Laboratory of Computational Systems Biotechnology

Introduction to Chemical Engineering

Teaching by:

Vassily Hatzimanikatis (vassily.hatzimanikatis@epfl.ch)

Assistants:

Denis Joly (denis.joly@epfl.ch)

Konrad Lagoda (konrad.lagoda@epfl.ch)

Zi Xuan Ng (zixuan.ng@epfl.ch)

Office hours: Mondays 16h-19h (CH H4 625) or schedule by email

Fridays, 14h15 - 17h00 2024-2025

Course Schedule

Date	Subject
13-Sep	1. Fundamentals of Material Balances 1.1. Process definition and classification 1.2. Material balance calculations
20-Sep	1.3. Balances on multiple-unit processes
27-Sep	Review on Mass Balances (non-reactive)
04-Oct	1.4. Chemical reaction stoichiometry 1.5.1 Balances on reactive processes (part 1)
11-Oct	1.5.2 Balances on reactive processes (part 2)1.6. Balances on multiple unit reactive processesReview on Mass Balances (non-reactive & reactive)
18-Oct	2. Energy and Energy Balances 2.1. Energy balances on closed systems 2.2. Open systems at steady state
01-Nov	3. Balances on Non-Reactive Processes 3.1. Energy balance calculation 3.2. Changes in Pressure, Temperature, Phases 3.3. Mixing and Solution
08-Nov	4. Balances on Non-Reactive Processes Problems: Mass and Energy Balances on non-Reactive Systems
15-Nov	Midterm Exam: Mass & Energy Balances non-Reactive Systems
22-Nov	Review Midterm
29-Nov	5. Balances on Reactive Processes 5.1. Heats of reaction/combustion 5.2. Combustion reactions 5.3. Enthalpy of reaction 5.4. Energy balance calculation
06-Dec	6. Energy balances on mixing processes Review
13-Dec	Review and Study Session

Recommended textbook:

Elementary Principles of Chemical Processes Richard M. Felder & Ronald W. Rousseau

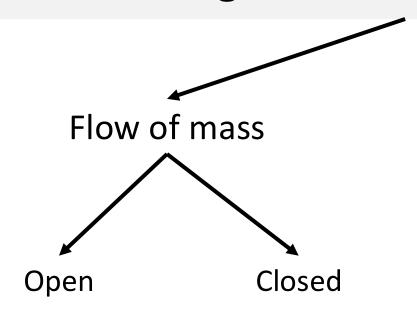
Session V: Friday 18 October 2024

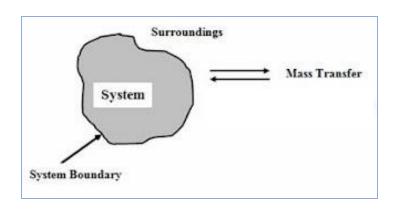
After studying this session you will be able to:

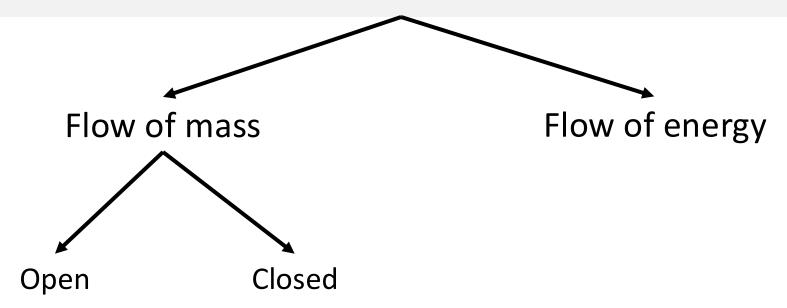
- 1. Understand the concepts of work and heat (signs!), intrinsic and extensive properties
- Identify non-reactive closed systems & Define an energy balance on them
- 3. Identify non-reactive **open** systems & Define an energy balance on them

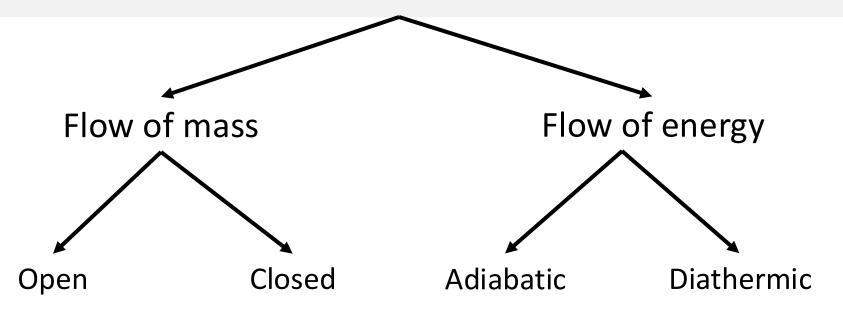
1. Introduction

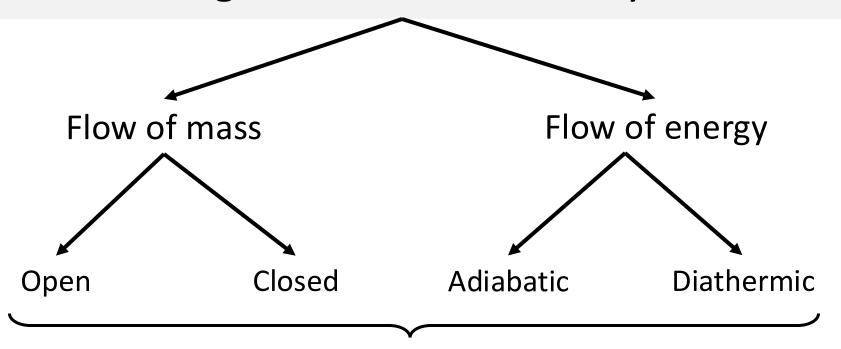
Introduction to energy balances

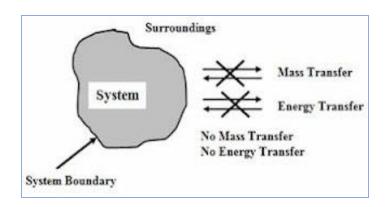

By performing energy balances, we answer questions like:

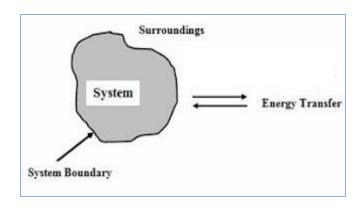

- How much energy is required for pumping 1000 m³/h?
- What is the rate of energy supply in a distillation column?
- A→B exothermic and 75% conversion @400k, what is the rate of energy removal to achieve the target?
- •
- Is there a cheaper way of achieving my process specifications? → Energy is expensive!!!


