Laboratory of Computational Systems Biotechnology

Introduction to Chemical Engineering

Teaching by:

Vassily Hatzimanikatis (vassily.hatzimanikatis@epfl.ch)

Assistants:

Denis Joly (denis.joly@epfl.ch)

Konrad Lagoda (konrad.lagoda@epfl.ch)

Zi Xuan Ng (zixuan.ng@epfl.ch)

Office hours: Mondays 16h-19h (CH H4 625) or schedule by email

Fridays, 14h15 - 17h00 2024-2025

Course Schedule

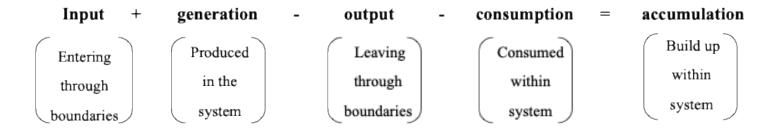
Date	Subject					
13-Sep	1. Fundamentals of Material Balances 1.1. Process definition and classification 1.2. Material balance calculations					
20-Sep	1.3. Balances on multiple-unit processes					
27-Sep	Review on Mass Balances (non-reactive)					
04-Oct	1.4. Chemical reaction stoichiometry 1.5.1 Balances on reactive processes (part 1)					
11-Oct	1.5.2 Balances on reactive processes (part 2) 1.6. Balances on multiple unit reactive processes Review on Mass Balances (non-reactive & reactive)					
18-Oct	2. Fundamentals of Energy and Energy Balances 2.1. Energy balances on closed systems 2.2. Open systems at steady state 3. Balances on Non-Reactive Processes 3.1. Energy balance calculation 3.2. Changes in Pressure, Temperature, Phases					
01-Nov	4. Balances on Reactive Processes 4.1. Introduction to the Enthalpy of Reaction 4.2. Heat of Reaction Method 4.3. Heat of Formation Method 4.4 General Procedure to solve energy balance in reactive systems					
08-Nov	Review on Balances on Non-Reactive Processes Problems: Mass and Energy Balances on non-Reactive Systems					
15-Nov	Midterm Exam: Mass & Energy Balances non-Reactive Systems					
22-Nov	Review Midterm					

Date	Subject
29-Nov	Review on Heat of Reaction vs Heat of Formation Methods 4.5 Hess's Law to compute the Heat of Reaction 4.6 Heat of Combustion
06-Dec	5. Energy balances on mixing processes5.1 Distinction between ideal and real solutions5.2 Heat of Solution
13-Dec	Review and Study Session • Material balances • Energy balances

Recommended textbook:

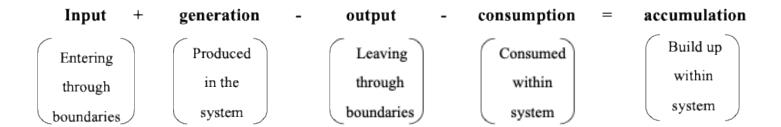
Elementary Principles of Chemical Processes, Richard M. Felder & Ronald W. Rousseau

Session IX: Friday 13 December 2024

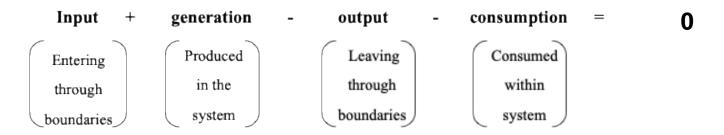

During this session, we will review the following concepts

- 1. Material balances
- 2. Energy balances

Material Balances

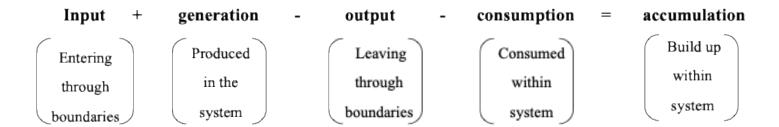

Material Balances: overview

It all starts with the mother of all equations:

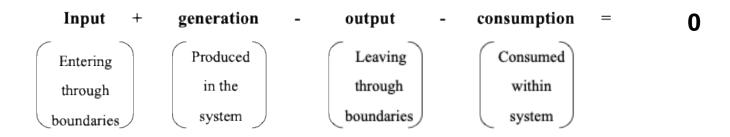


Material Balances: overview

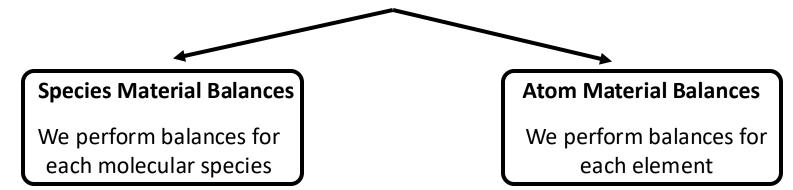
It all starts with the mother of all equations:

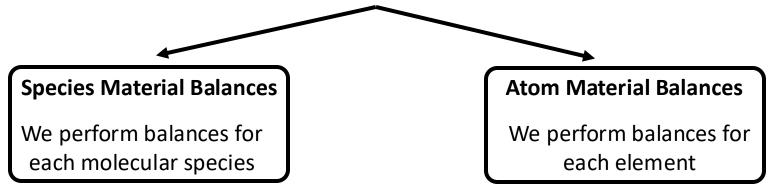


(Almost) all the systems we study represent steady-state continuous processes:



Material Balances: overview


It all starts with the mother of all equations:


(Almost) all the systems we study represent steady-state continuous processes:

From there, we have seen 2 possible methods:

From there, we have seen 2 possible methods:

From there, we have seen 2 possible methods:

Species Material Balances

We perform balances for each molecular species

Atom Material Balances

We perform balances for each element

Non-reactive systems:

input + generated - output - consumed = 0

input - output = 0

input = output

We perform balances for each molecular species

Atom Material Balances

We perform balances for each element

Non-reactive systems:

input + generated - output - consumed = 0

input - output = 0

input = output

Reactive systems:

input + generated - output - consumed = 0

input - output + generated - consumed = 0

input - output + (generated - consumed) = 0

input - output + **reacted**= 0

input + reacted = output

We perform balances for each molecular species

Atom Material Balances

We perform balances for each element

Non-reactive systems:

input = output

 $n_{CH4,in} = n_{CH4,out}$

Reactive systems:

input + reacted = output

$$n_{CH4,in} + \mathbf{v}_{CH4} \cdot \boldsymbol{\xi} = n_{CH4,out}$$

Reactant:

Product:

$$\xi < 0$$
 $\xi > 0$

consumed

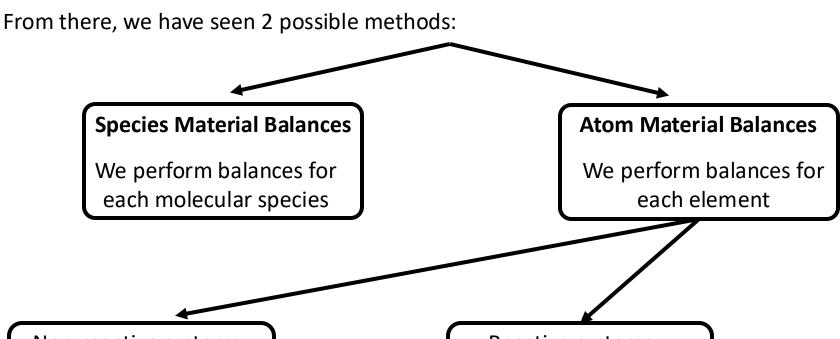
generated

We perform balances for each molecular species

Atom Material Balances

We perform balances for each element

Non-reactive systems:


input = output

 $n_{C,in} = n_{C,out}$

Reactive systems:

input = output

 $n_{C,in} = n_{C,out}$

Non-reactive systems:

input = output

 $n_{C,in} = n_{C,out}$

Reactive systems:

input = output

 $n_{C,in} = n_{C,out}$

- No consideration of the extent of reaction with atom balance
- However, do not forget to multiply by the stoichiometric coefficient, e.g, in
 1 mole of CH4, there is 1 mole of Carbon BUT 4 moles of Hydrogen!

