of heat transfer

# **Exercise 1 – working capacity**

We use adsorption to capture  $CO_2$  from a  $CO_2$ -H<sub>2</sub> mixture containing 25%  $CO_2$  and 75% H<sub>2</sub> (adsorption of H<sub>2</sub> is negligible).

For a given sorbent (activated carbons), calculate the equilibrium working capacity when adsorption occurs at ambient temperature (25°C) and 15 bar, and desorption occurs at 100°C and ambient pressure.

|          |             |            |          | CO <sub>2</sub>       |
|----------|-------------|------------|----------|-----------------------|
| Langmuir |             |            |          |                       |
| $q_{si}$ | $[mol/m^3]$ | $\omega_i$ | [mol/kg] | 2.07                  |
|          |             | $\theta_i$ | [J/mol]  | -4174                 |
| $K_i$    | [1/Pa]      | $\Omega_i$ | [1/Pa]   | $5.59 \times 10^{-9}$ |
|          |             | $\Theta_i$ | [J/mol]  | -13133                |

$$q_i^* = \frac{q_{Si}(K_i P_i)^{S_i}}{1 + (K_i P_i)^{S_i}}$$
$$q_{Si} = \omega_i \exp\left(\frac{-\theta_i}{RT}\right)$$
$$K_i = \Omega_i \exp\left(\frac{-\Theta_i}{RT}\right)$$

## **Exercise 1 - solution**





$$q_{ads} = Langmuir(\omega, \theta, \Omega, \Theta, R, T_{ads}, P_{tot,ads} \times X_f)$$

$$q_{des} = Langmuir(\omega, \theta, \Omega, \Theta, R, T_{des}, P_{tot,des})$$

working capacity = 
$$q_{ads} - q_{des} = 3 \frac{mmol}{g}$$

Speaker

### **Exercise 2**

We use adsorption to capture CO<sub>2</sub> from a flue gas containing 10% CO<sub>2</sub> and 90% N<sub>2</sub>.

For a given sorbent (zeolite 13X), calculate the equilibrium working capacity when:

- adsorption occurs at ambient temperature (25°C) and ambient pressure, and desorption occurs at 100°C and ambient pressure;
- adsorption occurs at ambient temperature (25°C) and pressure of 20 bar, and desorption occurs at ambient temperature and ambient pressure;
- adsorption occurs at ambient temperature (25°C) and ambient pressure, and desorption occurs at ambient temperature and vacuum pressure of 0.05 bar;
- adsorption occurs at ambient temperature (25°C) and ambient pressure, and desorption occurs at 100°C and vacuum pressure of 0.1 bar.

To which processes, do these different operating conditions correspond?

- What happens if T of adsorption and T of desorption change?
- What happens when CO2 concentration decreases to 4% and to 0.04% (DAC)?

### **Exercise 2 – isotherm for Zeolite 13X**

Speaker

$$n_i^{\infty}(T) = n_{\text{ref},i}^{\infty} \exp\left(\chi_i \left(\frac{T}{T_{\text{ref}}} - 1\right)\right)$$
 (7)

where T is the temperature,  $n_{\text{ref},i}^{\infty}$  is the saturation capacity at reference temperature  $T_{\text{ref}}$  and  $\chi_i$  is a dimensionless fitting parameter.

The temperature dependence of the affinity parameter  $b_i$  is commonly described by an Arrhenius type equation, that is

$$b_i(T) = b_{0,i} \exp\left(\frac{Q_{b,i}}{RT}\right) \tag{8}$$

where R is the universal gas constant,  $b_{0,i}$  is the pre-exponential factor and  $Q_{b,i}$  the characteristic energy for the affinity constant  $b_i(T)$  [34].

The temperature dependence of the heterogeneity parameter  $c_i$  is essentially empirical. A form proposed in Do [34] is

$$c_i(T) = c_{\text{ref},i} + \alpha_i \left( \frac{T}{T_{\text{ref}}} - 1 \right)$$
 (9)

where  $c_{\text{ref},i}$  is the heterogeneity parameter at the reference temperature  $T_{\text{ref}}$  and  $\alpha$  is a dimensionless fitting parameter.

$$n_i = \frac{n_i^{\infty} (b_i P)^{c_i}}{1 + (b_i P)^{c_i}}$$

Parameters for the pure component Sips isotherm for CO<sub>2</sub>

13X 
$$n_i^{\infty}$$
 [mol/kg]  $n_{\text{ref}}^{\infty}$  [mol/kg] 7.268  $\chi_i$  [-] -0.61684  $b_i$  [bar<sup>-1</sup>]  $b_{0,i}$  [bar<sup>-1</sup>] 1.129e-4  $Q_{b,i}$  [kJ/mol] 28.389  $c_i$  [-]  $c_{\text{ref},i}$  [-] 0.42456  $\alpha$  [-] 0.72378

$$T_{ref} = 25^{\circ}C$$

n<sub>i</sub> in the formula correspond to q<sub>i</sub>\* (equilibrium uptake)

From Hefti et al., Microporous and Mesoporous Materials 2015