In the design of a process, we must account for:


- ✓ the flow of energy into and out of each process unit
- ✓ the overall energy requirement of the process


Flow of mass





Closed + Adiabatic

Closed + Diathermic

Forms and Transfer of energy of a system

The total energy of a system has 3 forms

1 Kinetic energy

Energy associated with movement

2 Potential energy

Energy in a potential field Gravitational, electromagnetic, ...

3 Internal energy

"Everything else" Molecular energy ...

Forms and Transfer of energy of a system

The total energy of a system has 3 forms

- 1 Kinetic energy
- Energy associated with movement
- 2 Potential energy

Energy in a potential field Gravitational, electromagnetic, ...

3 Internal energy

"Everything else" Molecular energy ...

The energy is transferred from the environment to a process system (and vice-versa) in 2 ways

- A Heat (Q): flow or exchange of energy due to ΔT
 - Could enter the system via conduction, convection, or radiation

- Work (W): flow or exchange of energy due to "driving forces" other than temperature (e.g.: voltage, force)
 - Could be done on, or by, the system

Clarifications

• Q, W are transferred energies: a <u>system does not</u> <u>possess heat or work</u>

Signs of Q and W according to this course conventions:

Clarifications

- Q, W are transferred energies: a <u>system does not</u> <u>possess heat or work</u>
- Signs of Q and W according to this course conventions:
 - Q>0 : heat entering the system
 Heat is positive because the system in effect gains energy when heat enters
 - Q<0 : heat leaving the system

Clarifications

- Q, W are transferred energies: a <u>system does not</u> <u>possess heat or work</u>
- Signs of Q and W according to this course <u>conventions</u>:
 - Q>0 : heat entering the system

Heat is positive because the system in effect gains energy when heat enters

- Q<0 : heat leaving the system
- W>0 : work done BY the system
- W<0 : work done ON the system

The choice for the sign of work is arbitrary but facilitates the reading of the expression of energy transferred to the system (see next slides):

$$E_{transferred} = Q - W$$

Types of work

- W_m : mechanical work which is due to movement of the boundary, (e.g., piston)
- W_{el}: electrical work (e.g., electrical generator)
- W_s: shaft work (e.g., mixing, turbine, pump)
- W_{fl}: flow work
 - Work done to push a fluid into system (use example of pistons moving fast)
 - · Work done to push fluid out of system

Example 1: Determine the sign of the work transferred to the system in the following cases:

- a piston compress the system
- a generator gives energy to the system
- a pump applies work into a stream (system)
- a turbine acts on a stream (system)
- a fluid (system) flows into a piston

Classification of properties

• Intensive property: is a physical property of a system that does <u>not</u> <u>depend on the system size or the amount of material</u> in the system.

E.g.: density, P, T

• Extensive property: is a property that is <u>directly proportional</u> to the <u>amount of material</u> in the system.

E.g.: mass and volume, internal energy (U)

• Specific property: is a property that <u>depends on</u>, or is calculated based on, <u>another measurable property</u>, and are <u>denoted</u> with a "^".

E.g.: density is considered 'specific' because it can be calculated from volume and mass

How to calculate an extensive property for the whole system?

- for internal energy of the system: U(J) = m (kg) Û (J/kg)
- for the continuous flow: $\mathring{U}(J/s) = \dot{m} (Kg/s) \hat{U} (J/kg)$

Defining the energy balance on a system

Recall the mother of all equations for conservation of mass:

Defining the energy balance on a system

Recall the mother of all equations for conservation of mass:

$$Acc = In - Out + Gen - Cons$$

Law of conservation of energy:

This states that: if E is the entire amount of energy in the system, then:

Defining the energy balance on a system

Recall the mother of all equations for conservation of mass:

$$Acc = In - Out + Gen - Cons$$

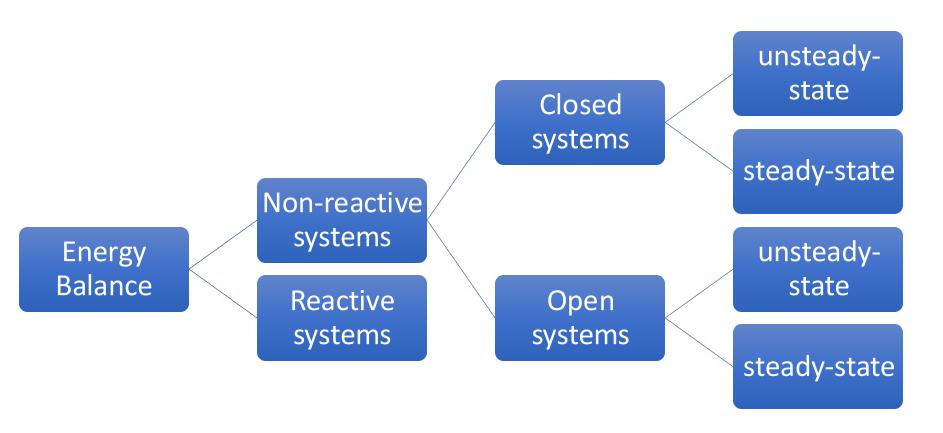
Law of conservation of energy:

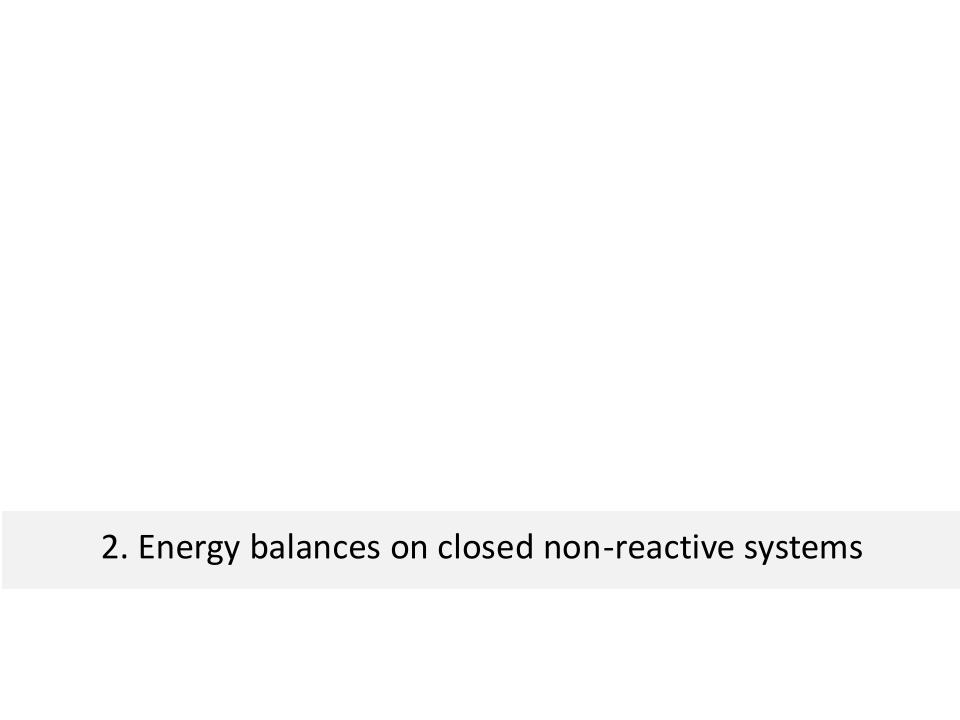
This states that: if E is the entire amount of energy in the system, then:

$$E_{accumulated} = E_{input} - E_{output} + E_{gen} + E_{transferred}$$

$$E_{in} = \sum_{input \ streams} m_j \hat{E}_j$$
, $E_{out} = \sum_{output \ streams} m_j \hat{E}_j$

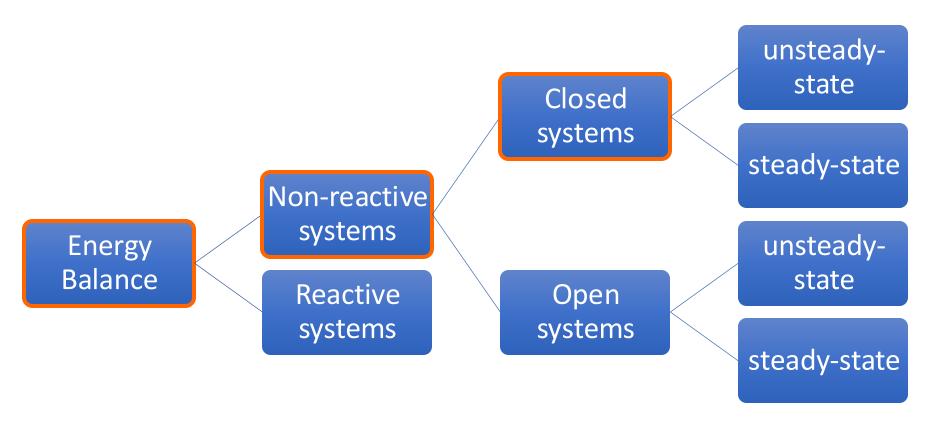
$$E_{transferred} = Q - W$$

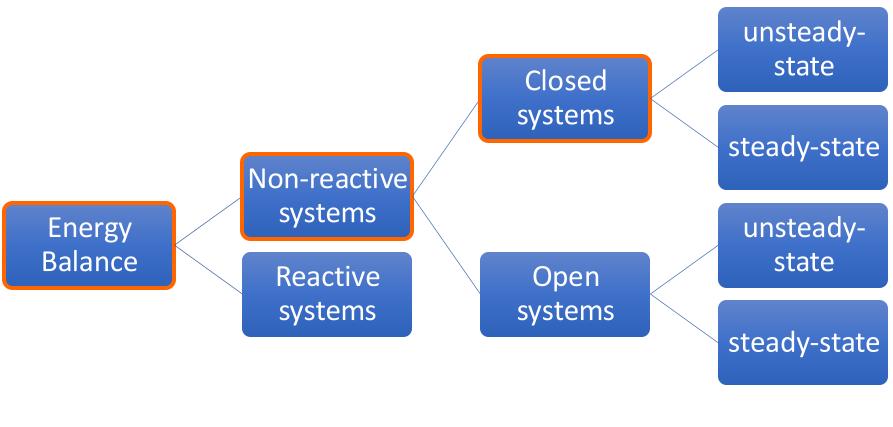

Q: heat transferred to the system from its surrounding (+ sign: gain of energy)


W: work **done by system** on its surrounding (+ sign so that –W is negative)

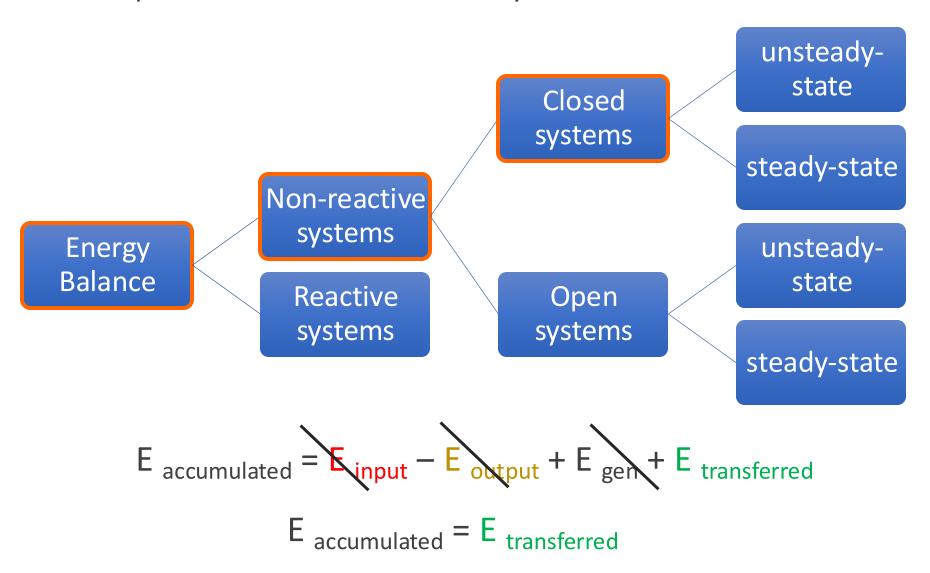
Energy balances overview

Depending on the system under study, the energy balance equation will simplify:

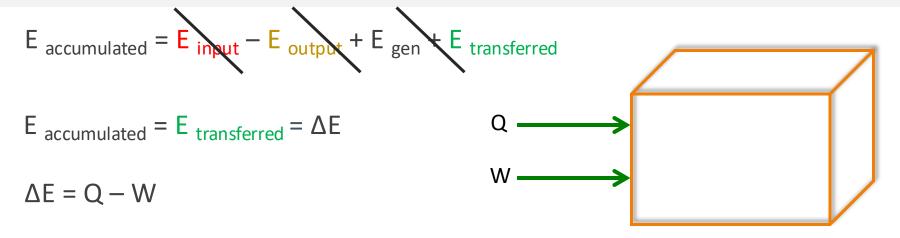

$$E_{accumulated} = E_{input} - E_{output} + E_{gen} + E_{transferred}$$


Energy balances on closed non-reactive systems

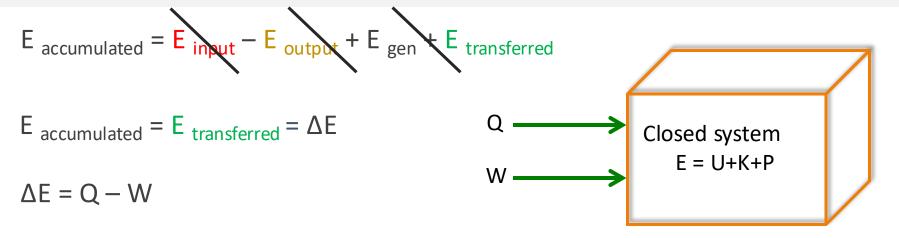
The simplest case consists in closed systems:


Energy balances on closed non-reactive systems

The simplest case consists in closed systems:



Energy balances on closed non-reactive systems

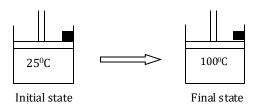

The simplest case consists in closed systems:

Energy Balance on a Closed System

Energy Balance on a Closed System

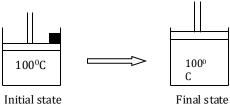
The total energy (E) may be regarded as composed of many forms. Obvious contributions to the total energy arise from the internal, kinetic and potential energies

$$Q-W = \Delta U + \Delta E_k + \Delta E_p$$


- ΔE_p is change in potential energy
- Q is heat transferred to the system
 - If the system is adiabatic, there is neither gain by the system not heat loss and Q is zero
- W is work done by the system
 - If there are no moving parts, then W=0

Example: Energy Balance on a Closed System

1 mole of gas contained in a cylinder fitted with movable position:


The cylinder is placed in boiling water and

I) Equilibrated: to 100 $^{\circ}C$

II) The piston is then released, and the gas does 100 J of work to move the piston to its new equilibrium position.

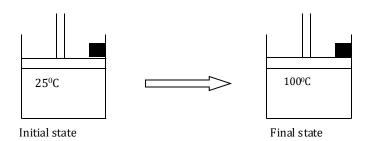
The final gas temperature is 100 $^{\circ}C$

Write and solve energy balances. For two stage with assuming:

- No changes in m, E_k & E_p
- Ideal gas
- $\hat{C}_v = 2 \text{ kcal.mol-1.k-1}$

Example: Energy Balance on a Closed System (Continued)

$$E_{\text{accumulated}} = E_{\text{input}} - E_{\text{output}} + E_{\text{gen}} + E_{\text{transferred}}$$

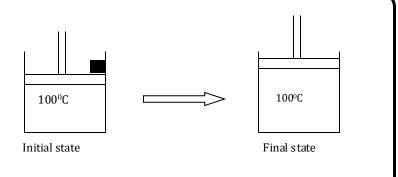

$$\Delta U + \Delta E_k + \Delta E_p = Q - W$$

$$m \Delta \hat{U} + m \Delta \hat{E}_k + m \Delta \hat{E}_p = Q - W$$

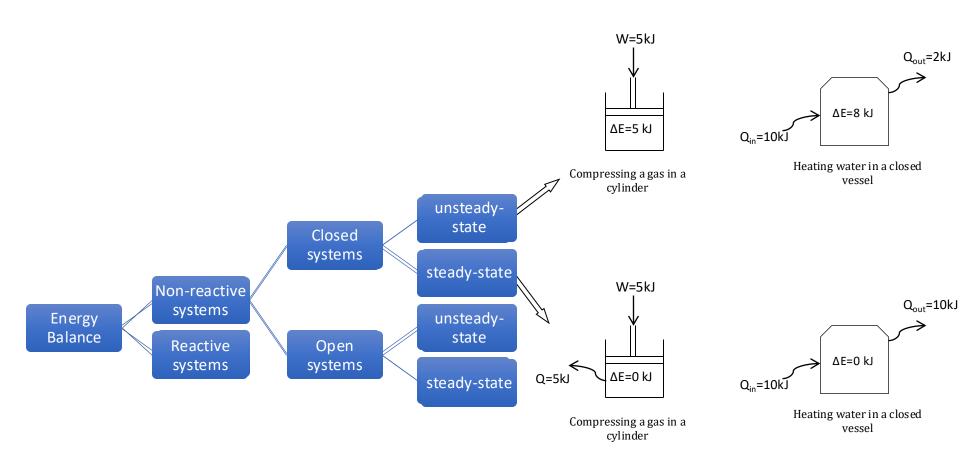
$$\begin{array}{c} \textbf{0} & \textbf{0} \\ \textbf{m} \; (\hat{\textbf{U}}_{f} - \hat{\textbf{U}}_{i}) + \textbf{m} \; (\hat{\textbf{E}}_{k, \, \text{final}} - \hat{\textbf{E}}_{k, \, \text{initial}}) + \textbf{m} \; (\hat{\textbf{E}}_{pf} - \hat{\textbf{E}}_{pin}) = \textbf{Q} - \textbf{W} \end{array}$$