Material Balances: Considerations on Reactive Systems

Multiple reactions \rightarrow multiple extents of reactions (species material balance)

$$R_1: 2 CO_2 \rightarrow 2 CO + O_2 \longrightarrow \xi_1$$

$$R_2: O_2 + N_2 \rightarrow 2NO \longrightarrow \xi_2$$

$$n_i = n_{i0} + \sum_j \nu_{ij} \xi_j$$

Material Balances: Considerations on Reactive Systems

Multiple reactions \rightarrow multiple extents of reactions (species material balance)

$$R_1: 2 CO_2 \rightarrow 2 CO + O_2 \longrightarrow \xi_1$$

$$R_2: O_2 + N_2 \rightarrow 2NO \longrightarrow \xi_2$$

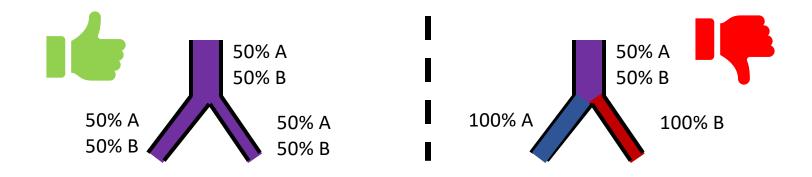
$$n_i = n_{i0} + \sum_j \nu_{ij} \xi_j$$

If 2 reactions or more, it is generally easier to go with atomic material balance method

Material Balances: Considerations on Reactive Systems

Multiple reactions \rightarrow multiple extents of reactions (species material balance)

$$\begin{array}{c}
R_1: 2 CO_2 \to 2 CO + O_2 & \longrightarrow & \xi_1 \\
R_2: O_2 + N_2 \to 2NO & \longrightarrow & \xi_2
\end{array}$$


$$n_i = n_{i0} + \sum_j \nu_{ij} \xi_j$$

If 2 reactions or more, it is generally easier to go with atomic material balance method

In reactive systems, moles of species are not conserved (look at reaction 1, we start with a total of 2 moles (CO2) and ends up with a total of 3 moles (2 moles CO and 1 mole O2). HOWEVER, the moles of elements are conserved \rightarrow if we use the molecular species balance method, do not forget to convert the moles to mass when solving your material balances!

Material Balances: General Considerations

At a splitting point, the composition of the stream is maintained (unless mentioned otherwise)

Material Balances: Limiting and Excess Reactants

Limiting reactant in reactive process = reactant that would be **completely consumed if the reaction proceeded to completion**.

All other reactants must either be fed in (1) stoichiometric proportion to the limiting reactant (the feed rates are in the ratio of the stoichiometric coefficients) or (2) in excess of the limiting reactant (in greater than stoichiometric proportion to it).

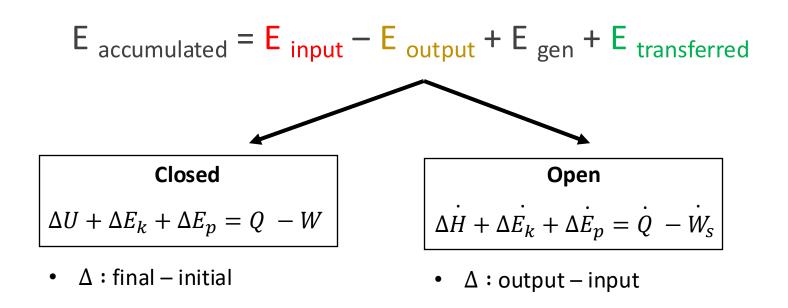
$$\%$$
 excess =
$$\frac{amount\ fed\ -amount\ theoretically\ required}{amount\ theoretically\ requied}$$

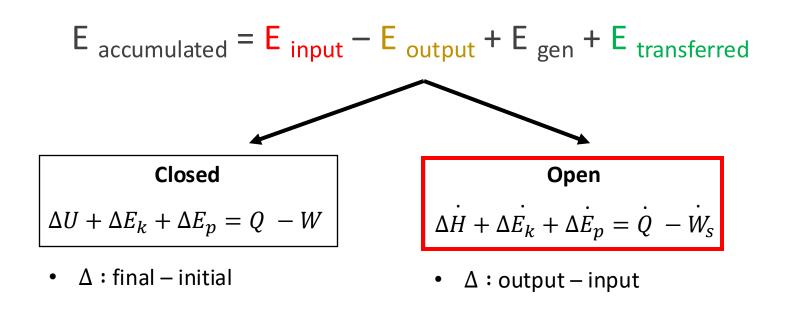
Material Balances: Procedure for Calculations

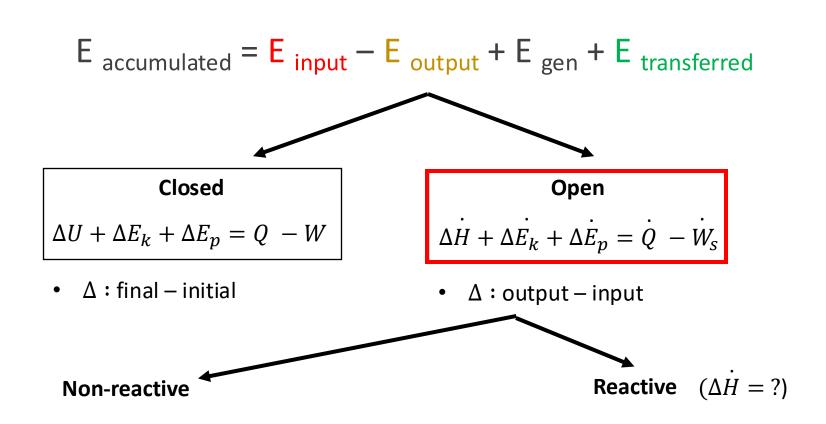
- Choose as basis of calculation an amount or flow rate of one of the process streams
 - Basis can already be given in the problem
 - If no stream amount or flow rate is specified, take as a basis an arbitrary amount or flow rate of a stream with known composition
- Draw a flowchart and fill in all known variable values, including the basis of 2. calculation, then label the unknown stream variables on the chart
- Express what the **problem statement asks you** to determine in terms of the 3. labeled variables
- If you are given mixed mass and mole units for a stream, convert all quantities 4. to one basis or the other.
- 5. OPTIONNAL: Perform a degree-of-freedom analysis
- OPTIONNAL: If the number of unknowns equals the number of equations 6. relating them, write the equation in an efficient order (minimizing simultaneous equations), and circle the variables for which you will solve
- Solve the equations 7.
- Calculate the quantities requested in the problem statement if they have not 8. already been calculated
- OPTIONNAL: Scale if you chose a different basis than the one initially suggested. 9.

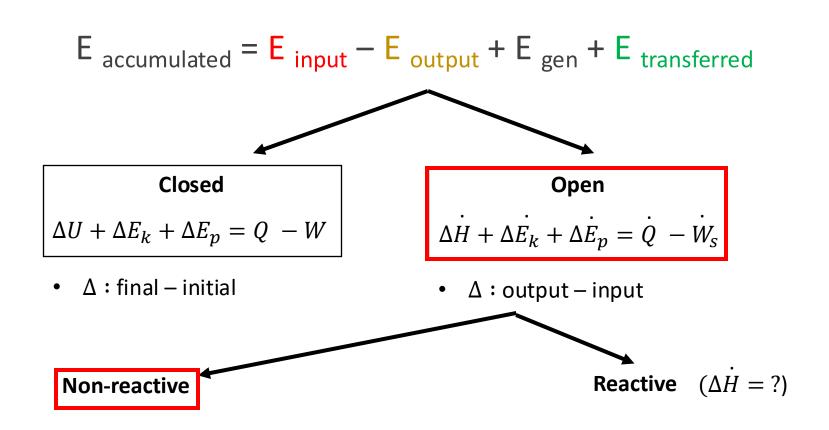
Energy Balances

Again, with the mother of all equations:


$$E_{accumulated} = E_{input} - E_{output} + E_{gen} + E_{transferred}$$


Where
$$E_{transferred} = Q - W$$


Conventions:


- Q > 0 when heat is transferred from the surrounding to the system
- W > 0 when work is done by the system on the surroundings *

^{*} The opposite convention is sometimes used. The choice is arbitrary, if it is used consistently

Energy Balances: considerations for non-reactive system

Reference state

Arbitrarily designate a reference state for substance at which \widehat{U} or \widehat{H} is declared to equal zero.