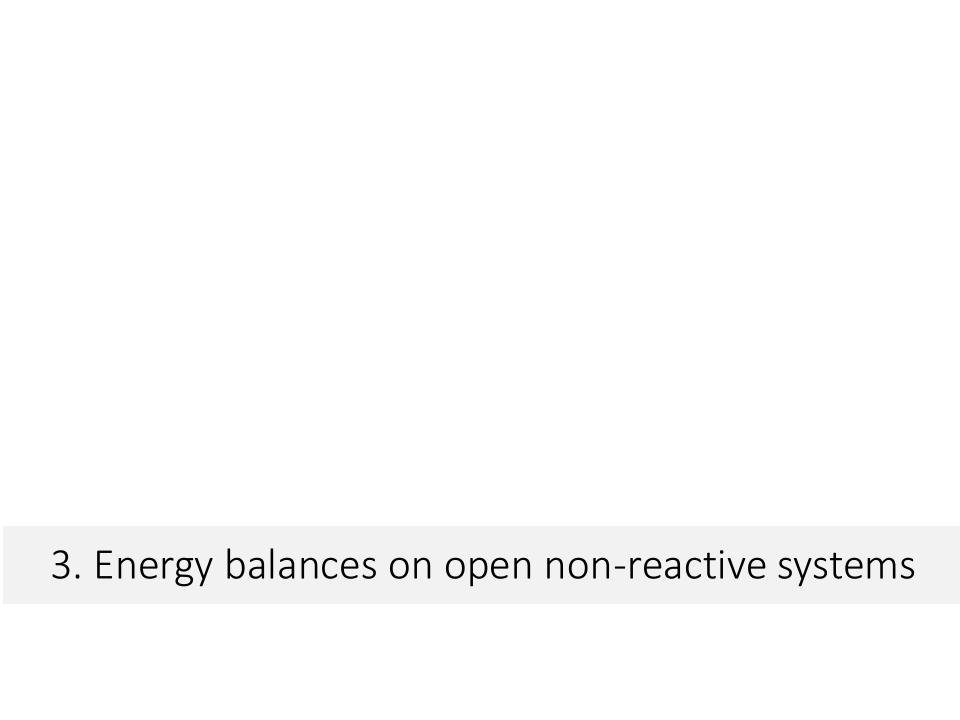
$$m (\hat{U}_f - \hat{U}_i) = m \Delta \hat{U} = Q$$

 $\Delta \hat{U} = \hat{C}_{v} (\Delta T) = 2.75 \text{ k} = 150 \text{ kcal} = 627.6 \text{ kJ}$ $\hat{C}_{v} \text{ for 1 mol of gas} = 2 \text{ kcal.mol}^{-1}.k^{-1}.1 \text{ mol} = 2 \text{ kcal.k}^{-1}$

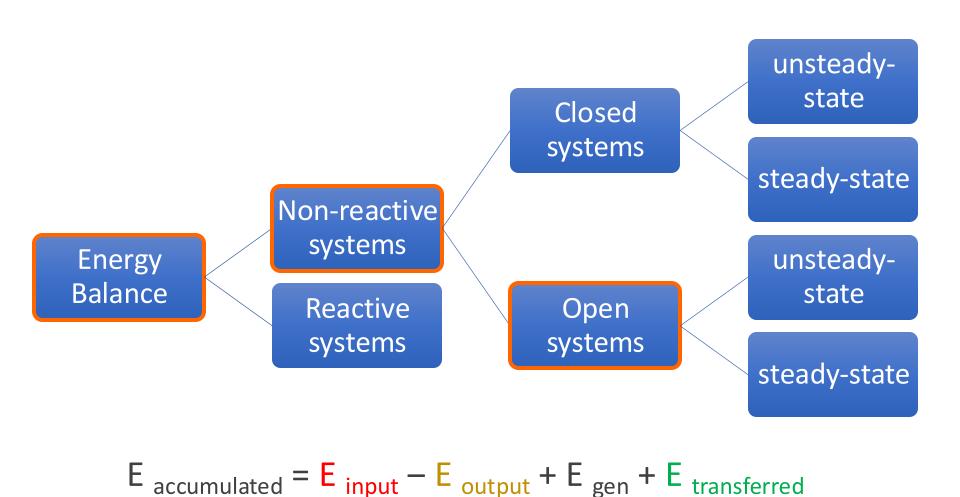

- No changes in m, E_k & E_p
- Ideal gas
- $\hat{C}_v = 2 \text{ kcal.mol-1.k-1}$

II)
$$U_{final} = U_{initial}$$
, because $\Delta T = 0$

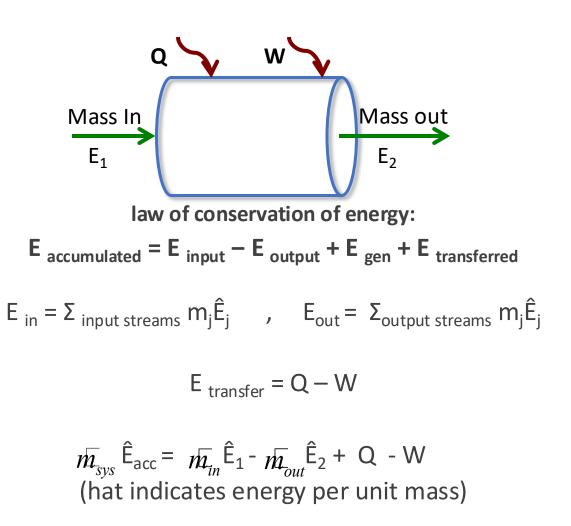

O


 $\Delta U + \Delta E_k + \Delta E_p = Q - W$ boundaries move so $W = /= 0!$
 $\Rightarrow 0 = Q - W \Rightarrow Q = W = 100 \text{ J} > 0$

What does Q > 0 mean? The system further absorbs energy in form of heat to do work



Examples of closed systems



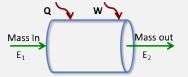
Energy balances on open non-reactive systems