Tabulate \widehat{U} or \widehat{H} for the substance relative to the reference state

Energy Balances: Hypothetical Process Paths

In the systems we study, there are internal energy and **enthalpy changes associated with key processes**. We are specifically interested in the following:

- Changes in P at constant T and state of aggregation
- Changes in T at constant P and state of aggregation
- Phase changes at constant T and P
- Mixing of 2 liquids or dissolving of a gas or a solid in a liquid at constant T
 and P
- Chemical reaction at constant T and P

Energy Balances: Hypothetical Process Paths

In the systems we study, there are internal energy and **enthalpy changes associated with key processes**. We are specifically interested in the following:

- Changes in P at constant T and state of aggregation *
- Changes in T at constant P and state of aggregation

The ones you are expected to know

- Phase changes at constant T and P
- Mixing of 2 liquids or dissolving of a gas or a solid in a liquid at constant T
 and P **
- Chemical reaction at constant T and P

^{*} For the processes and species seen in this class, we can neglect the enthalpy changes associated with changes in P(ressure).

^{**} Enthalpy changes due to mixing were briefly covered in the last lecture. These will not be subject to examination

Changes in T at constant P and state of aggregation

There are 2 ways to calculate the enthalpy change associated to a change of temperature from T1 (initial temperature) to T2 (final temperature).

Let's take an example: 15 kmol/min of air is cooled from 430 C to 100C. Calculate the required heat removal rate.

Changes in T at constant P and state of aggregation

There are 2 ways to calculate the enthalpy change associated to a change of temperature from T1 (initial temperature) to T2 (final temperature).

Let's take an example: 15 kmol/min of air is cooled from 430 C to 100C. Calculate the required heat removal rate.

Most common (harder) way: Integrate the heat capacity formula from table B2

$$\Delta \hat{H}\left(\mathrm{kJ/mol}
ight) = \int_{430^{\circ}C}^{100^{\circ}C} C_p(T)\,dT$$

$$C_p(T) = 0.02894 + (0.4147 imes 10^{-5})T + (0.3191 imes 10^{-8})T^2 - (1.965 imes 10^{-12})T^3$$

The integral expands to:

$$\Delta \hat{H} = \left[0.02894(T) + rac{0.4147 imes 10^{-5}}{2}(T^2) + rac{0.3191 imes 10^{-8}}{3}(T^3) - rac{1.965 imes 10^{-12}}{4}(T^4)
ight]_{430^{\circ}C}^{100^{\circ}C}$$

Plugging in the limits of integration ($T=100^{\circ}C$ and $T=430^{\circ}C$):

$$\Delta \hat{H} = \left[0.02894(100-430) + rac{0.4147 imes10^{-5}}{2}(100^2-430^2) + rac{0.3191 imes10^{-8}}{3}(100^3-430^3) - rac{1.965 imes10^{-12}}{4}(100^4-430^4)
ight]$$

This evaluates to:

$$\Delta \hat{H} = (-9.5502 - 0.3627 - 0.0835 + 0.0167)\,\mathrm{kJ/mol} = -9.98\,\mathrm{kJ/mol}.$$

Changes in T at constant P and state of aggregation

There are 2 ways to calculate the enthalpy change associated to a change of temperature from T1 (initial temperature) to T2 (final temperature).

Let's take an example: 15 kmol/min of air is cooled from 430 C to 100C. Calculate the required heat removal rate.

Easy way (not always possible): Use tabulated enthalpies (with linear

interpolation)

$$\widehat{\widehat{H}}(400 C) = 11.24 \frac{kJ}{mol}$$

$$\widehat{H}(430 C) = 11.24 + 0.3 (14.37 - 11.24) = 12.17$$

$$\widehat{H}(500 C) = 14.37 \frac{kJ}{mol}$$

$$\widehat{\widehat{H}}(100 C) = 2.19 \frac{kJ}{mol}$$

 $\Delta \widehat{H} = \widehat{H_{final}} - \widehat{H_{initial}} = 2.19 - 12.17 = -9.98 \frac{kJ}{mol}$

Table B.8 Specific Enthalpies of Selected Gases: SI Units

$\hat{H}(kJ/mol)$ Reference state: Gas, $P_{ref} = 1$ atm, $T_{ref} = 25^{\circ}C$										
T	Air	O_2	N_2	H_2	СО	CO ₂	H ₂ O			
0	-0.72	-0.73	-0.73	-0.72	-0.73	-0.92	-0.84			
25	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
100	2.19	2.24	2.19	2.16	2.19	2.90	2.54			
200	5.15	5.31	5.13	5.06	5.16	7.08	6.01			
300	8.17	8.47	8.12	7.96	8.17	11.58	9.57			
400	11.24	11.72	11.15	10.89	11.25	16.35	13.23			
500	14.37	15.03	14.24	13.83	14.38	21.34	17.01			
600	17.55	18.41	17.39	16.81	17.57	26.53	20.91			
700	20.80	21.86	20.59	19.81	20.82	31.88	24.92			
800	24.10	25.35	23.86	22.85	24.13	37.36	29.05			
900	27.46	28.89	27.19	25.93	27.49	42.94	33.32			
1000	30.86	32.47	30.56	29.04	30.91	48.60	37.69			
1100	34.31	36.07	33.99	32.19	34.37	54.33	42.18			
1200	37.81	39.70	37.46	35.39	37.87	60.14	46.78			
1300	41.34	43.38	40.97	38.62	41.40	65.98	51.47			
1400	44.89	47.07	44.51	41.90	44.95	71.89	56.25			
1500	48.45	50.77	48.06	45.22	48.51	77.84	61.09			

Note on interpolating from tabulated values

$$H(T) = H(T_1) + rac{(T-T_1)}{(T_2-T_1)} imes [H(T_2) - H(T_1)]$$

Where:

- ullet H(T) is the enthalpy at the desired temperature T,
- T_1 and T_2 are the temperatures between which the interpolation is performed,
- $H(T_1)$ and $H(T_2)$ are the enthalpy values at T_1 and T_2 , respectively.

For the example

- $T=430^{\circ}C$
- $T_1 = 400^{\circ} C_1$
- $T_2 = 500^{\circ} C_1$
- $H(T_1) = 11.24 \, \text{kJ/mol}$,
- $H(T_2) = 14.37 \, \text{kJ/mol}$.

$$H(430^{\circ}C)=11.24+rac{(430-400)}{(500-400)} imes(14.37-11.24) \ H(430^{\circ}C)=11.24+0.30 imes3.13 \ H(430^{\circ}C)=11.24+0.939=12.17\, ext{kJ/mol}.$$

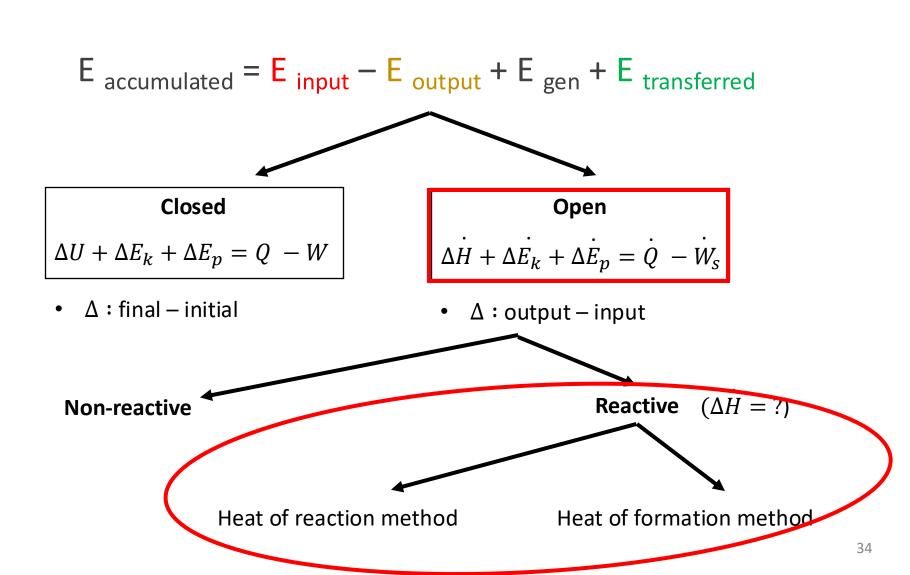
Phase changes at constant T and P

Latent Heat:

The specific enthalpy change ($\Delta \hat{H}$) during a phase transition (e.g., melting, vaporization) at constant temperature and pressure is called the **latent heat**. It is distinct from **sensible heat**, which involves temperature changes without a phase change (that we have just seen).

Heat of Vaporization (from liquid to gas):

- •For water at 100°C and 1 atm, the latent heat of vaporization is 40.6 kJ/mol.
- •The **heat of condensation** is the negative of the heat of vaporization (-40.6 kJ/mol) because condensation is the reverse process of vaporization.


Heat of Fusion (from solid to liquid):

The **heat of fusion** (or melting) is the enthalpy difference between the solid and liquid forms of a substance at a given T and P.

Similarly, the **heat of solidification** is the negative of the heat of fusion.

Tabulated Values:

Standard heats of fusion and vaporization are typically provided at the melting or boiling points of a substance at 1 atm. These values can be found in Table B1 (more on this later)

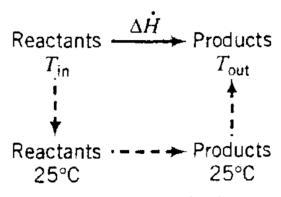
Energy Balances: Heat of Formation vs Heat of Reaction

Reactive
$$(\Delta \dot{H} = ?)$$

Heat of reaction method

$$\Delta \dot{H} = \dot{\xi} \Delta H_r^0 + \sum_{out} \dot{n}_i \widehat{H}_i - \sum_{in} \dot{n}_i \widehat{H}_i$$

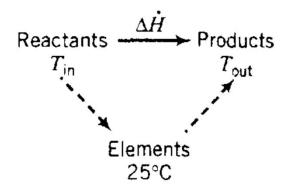
Heat of formation method


$$\Delta \dot{H} = \sum_{out} n_i \widehat{H}_i - \sum_{in} n_i \widehat{H}_i$$

Energy Balances: Heat of Formation vs Heat of Reaction

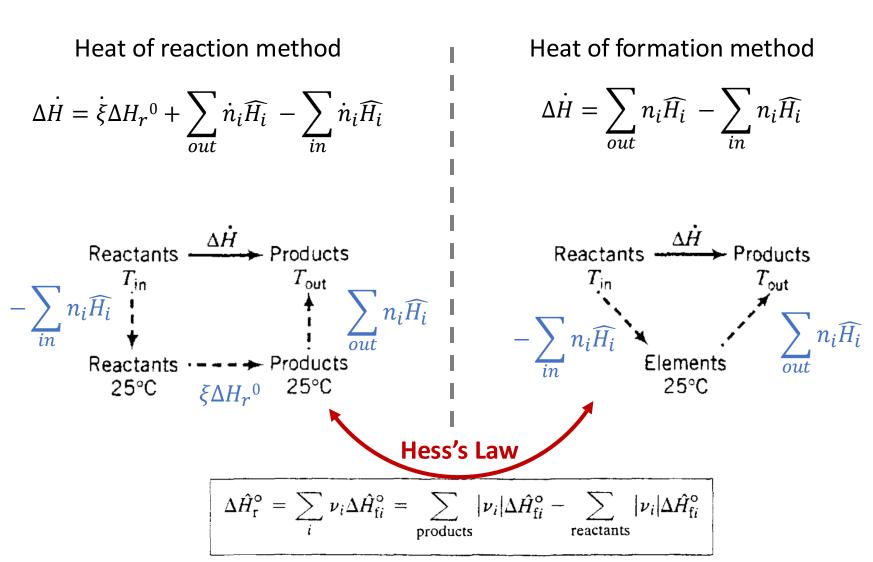
Reactive
$$(\Delta \dot{H} = ?)$$

Heat of reaction method


$$\Delta \dot{H} = \dot{\xi} \Delta H_r^0 + \sum_{out} \dot{n}_i \widehat{H}_i - \sum_{in} \dot{n}_i \widehat{H}_i$$

(a) Process path for heat of reaction method

Heat of formation method


$$\Delta \dot{H} = \sum_{out} n_i \widehat{H_i} - \sum_{in} n_i \widehat{H_i}$$

(b) Process path for heat of formation method

Reference states: reactants and products species at 25 C at 1 Reference states: elemental species that constitute the atm in the phases (solid, liquid or gas) for which the heat of reactants and products at 25 C at 1 atm reaction is known

Reactive $(\Delta \dot{H} = ?)$

Appendix B

Physical Property Tables

TAB	LE	PAGES
B.1	Selected Physical Property Data	628–634
B.2	Heat Capacities	635–637
B.3	Vapor Pressure of Water	638-639
B.4	Antoine Equation Constants	640-641
B.5	Properties of Saturated Steam: Temperature Table	642-643
B.6	Properties of Saturated Steam: Pressure Table	644-649
B.7	Properties of Superheated Steam	650-651
B.8	Specific Enthalpies of Selected Gases: SI Units	652
B.9	Specific Enthalpies of Selected Gases: American Engineering Units	652
B.10	Atomic Heat Capacities for Kopp's Rule	653
B.11	Integral Heats of Solution and Mixing at 25°C	653

Appendix B

Physical Property Tables

TAB	LE	PAGES
B.1	Selected Physical Property Data	628–634
B.2	Heat Capacities	635–637
B. 3	Vapor Pressure of Water	638–639
B.4	Antoine Equation Constants	640641
B.5	Properties of Saturated Steam: Temperature Table	642-643
B.6	Properties of Saturated Steam: Pressure Table	644-649
B.7	Properties of Superheated Steam	650-651
B.8	Specific Enthalpies of Selected Gases: SI Units	652
B.9	Specific Enthalpies of Selected Gases: American Engineering Units	652
B.10	Atomic Heat Capacities for Kopp's Rule	653
B.11	Integral Heats of Solution and Mixing at 25°C	653

Know Thy Tables

B.1 Selected Physical Property Data

Compound	Formula	Mol. Wt.	SG (20°/4°)	$T_{\mathrm{m}}(^{\circ}\mathrm{C})^{b}$	$\Delta\hat{H}_{ m m}(T_{ m m})^{c,j}$ kJ/mol	$T_{\mathrm{b}}(^{\circ}\mathrm{C})^{d}$	$\Delta\hat{H}_{ m v}(T_{ m b})^{e,j}$ kJ/mol	$T_{\rm c}({\sf K})^f$	$P_{\rm c}({\rm atm})^g$	$(\Delta \hat{H}_{ m f}^{\circ})^{h,j}$ k J /mol	$(\Delta\hat{H_c}^{\circ})^{i,j}$ kJ/mol
Acetaldehyde	CH₃CHO	44.05	0.783 ^{18°}	-123.7		20.2	25.1	461.0	_	-166.2(g)	-1192.4(g)
Acetic acid	CH ₃ COOH	60.05	1.049	16.6	12.09	118.2	24.39	594.8	57.1	-486.18(1)	-871.69(1)
										-438.15(g)	-919.73(g)
Acetone	C_3H_6O	58.08	0.791	-95.0	5.69	56.0	30.2	508.0	47.0	-248.2(1)	-1785.7(1)
										-216.7(g)	-1821.4(g)
Acetylene	C_2H_2	26.04			_	-81.5	17.6	309.5	61.6	+226.75(g)	-1299.6(g)
Ammonia	NH_3	17.03	_	-77.8	5.653	-33.43	23.351	405.5	111.3	-67.20(1)	
										-46.19(g)	-382.58(g)

(latent) heat of fusion/melting H_m: specific enthalpy from solid to liquid stage = - latent heat of solidification

(latent) heat of vaporization H_v: specific enthalpy change from liquid to gaseous stage = - latent heat of condensation

^bMelting point at 1 atm.