Energy Balance on an Open System

A system is open if mass crosses the system boundary

Energy Balance on an Open System

$$m_{\overline{sys}}\hat{E}_{acc} = m_{\overline{i}n} \hat{E}_1 - m_{\overline{out}} \hat{E}_2 + Q - W$$

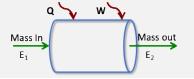

- For such a system, work must be done on the fluid mass to push it into the system; <u>flow work</u>
- Work could also be done by the fluid mass on moving parts of the system (example: steam driving a turbine); <u>shaft work</u>

$$W = W_{s} + W_{fl}$$
Accumulation=0
$$m_{1}(\hat{U}_{1} + \hat{E}k_{1} + \hat{E}p_{1}) - m_{2}(\hat{U}_{2} + \hat{E}k_{2} + \hat{E}p_{2}) + \hat{Q} - (W_{s} + W_{fl})$$

$$m_{1} = m_{2} = m$$

$$m D\hat{U} + Q - W_{fl} = 0$$

What is W_{fl} ?


Work required to push the mass in = $P_{in} V_{in}$ (N/m₂ * m³ = N.m=J) Work done by the fluid exiting the system = $P_{out}V_{out}$ The net rate of work done by the system = $W_{fl} = P_{out}V_{out} - P_{in} V_{in}$

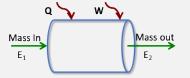
$$\stackrel{\cdot}{m} D\hat{\mathbf{U}} + \stackrel{\cdot}{Q} - \mathbf{W}_{fl} = \stackrel{\cdot}{m_1} \hat{\mathbf{U}}_1 - \stackrel{\cdot}{m_2} \hat{\mathbf{U}}_2 + \stackrel{\cdot}{Q} - \mathbf{P}_{out} \mathbf{V}_{out} + \mathbf{P}_{in} \mathbf{V}_{in} = 0$$

 $P_{out} V_{out} \rightarrow Work done \underline{by}$ system to push **out**

 $P_{in} V_{in} \rightarrow Work done <u>on</u> system by pushing in$

Definition of Enthalpy

$$\dot{m} \, D \hat{\mathbf{U}} + \dot{Q} \, - \mathbf{W}_{\mathrm{fl}} = \dot{m}_{1} \, \hat{\mathbf{U}}_{1} - \dot{m}_{2} \, \hat{\mathbf{U}}_{2} + \dot{Q} - \mathbf{P}_{\mathrm{out}} \, \mathbf{V}_{\mathrm{out}} + \mathbf{P}_{\mathrm{in}} \, \mathbf{V}_{\mathrm{in}} = 0$$


$$\dot{m}_{1} \, \hat{U}_{1} - \dot{m}_{2} \, \hat{U}_{2} + \mathcal{Q} - m_{2} P_{2} \hat{V}_{2} + m_{1} P_{1} \hat{V}_{1} = 0$$

$$\Rightarrow m_1(\hat{U}_1 + P_1\hat{V}_1) - m_2(\hat{U}_2 + P_2\hat{V}_2) + Q = 0$$

$$\hat{U} + P\hat{V} = ?$$

$$m_1 \hat{H}_1 - m_2 \hat{H}_2 + Q = 0$$

Definition of Enthalpy

$$\hat{U} + P\hat{V} = ? \triangleright \hat{U} + P\hat{V} = \hat{H} \qquad m_1\hat{H}_1 - m_2\hat{H}_2 + \mathcal{O} = 0$$

- So, using the enthalpy of streams takes into account the W_{fl} for streams in open systems
- $\hat{\mathsf{U}}$ is specific internal energy, P is pressure, and \hat{V} is specific volume
- It is not possible to know or estimate the absolute values of internal energy and enthalpy. We need to <u>find only the change in these</u> <u>properties</u> to make an energy balance
- The general energy equation for an open system with flow work, shaft work, kinetic energy changes, potential energy changes and heat transfer becomes:

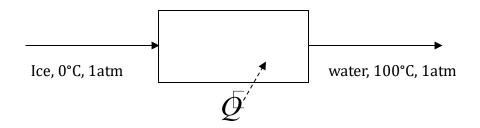
$$D\mathbf{H} + D\mathbf{E}_{k} + D\mathbf{E}_{P} = \mathbf{Q} - \mathbf{W}_{s}$$

Remarks

Closed system : $\Delta U + \Delta E_k + \Delta E_p = Q - W$

Open system: $D\mathbf{H} = \Sigma_{out} \dot{n}_i \hat{H}_i - \Sigma_{in} \dot{n}_i \hat{H}_i$ or $D\mathbf{H} = \Sigma_{out} \dot{m}_i \hat{H}_i - \Sigma_{in} \dot{m}_i \hat{H}_i$

Open system:
$$D\overline{H} + D\overline{E_k} + D\overline{E_p} = \overline{Q} - \overline{W_s}$$


ΔU only depends on the temprature: $\Delta \widehat{U} = \int_{T_1}^{T_2} (C_v)_T dT$

so for constant T:
$$\Delta U = 0 \rightarrow \Delta H = \Delta U + \Delta (PV) = V\Delta P$$

For the ideal gas, liquds and solids:

- For the solids and liquds : $C_p = C_v$
- For the gases : $C_p = C_v + R$ (from thermodynamics course!)

Example: Energy balance on an open system

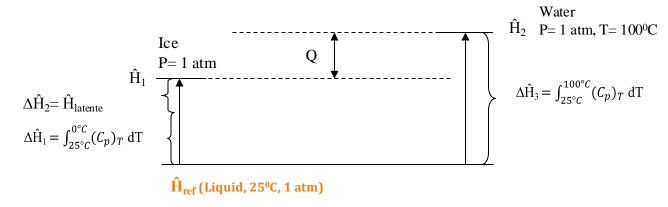
The process is st.st and it reach to a final stable situation

$$\bar{\mathcal{Q}}$$
= ? Kcal / min kg H_2O

$$D\hat{H} + D\hat{E}_{k} + D\hat{E}_{p} = \mathbf{Q} - \mathbf{W}_{s}$$

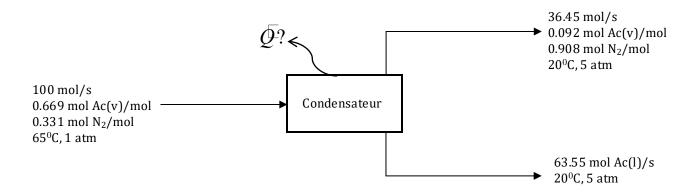
$$\dot{\mathbf{m}}_{out} \, \hat{\mathbf{H}}_{out} - \dot{\mathbf{m}}_{in} \, \hat{\mathbf{H}}_{in} = \mathbf{Q}$$

$$\Rightarrow \mathbf{Q} / \dot{\mathbf{m}} = \hat{\mathbf{H}}_{out} - \hat{\mathbf{H}}_{in}$$