^{&#}x27;Heat of fusion at T_m and 1 atm.

^dBoiling point at 1 atm.

^{&#}x27;Heat of vaporization at T_b and 1 atm.

^fCritical temperature.

^gCritical pressure.

^hHeat of formation at 25°C and 1 atm.

Heat of combustion at 25°C and 1 atm. Standard states of products are $CO_2(g)$, $H_2O(l)$, $SO_2(g)$, HCl(aq), and $N_2(g)$. To calculate $\Delta \hat{H}_c^{\circ}$ with $H_2O(g)$ as a product, $44.01n_w$ to the tabulated value, where $n_w = \text{moles } H_2O$ formed/mole fuel burned.

Know Thy Tables

B.2 Heat Capacities

Table B.2 Heat Capacities^a

```
Form 1: C_p[kJ/(mol \cdot ^{\circ}C)] or [kJ/(mol \cdot K)] = a + bT + cT^2 + dT^3
Form 2: C_p[kJ/(mol \cdot ^{\circ}C)] or [kJ/(mol \cdot K)] = a + bT + cT^{-2}
```

Example: $(C_p)_{\text{acetone(g)}} = 0.07196 + (20.10 \times 10^{-5})T - \overline{(12.78 \times 10^{-8})T^2 + (34.76 \times 10^{-12})}T^3$, where T is in °C.

Note: The formulas for gases are strictly applicable at pressures low enough for the ideal gas equation of state to apply.

Compound	Formula	Mol. Wt.	State	Form	Temp. Unit	$a \times 10^3$	$b \times 10^5$	$c \times 10^8$	$d \times 10^{12}$	Range (Units of T)
	CH COCH		,	1						
Acetone	CH ₃ COCH ₃	58.08	ł	1	°C	123.0	18.6	10.70	0.4.77	-30-60
			g	ı	$^{\circ}\mathrm{C}$	71.96	20.10	-12.78	34.76	0-1200
Acetylene	C_2H_2	26.04	Б	- 1	°C	42.43	6.053	-5.033	18.20	0–1200
Air		29.0	g	1	°C	28.94	0.4147	0.3191	-1.965	0-1500
			g	1	K	28.09	0.1965	0.4799	-1.965	273-1800
Ammonia	NH_3	17.03	g	1	°C	35.15	2.954	0.4421	-6.686	0-1200
Ammonium sulfate	$(NIL_i)_2SO_4$	132.15	c	!	K	215.9				275-328
Benzene	C_6H_6	78.11	1	1	°C	126.5	23.4			6–67
	0		g	1	°C	74.06	32.95	-25.20	77.57	0-1200
Isobutane	C_4H_{10}	58.12	g	1	°C	89.46	30.13	-18.91	49.87	0-1200
n-Butane	C_4H_{10}	58.12	g	_11	°C	92.30	27.88	15.47	34.98	0-1200
Isobutene	C_4H_8	56.10	g	1	°C	82.88	25.64	-17.27	50.50	0-1200
Calcium carbide	CaC ₂	64.10	c	2	K	68.62	1.19	-8.66×10^{10}		298-720
Calcium carbonate	CaCO ₃	100.09	c .	2	K	82.34	4.975	-12.87×10^{10}		273-1033
Calcium hydroxide	$Ca(OH)_2$	74.10	С	1	K	89.5				276-373
Calcium oxide	CaO	56.08	С	2	K	41.84	2.03	-4.52×10^{10}		273-1173
Carbon	C	12.01	c	2	K	11.18	1.095	-4.891×10^{10}		273–1373

Know Thy Tables

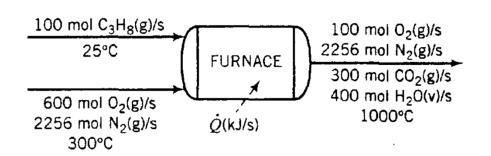

Some specific enthalpies are already computed for you \rightarrow Gain of time during the exam!

Table B.8 Specific Enthalpies of Selected Gases: SI Units

			$\hat{H}(\mathbf{k})$	J/mol)			
	Ref	ference sta	ite: Gas, P	$r_{\rm ref} = 1 {\rm at}$	$m, T_{ref} =$	25°C	
T	Air	O ₂	N_2	H ₂	СО	CO ₂	H ₂ O
0	-0.72	-0.73	-0.73	-0.72	-0.73	-0.92	-0.84
25	0.00	0.00	0.00	0.00	0.00	0.00	0.00
100	2.19	2.24	2.19	2.16	2.19	2.90	2.54
200	5.15	5.31	5.13	5.06	5.16	7.08	6.01
300	8.17	8.47	8.12	7.96	8.17	11.58	9.57
400	11.24	11.72	11.15	10.89	11.25	16.35	13.23
500	14.37	15.03	14.24	13.83	14.38	21.34	17.01
600	17.55	18.41	17.39	16.81	17.57	26.53	20.91
700	20.80	21.86	20.59	19.81	20.82	31.88	24.92
800	24.10	25.35	23.86	22.85	24.13	37.36	29.05
900	27.46	28.89	27.19	25.93	27.49	42.94	33.32
1000	30.86	32.47	30.56	29.04	30.91	48.60	37.69
1100	34.31	36.07	33.99	32.19	34.37	54.33	42.18
1200	37.81	39.70	37.46	35.39	37.87	60.14	46.78
1300	41.34	43.38	40.97	38.62	41.40	65.98	51.47
1400	44.89	47.07	44.51	41.90	44.95	71.89	56.25
1500	48.45	50.77	48.06	45.22	48.51	77.84	61.09

$$C_3H_8(g) + 5 O_2(g) \longrightarrow 3 CO_2(g) + 4 H_2O(l)$$
: $\Delta \hat{H}_r^{\circ} = -2220 \text{ kJ/mol}$

$$\Delta H_{\rm r}^{\rm o} = -2220 \, \text{kJ/mol}$$

$$\dot{\xi} = \frac{|(\dot{n}_{C_3H_8})_{\text{out}} - (\dot{n}_{C_3H_8})_{\text{in}}|}{|\nu_{C_3H_8}|}$$

$$= \frac{|0 - 100| \text{ mol/s}}{1} = 100 \text{ mol/s}$$

Heat of reaction method

Heat of formation method

References	$C_2H_0(g)$	$O_2(\sigma)$ $N_2(\sigma)$	$CO_2(g)$, $H_2O(l)$ at 25°C and 1 atm	
Rejerences.	$\bigcirc 3118(2)$	0.02(8), 1.12(8),	$0 \cup 0 \subseteq (g)$, $112 \cup (1)$ at 23 \cup and 1 atm	

Substance	$\dot{n}_{ m in}$ (mol/s)	\hat{H}_{in} (kJ/mol)	$\dot{n}_{\rm out}$ (mol/s)	\hat{H}_{out} (kJ/mol)
C_3H_8	100	0	_	
O_2	600	$\hat{H_2}$	100	$\hat{H_4}$
N_2	2256	$\hat{H_3}$	2256	\hat{H}_5
CO ₂	_		300	$\hat{H_6}$
H ₂ O			400	\hat{H}_7

References: C(s), H₂(g), O₂(g), N₂(g) at 25°C and 1 atm

Substance	$\dot{n}_{\rm in}$ (mol/s)	\hat{H}_{in} (kJ/mol)	n _{out} (mol/s)	\hat{H}_{out} (kJ/mol)
C_3H_8 O_2 N_2 CO_2 H_2O	100 600 2256 —	$\hat{H_1}$ $\hat{H_2}$ $\hat{H_3}$ $-$	100 2256 300 400	$$ \hat{H}_4 \hat{H}_5 \hat{H}_6 \hat{H}_7

 $\Delta \hat{H}_{\rm r}^{\circ} = -2220 \text{ kJ/mol}$ $\dot{\xi} = 100 \text{ mol/s}$

Heat of reaction method

Know your tables!

References: $C_3H_8(g)$, $O_2(g)$, $N_2(g)$, $CO_2(g)$, $H_2O(l)$ at 25°C and 1 atm

Substance	$\dot{n}_{ m in}$ (mol/s)	$\hat{H_{ ext{in}}}$ (kJ/mol)	$\dot{n}_{\rm out}$ (mol/s)	\hat{H}_{out} (kJ/mol)
C_3H_8	100	0	_	
O_2	600	$\hat{H_2}$	100	$\hat{H_4}$
N_2	2256	$\hat{H_3}$	2256	\hat{H}_5
CO ₂			300	$\hat{H_6}$
H ₂ O		_	400	\hat{H}_7

Table B.1 (Continued)

Compound	Formula	Mol. Wt.	SG (20°/4°)	$T_{\mathrm{m}}(^{\circ}\mathrm{C})^{b}$	$\Delta \hat{H}_{m}(T_{m})^{c,j}$ kJ/mol	$T_{\mathfrak{b}}(^{\circ}\mathbf{C})^{d}$	$\Delta \hat{H}_{v}(T_{b})^{e,j}$ kJ/mol	$T_{c}(K)^{f}$	$P_{\rm c}({\rm atm})^g$	$(\Delta \hat{H}_{\mathfrak{l}}^{\circ})^{h,j}$ kJ/mol	(ΔĤ _c °) ^{i,j} kJ/mol
Sodium thiosulfate	$Na_2S_2O_3$	158.11	1.667			_	_	_	_	-1117.1(c)	
Sulfur (rhombic)	S_8	256.53	2.07	113	10.04	444.6	83.7		-	0(c)	_
Sulfur (monoclinic)	S_8	256.53	1.96	119	14.17	444.6	83.7		_	+0.30(c)	_
Sulfur dioxide	SO_2	64.07	_	-75.48	7.402	-10.02	24.91	430.7	77.8	-296.90(g)	_
Sulfur trioxide	SO_3	80.07		16.84	25.48	43.3	41.80	491.4	83.8	-395.18(g)	_
Sulfuric acid	H_2SO_4	98.08	1.834 ^{18°}	10.35	9.87	Decompo	ses at 340°C	_	_	-811.32(l) -907.51(aq)	_
Toluene	C_7H_8	92.13	0.866	-94.99	6.619	110.62	33.47	593.9	40.3	+12.00(l) +50.00(g)	-3909.9(1) -3947.9(g)
Water	H_2O	18.016	1.004°	0.00	6.0095	100.00	40.656	647.4	218.3	-285.84(l) -241.83(g)	_
m-Xylene	C_8H_{10}	106.16	0.864	-47.87	11.569	139.10	36.40	619	34.6	-25.42(1) +17.24(g)	-4551.9(1) -4594.5(g)
o-Xylene	C_8H_{10}	106.16	0.880	-25.18	13.598	144.42	36.82	631.5	35.7	-24.44(1) +18.99(g)	-4552.9(1) -4596.3(g)
p-Xylene	C_8H_{10}	106.16	0.861	13.26	17.11	138.35	36.07	618	33.9	-24.43(l) 17.95(g)	-4552.91(l) -4595.2(g)
Zinc	Zn	65.38	7.140	419.5	6.674	907	114.77	-	_	0(c)	—

 $\hat{H}_2 = \Delta \hat{H}$ for $O_2(25^{\circ}\text{C}) \rightarrow O_2(300^{\circ}\text{C}) = 8.47 \text{ kJ/mol (from Table B.8)}$

 $\hat{H}_3 = 8.12 \text{ kJ/mol}$

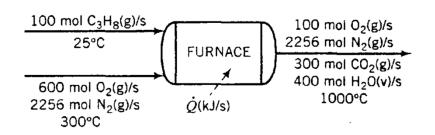
 $\hat{H}_4 = 32.47 \text{ kJ/mol.}$

 $\hat{H}_6 = 48.60 \text{ kJ/mol}$

 $\hat{H}_7 = \Delta \hat{H} \text{ for H}_2\text{O}(l, 25^{\circ}\text{C}) \rightarrow \text{H}_2\text{O}(g, 1000^{\circ}\text{C})$

 $\int_{25^{\circ}C}^{100^{\circ}C} C_{pl} dT + \Delta \hat{H}_{v}(100^{\circ}C) + \int_{100^{\circ}C}^{1000^{\circ}C} C_{pv} dT.$

2 different Cps for 2 different phases


Table B.2 Heat Capacities^a

Form 1: $C_p[\mathrm{kJ/(mol \cdot ^{\circ}C)}]$ or $[\mathrm{kJ/(mol \cdot K)}] = a + bT + cT^2 + dT^3$ Form 2: $C_p[\mathrm{kJ/(mol \cdot ^{\circ}C)}]$ or $[\mathrm{kJ/(mol \cdot K)}] = a + bT + cT^{-2}$

Example: $(C_p)_{acctone(g)} = 0.07196 + (20.10 \times 10^{-5})T - (12.78 \times 10^{-8})T^2 + (34.76 \times 10^{-12})T^3$, where T is in °C.

Note: The formulas for gases are strictly applicable at pressures low enough for the ideal gas equation of state to apply.

Compound	Formula	Mol. Wt.	State	Form	Temp. Unit	$a \times 10^3$	$b \times 10^5$	$c \times 10^8$	$d \times 10^{12}$	Range (Units of T)
Water	H_2O	18.016	l	1	°C	75.4				0-100
			g	1	°C	33.46	0.6880	0.7604	-3.593	0-1500

 $\Delta \hat{H}_{\rm r}^{\circ} = -2220 \text{ kJ/mol}$ $\dot{\xi} = 100 \text{ mol/s}$

Know your tables!

Heat of reaction method

References: $C_3H_8(g)$, $O_2(g)$, $N_2(g)$, $CO_2(g)$, $H_2O(l)$ at 25°C and 1 atm

Substance	$\dot{n}_{ m in}$ (mol/s)	$\hat{H_{ ext{in}}}$ (kJ/mol)	nout (mol/s)	\hat{H}_{out} (kJ/mol)
C_3H_8	100	0	_	
O_2	600	$\hat{H_2}$	100	$\hat{H_4}$
N ₂	2256	$\hat{H_3}$	2256	\hat{H}_5
CO ₂	_		300	$\hat{H_6}$
H ₂ O		_	400	\hat{H}_7

Table B.1 (Continued)

Compound	Formula	Mol. Wt.	SG (20°/4°)	$T_{\mathrm{m}}(^{\circ}\mathrm{C})^{b}$	$\Delta \hat{H}_{m}(T_{m})^{c,j}$ kJ/mol	$T_{\rm b}(^{\rm o}{\rm C})^d$	$\Delta \hat{H}_{v}(T_{b})^{e,j}$ kJ/mol	$T_{c}(K)^{f}$	$P_{\rm c}({\rm atm})^g$	$(\Delta \hat{H}_{\mathfrak{l}}^{\circ})^{h,j}$ kJ/mol	(ΔĤ _c °) ^{i,j} kJ/mol
Sodium thiosulfate	$Na_2S_2O_3$	158.11	1.667		****	_	_	_	_	-1117.1(c)	
Sulfur (rhombic)	S_8	256.53	2.07	113	10.04	444.6	83.7		-	0(c)	_
Sulfur (monoclinic)	S_8	256.53	1.96	119	14.17	444.6	83.7		_	+0.30(c)	_
Sulfur dioxide	SO_2	64.07	_	-75.48	7.402	-10.02	24.91	430.7	77.8	-296.90(g)	_
Sulfur trioxide	SO_3	80.07		16.84	25.48	43.3	41.80	491.4	83.8	-395.18(g)	_
Sulfuric acid	H_2SO_4	98.08	1.834 ^{18°}	10.35	9.87	Decompo	oses at 340°C	_	_	-811.32(l) -907.51(aq)	_
Toluene	C_7H_8	92.13	0.866	-94.99	6.619	110.62	33.47	593.9	40.3	+12.00(l) +50.00(g)	-3909.9(1) -3947.9(g)
Water	H_2O	18.016	1.004*	0.00	6.0095	100.00	40.656	647.4	218.3	-285.84(l) -241.83(g)	
m-Xylene	C_8H_{10}	106.16	0.864	-47.87	11.569	139.10	36.40	619	34.6	-25.42(1) +17.24(g)	-4551.9(1) -4594.5(g)
o-Xylene	C_8H_{10}	106.16	0.880	-25.18	13.598	144.42	36.82	631.5	35.7	-24.44(1) +18.99(g)	-4552.9(1) -4596.3(g)
p-Xylene	C_8H_{10}	106.16	0.861	13.26	17.11	138.35	36.07	618	33.9	-24.43(l) 17.95(g)	-4552.91(1) -4595.2(g)
Zinc	Zn	65.38	7.140	419.5	6.674	907	114.77	-	_	0(c)	— (B)