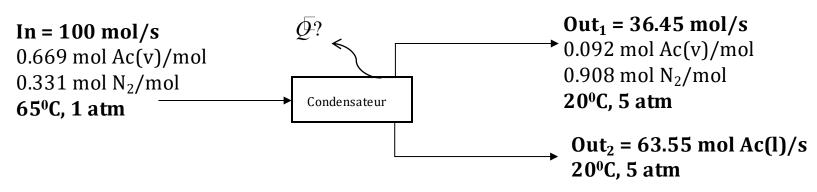

For a system with one flux in and one flux out without any accumulation: the mass in the system $\dot{m}_{in} = \dot{m}_{out} = \dot{m}$

$$\mathcal{Q}$$
 / \dot{m} = \hat{H}_{out} - \hat{H}_{in}

- To get the thermodynamic properties
 - using the tables, for a substrate by knowing T and P, we get $(\hat{H}, \hat{U}, V, \hat{C}_p, \hat{C}_v)$
 - given information for the reference state (P,T)


Species	min (mole/h)	Ĥin (KJ/mole)	mout (mole/h)	Ĥout (KJ/mole)
H ₂ O(s)	ṁ 1	Ĥwater(s) (Ĥ1)	_	_
H ₂ O(l)	_	_	m ₂	Ĥwater(l) (Ĥ2)

- We need a reference state to calculate Ĥ for the corresponding T and P
 - $\hat{H}_1 = \Delta \hat{H}_1 + \Delta \hat{H}_2$
 - $\hat{H}_2 = \Delta \hat{H}_3$

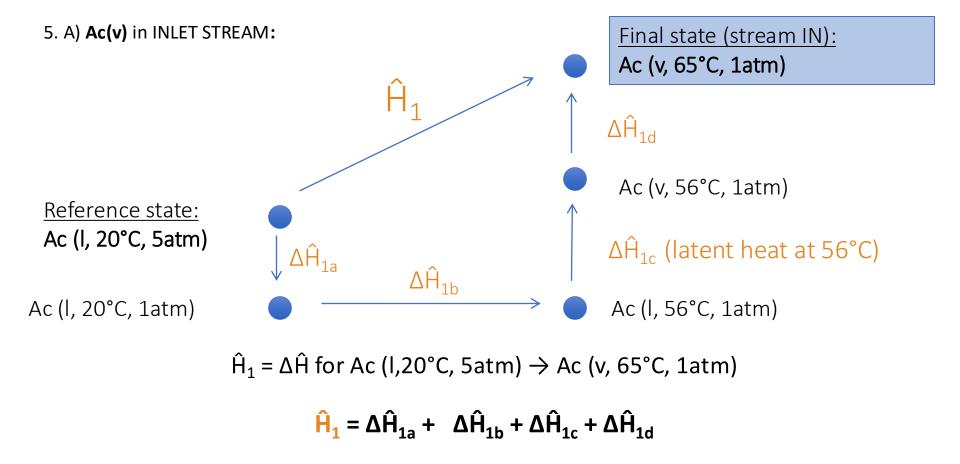

Example: Energy balance on a NR Open System

A mixture of Acetone and Nitrogen is entering in a cooling system (condenser) to separate the Acetone. based on the information given on the flowchart, calculate the Q needed to be removed from the system for this separation process.

- 1. Mass balance: already done
- 2. From the general energy balance equation to the simplified system energy balance equation

$$D\overline{H} + D\overline{E_k} + D\overline{E_p} = \overline{Q} - \overline{W_s}^{(\Delta E_k = 0, \Delta E_p = 0, \dot{W}_s = 0)} = DH = \sum_{out} n_i \stackrel{\wedge}{H_i} - \sum_{in} n_i \stackrel{\wedge}{H_i}$$

3. Reference states (for each specie in the system):


Ac (liq, 20°C, 5atm), N₂ (gas, 25°C, 1atm)

4. Open systems → inlet-outlet enthalpy table

Species	ṅ _{in} (mol/s)	Ĥin (kJ/mol)	nout (mol/s)	Ĥout (kJ/mol)		
Ac(v)	66.9	$\hat{\mathbf{H}}_1$	3.35	Ĥ3		
Ac(l)	_	_	63.55	0		
N ₂	33.1	Ĥ2	33.1	$\hat{\mathbf{H}}_4$		
All the species in	in INLET stream(s):		Ol	OUTLET stream(s):		
the system	Flowrates	Flowrates and specific		Flowrates and specific		
	enth	enthalpies*		enthalpies*		

* $\hat{\mathbf{H}}_{i}$ (specific enthalpy of specie i): should be calculated at the state of that specie in the inlet and outlet streams

5. Construct process paths: calculate the specific enthalpies

Recalling: Enthalpy and internal energy are **state properties**. In other words, the change in enthalpy of a specie depends only on the <u>final</u> and <u>initial</u> states and not on how the final state is reached from the initial state, <u>they are path independent</u>

Ac (I, 20°C, 5atm)
$$\xrightarrow{\Delta \hat{H}_{1a}}$$
 Ac (I, 20°C, 1atm) $\xrightarrow{\Delta \hat{H}_{1b}}$ Ac (I, 56°C, 1atm) $\xrightarrow{\Delta \hat{H}_{1c}}$ Ac (v, 56°C, 1atm) $\xrightarrow{\Delta \hat{H}_{1d}}$ Ac (v, 65°C, 1atm)