$\hat{H}_2 = \Delta \hat{H}$ for $O_2(25^{\circ}C) \rightarrow O_2(300^{\circ}C) = 8.47 \text{ kJ/mol (from Table B.8)}$

 $\hat{H}_3 = 8.12 \text{ kJ/mol}$

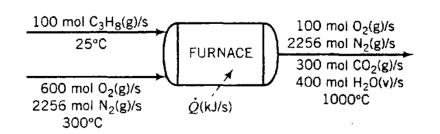
 $\hat{H}_4 = 32.47 \,\text{kJ/mol}.$

 $\hat{H}_6 = 48.60 \, \text{kJ/mol}$

 $\hat{H}_7 = \Delta \hat{H} \text{ for H}_2\text{O(l, 25°C)} \rightarrow \text{H}_2\text{O(g, 1000°C)}$

 $\Delta \dot{H} = \dot{\xi} \Delta \hat{H}_{\rm r}^{\circ} + \sum \dot{n}_{\rm out} \hat{H}_{\rm out} - \sum \dot{n}_{\rm in} \hat{H}_{\rm in} = -1.26 \times 10^5 \text{ kJ/s}.$

2 different Cps for 2 different phases


Table B.2 Heat Capacities^a

Form 1: $C_p[kJ/(mol \cdot ^{\circ}C)]$ or $[kJ/(mol \cdot K)] = a + bT + cT^2 + dT^3$ Form 2: $C_p[kJ/(mol \cdot ^{\circ}C)]$ or $[kJ/(mol \cdot K)] = a + bT + cT^{-2}$

Example: $(C_p)_{\text{acctone(g)}} = 0.07196 + (20.10 \times 10^{-5})T - (12.78 \times 10^{-8})T^2 + (34.76 \times 10^{-12})T^3$, where T is in °C.

Note: The formulas for gases are strictly applicable at pressures low enough for the ideal gas equation of state to apply.

Compound	Formula	Mol. Wt.	State	Form	Temp. Unit	$a \times 10^3$	$b \times 10^5$	$c \times 10^8$	$d \times 10^{12}$	Range (Units of T)
Water	H ₂ O	18.016	1	1	°C	75.4				0-100
			g	1	$^{\circ}C$	33.46	0.6880	0.7604	-3.593	0-1500

 $\Delta \hat{H}_{\rm r}^{\circ} = -2220 \text{ kJ/mol} \quad \dot{\xi} = 100 \text{ mol/s}$

Heat of reaction method

References: $C_3H_8(g)$, $O_2(g)$, $N_2(g)$, $CO_2(g)$, $H_2O(l)$ at 25°C and 1 atm

Substance	$\dot{n}_{ m in}$ (mol/s)	$\hat{H_{in}}$ (kJ/mol)	nout (mol/s)	\hat{H}_{out} (kJ/mol)
C_3H_8	100	0	_	
O_2	600	$\hat{H_2}$	100	$\hat{H_4}$
N ₂	2256	$\hat{H_3}$	2256	\hat{H}_5
CO ₂			300	$\hat{H_6}$
H ₂ O		_	400	\hat{H}_{7}

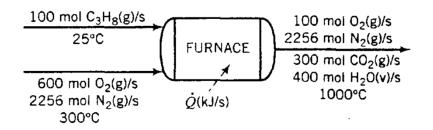
Heat of formation method

References: C(s), $H_2(g)$, $O_2(g)$, $N_2(g)$ at 25°C and 1 atm

Substance	$\dot{n}_{\rm in}$ (mol/s)	\hat{H}_{in} (kJ/mol)	n _{out} (mol/s)	\hat{H}_{out} (kJ/mol)
C_3H_8 O_2	100 600	$egin{aligned} \hat{H_1} \ \hat{H_2} \end{aligned}$	100	\hat{H}_4
N ₂	2256	\hat{H}_3	2256	$\hat{H_5}$
CO_2 H_2O	 		300 400	$\hat{H_6} \ \hat{H_7}$

 $\hat{H}_2 = \Delta \hat{H}$ for $O_2(25^{\circ}\text{C}) \rightarrow O_2(300^{\circ}\text{C}) = 8.47 \text{ kJ/mol (from Table B.8)}$

 $\hat{H}_3 = 8.12 \text{ kJ/mol}$


 $\hat{H}_4 = 32.47 \,\text{kJ/mol}.$

 $\hat{H}_6 = 48.60 \, \text{kJ/mol}$

 $\hat{H}_7 = \Delta \hat{H} \text{ for H}_2\text{O}(1, 25^{\circ}\text{C}) \rightarrow \text{H}_2\text{O}(g, 1000^{\circ}\text{C})$

 $\Delta \dot{H} = \dot{\xi} \Delta \hat{H}_{r}^{\circ} + \sum \dot{n}_{out} \hat{H}_{out} - \sum \dot{n}_{in} \hat{H}_{in} = -1.26 \times 10^{5} \text{ kJ/s.}$

For a reactant or product, start with the elemental species at 25°C and 1 atm (the references) and form 1 mol of the process species at 25°C and 1 atm at gaseous stage (from Table B.1). Then bring the species from 25°C and 1 atm to its process state, calculating using the appropriate heat capacities from Tables

Next, we calculate the specific enthalpy of O_2 at 300°C (the process state) relative to O_2 at 25°C (the reference state) as:

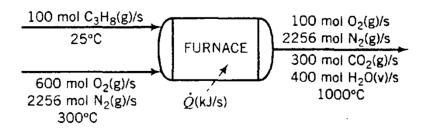
$$\hat{H}_2 = 8.47 \,\mathrm{kJ/mol}$$
 (from Table B.8).

There is no heat of formation term since \mathcal{O}_2 is an elemental species. We proceed in the same manner to calculate:

$$\hat{H}_3 = 8.12\,\mathrm{kJ/mol},\,\hat{H}_4 = 32.47\,\mathrm{kJ/mol},\,\hat{H}_5 = 30.56\,\mathrm{kJ/mol},$$

$$\hat{H}_6 = -344.9 \, \text{kJ/mol}$$
, and $\hat{H}_7 = -204.1 \, \text{kJ/mol}$.

To calculate \hat{H}_6 and \hat{H}_7 , we form the corresponding species ($CO_2(g)$ and $H_2O(v)$) at 25°C from their elements ($\Delta\hat{H}=\Delta\hat{H}_f^\circ$), then heat them from 25°C to 1000°C ($\Delta\hat{H}=\hat{H}_{1000^\circ C}$ from Table B.8), and add the formation and heating terms.


$$\Delta \hat{H}_{\rm r}^{\circ} = -2220 \text{ kJ/mol}$$
 $\dot{\xi} = 100 \text{ mol/s}$

Heat of formation method

References: C(s), $H_2(g)$, $O_2(g)$, $N_2(g)$ at 25°C and 1 atm

Substance	$\dot{n}_{\rm in}$ (mol/s)	\hat{H}_{in} (kJ/mol)	$ \frac{\dot{n}_{\text{out}}}{(\text{mol/s})} $	\hat{H}_{out} (kJ/mol)
C_3H_8	100	$\hat{H_1}$		
O_2	600	$\hat{H_2}$	100	$\hat{H_4}$
N ₂	2256	$\hat{H_3}$	2256	$\hat{H_5}$
CO ₂			300	$\hat{H_6}$
H ₂ O			400	\hat{H}_7

This is the enthalpy of propane at 25°C (the process state) relative to C(s) and H2(g) at 25°C (the reference states). If the propane had entered at a temperature T_0 other than 25°C, a term of the form $\int_{25^{\circ}C}^{T0} C_p dT$ would be added to the heat of formation of propane.