CHANGE IN PRESSURE AT CONSTANT TEMPERATURE (LIQUID PHASE → CONSTANT VOLUME):

$$\Delta \hat{H}_{1a} = \hat{V} \Delta P$$
 (the specific gravity of Ac is 0.791 and the MW is 0.058 kg/mol , so $\hat{V} = 0.0734$ L/mol)
$$\Delta \hat{H}_{1a} = \frac{(-4 \times 10^5 \text{ Pa}) \times (0.0734 \times 10^{-3} \text{ m}^3/\text{mol})}{1000} = -0.0297 \text{kJ/mol}$$

Pay attention to units! to find $\Delta \hat{H}_{1a}$ in KJ/mol, \hat{V} should be in m³/mol and ΔP in Pa

CHANGE IN TEMPERATURE AT CONSTANT PRESSURE (LIQUID PHASE):

o from table B.2: Ac (I) :
$$C_p$$
 (kJ/mol °C) = 0.123 + 18.6 × 10⁻⁵ T, for $\underline{T \text{ in } ^{\circ}C}$

$$\Delta \hat{H}_{1b} = \int_{20^{\circ}C}^{56^{\circ}C} (C_p)_{Ac(l)} dT = 4.68 \text{ kJ/mol}$$

CHANGE OF STATE (LATENT HEAT) AT CONSTANT PRESSURE AND TEMPERATURE:

$$\triangle \hat{H}_{1c}$$
 = 30.2 kJ/mol (latent heat at boling point, from Table B.1)

CHANGE IN TEMPERATURE AT CONSTANT PRESSURE (GAS PHASE):

o from table B.2: Ac (v):
$$C_p(kJ/mol^{\circ}C) = 0.07196 + 20.10 \times 10^{-5} \text{ T} - 12.78 \times 10^{-8} \text{ T}^2 + 34.76 \times 10^{-12} \text{ T}^3$$

$$\Delta \hat{H}_{1d} = \int_{56^{\circ}C}^{68^{\circ}C} (C_p)_{Ac(v)} dT = 0.753 \text{ kJ/mol}$$

$$\hat{H}_1 = (-0.0297 + 4.68 + 30.2 + 0.753) = 35.6 \text{ kJ/mol}$$

5. A) N₂ in INLET STREAM:

 $\hat{H}_2 = \Delta \hat{H}$ for N_2 (g, 25°C, 1atm) $\rightarrow N_2$ (g, 65°C, 1atm)

CHANGE IN TEMPERATURE AT CONSTANT PRESSURE (GAS PHASE):

From Table B.2: $C_{p,N2,g} = 0.029 + 0.2199 \times 10^{-5}T + 0.5723 \times 10^{-8}T^2 - 2.871 \times 10^{-2}T^3$

$$\hat{H}_2 = \int_{25^{\circ}C}^{65^{\circ}C} (C_p)_{N2(g)} dT = 1.16 \text{ kJ/mol}$$

5. B) Ac(v) in OUTLET STREAM:

CHANGE OF STATE (LATENT HEAT) AT CONSTANT PRESSURE AND TEMPERATURE:

 $\hat{H}_3 = \Delta \hat{H}$ for Ac (I, 20°C, 5atm) \rightarrow Ac (v, 20°C, 5atm)

 \hat{H}_3 = 32 kJ/mol (creating a path, since we only have the latent heat at the b.p.)

5. B) N₂ in OUTLET STREAM:

 $\hat{H}_4 = \Delta \hat{H}$ for N₂ (g, 25°C, 1atm) \rightarrow N₂ (g, 20°C, 5atm)

 $\hat{H}_4 = N_2 (g, 25^{\circ}C, 1atm) \rightarrow N_2 (g, 20^{\circ}C, 1atm) \rightarrow N_2 (g, 20^{\circ}C, 5atm)$

CHANGE IN TEMPERATURE AT CONSTANT PRESSURE (GAS PHASE):

$$\hat{H}_4 = \int_{25^{\circ}C}^{20^{\circ}C} (C_p)_{N2(g)} dT = -0.1 \text{ kJ/mol}$$

CHANGE IN PRESSURE AT CONSTANT TEMPERATURE (GAS PHASE):

For N_2 (g, 20°C, 1atm) $\rightarrow N_2$ (g, 20°C, 5atm) there is a very small change of enthalpy that can be neglected

6. Solve the simplified energy balance equation:

Species	ňin (mol/s)	Ĥin (kJ/mol)	nout (mol/s)	Ĥout (kJ/mol)
Ac(v)	66.9	$\hat{\mathbf{H}}_1 = 35,6$	3.35	$\mathbf{\hat{H}}_3 = 32$
Ac(l)	_		63.55	0
N ₂	33.1	$\hat{H}_2 = 1,16$	33.1	$\mathbf{\hat{H}}_4 = -0,1$

$$\Delta \dot{H} = [(3.35) (32.0) + (63.55) (0) + (33.1) (-0.10)] \text{ kJ/s} + ...$$

$$... - [(66.9) (35.6) + (33.1) (1.16)] \text{ kJ/s} = -2320 \text{ kJ/s}$$

$$DH = Q = -2320 \text{ kJ/s} = -2320 \text{ kW}$$

Thermodynamics data

- Enthalpy and internal energy are state properties. In other words, the change in enthalpy of a species depends only on the <u>final</u> and <u>initial</u> states and not on how the final state is reached from the initial state, <u>they are path independent</u>
- Enthalpy and internal energy of species could be tabulated with respect to a reference state (temperature, pressure and phase)
- There are "tables" at the end of the book that the thermodynamic properties can be looked up from them instead of calculating them every time
- You should get used to knowing how to read these tables!!

Procedure for Energy Balance Calculations

- 1. Make material balance calculations and find flow rates (or masses) of all streams
- 2. Write the generalized **energy balance equation** and cancel all the terms that are either zeros or can be neglected
- 3. Choose **reference states for each specie** involved. By reference state we mean **T, P and the phase** of the species. A proper choice of the reference states enables easy calculation of enthalpies and hence, energy balances
- 4. For **open systems**: construct an **inlet-outlet enthalpy table** with mass or molar flow rates
 - For closed systems: the table should contain initial-final amounts of species and internal energies
- 5. Estimate the specific enthalpies or internal energies and insert the values in the Table constructed in step 4. You need to **construct process paths to determine specific enthalpies and internal energies**
- **6. Solve** the simplified **energy balance** equation (from step 2) and calculate the unknowns