Next, we calculate the specific enthalpy of ${\cal O}_2$ at 300°C (the process state) relative to ${\cal O}_2$ at (the reference state) as:

$$\hat{H}_2 = 8.47 \,\mathrm{kJ/mol}$$
 (from Table B.8).

There is no heat of formation term since ${\cal O}_2$ is an elemental species. We proceed in the same manner to calculate:

$$\hat{H}_3 = 8.12\,\mathrm{kJ/mol},\,\hat{H}_4 = 32.47\,\mathrm{kJ/mol},\,\hat{H}_5 = 30.56\,\mathrm{kJ/mol},$$

$$\hat{H}_6 = -344.9\,{
m kJ/mol}, \ {
m and} \ \hat{H}_7 = -204.1\,{
m kJ/mol}.$$

To calculate \hat{H}_6 and \hat{H}_7 , we form the corresponding species $(CO_2(g))$ and $H_2O(v)$ at 25°C from their elements ($\Delta\hat{H}=\Delta\hat{H}_f^\circ$), then heat them from 25°C to 1000°C ($\Delta\hat{H}=\hat{H}_{1000^\circ C}$ for Table B.8), and add the formation and heating terms.

Table 1	Table B.8 Specific Enthalpies of Selected Gases: SI Units								
	$\hat{H}(kJ/mol)$ Reference state: Gas, $P_{ref} = 1$ atm, $T_{ref} = 25^{\circ}C$								
T	Air	O ₂	N ₂	H ₂	CO	CO ₂	H ₂ O		
0	-0.72	-0.73	-0.73	-0.72	-0.73	-0.92	-0.84		
25	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
100	2.19	2.24	2.19	2.16	2.19	2.90	2.54		
200	5.15	5.31	5.13	5.06	5.16	7.08	6.01		
300	8.17	8.47	8.12	7.96	8.17	11.58	9.57		
400	11.24	11.72	11.15	10.89	11.25	16.35	13.23		
500	14.37	15.03	14.24	13.83	14.38	21.34	17.01		
600	17.55	18.41	17.39	16.81	17.57	26.53	20.91		
700	20.80	21.86	20.59	19.81	20.82	31.88	24.92		
800	24.10	25.35	23.86	22.85	24.13	37.36	29.05		
900	27.46	28.89	27.19	25.93	27.49	42.94	33.32		
1000	30.86	32.47	30.56	29.04	30.91	48.60	37.69		
1100	34.31	36.07	33.99	32.19	34.37	54.33	42.18		
1200	37.81	39.70	37.46	35.39	37.87	60.14	46.78		
1300	41.34	43.38	40.97	38.62	41.40	65.98	51.47		
1400	44.89	47.07	44.51	41.90	44.95	71.89	56.25		
1500	48.45	50.77	48.06	45.22	48.51	77.84	61.09		

	0				4 000 4					50.00(6)	J7 11.7(b.
Water	H_2O	18.016	1.00 ⁴ °	0.00	6.0095	100.00	40.656	647.4	218.3	-285.84(1)	_
										-241.83(g)	_
87.1	OII	10/1/	0.074	47.07	11 5/0	120.10	27.40	(10	247	25 12(1)	1551 0(1)

$$\Delta \hat{H}_{\rm r}^{\circ} = -2220 \text{ kJ/mol} \quad \dot{\xi} = 100 \text{ mol/s}$$

Heat of reaction method

References: $C_3H_8(g)$, $O_2(g)$, $N_2(g)$, $CO_2(g)$, $H_2O(l)$ at 25°C and 1 atm

Substance	$\dot{n}_{\rm in}$ (mol/s)	\hat{H}_{in} (kJ/mol)	π _{out} (mol/s)	$\hat{H}_{ m out}$ (kJ/mol)
C_3H_8	100	0		
O_2	600	\hat{H}_2	100	$\hat{H_4}$
N_2	2256	$\hat{H_3}$	2256	\hat{H}_5
CO_2			300	$\hat{H_6}$
H_2O		_	400	$\hat{H_7}$

Heat of formation method

References: C(s), $H_2(g)$, $O_2(g)$, $N_2(g)$ at 25°C and 1 atm

Substance	$ \frac{\dot{n}_{\rm in}}{(\text{mol/s})} $	\hat{H}_{in} (kJ/mol)	$ \frac{\dot{n}_{\text{out}}}{(\text{mol/s})} $	$\hat{H}_{ ext{out}}$ (kJ/mol)
C_3H_8	100	$\hat{H_1}$		
O_2	600	$\hat{H_2}$	100	$\hat{H_4}$
N_2	2256	$\hat{H_3}$	2256	$\hat{H_5}$
CO_2			300	$\hat{H_6}$
H_2O			400	$\hat{H_7}$

$$\hat{H}_2 = 8.47 \text{ kJ/mol}$$
 $\hat{H}_5 = 30.56 \text{ kJ/mol}$

$$\hat{H}_2 = 8.47 \text{ kJ/mol}$$
 $\hat{H}_6 = -344.9 \text{ kJ/mol}$

$$\hat{H}_2 = 8.12 \text{ kJ/mol}$$
 $\hat{H}_7 = -204.1 \text{ kJ/mol}$

 $\hat{H}_1 = -103.8 \text{ kJ/mol}$ $\hat{H}_5 = 30.56 \text{ kJ/mol}$

$$\hat{H}_3 = 8.12 \,\text{kJ/mol}$$
 $\hat{H}_7 = -204.1 \,\text{kJ/mo}$

$$\hat{H}_4 = 32.47 \, \text{kJ/mol}$$

$$\Delta H = \sum_{out} n_i \widehat{H}_i - \sum_{in} n_i \widehat{H}_i = -1.26 \times 10^5 \frac{kJ}{s}$$

$$\hat{H}_3 = 8.12 \text{ kJ/mol}$$
 $\hat{H}_6 = 48.60 \text{ kJ/mol}$ $\hat{H}_4 = 32.47 \text{ kJ/mol}$ $\hat{H}_7 = 81.71 \text{ kJ/mol}$

$$\Delta H = \xi \Delta H_r^0 + \sum_{out} n_i \widehat{H_i} - \sum_{in} n_i \widehat{H_i} = -1.26 \times 10^5 \frac{kJ}{s}$$

Energy Balances: Procedure for Calculations

- 1. Perform all required material balances calculations (as much as possible)
- 2. Write the appropriate form of the energy balance (closed or open systems) and delete any of the terms that are either zero or negligible for the given process system
- 3. Choose a reference state (phase, temperature and pressure) for each species involved in the process
 - 1. If H or U for a species will be looked up in a table (such as the steam tables for water) choose the reference state used to generate the table
 - 2. Otherwise, choose one of the inlet or outlet steates as the reference states for the species (so that at least one H or U may be set equal to zero)
- 4. Construct a table with columns for number of species and specific enthalpies/internal energies) relative to the chosen reference states
- 5. Calculate all the required values
- 6. Use the final energy balance formula to find the desired quantities

Reminders

The Midterm grade (M) only benefits your Overall grade (O)

- Two cases, depending on your final exam grade (F):
 - 1. M > F: O = M*0.3 + F*0.7
 - 2. M < F: O = F

No electronic devices, except for calculators

Print physical property tables

Plan for Q&A session before exam → Class Reps?

If more questions/clarifications needed, still Q&A session!