Introduction to Chemical Engineering

Problem Sheet 2 – Week 3 – September 27 2024

Goals: Consolidating Your Foundations on Non-Reactive Systems

This week's exercise is designed to strengthen your understanding of material balances on non-reactive systems, whether using mass balances or mole balances.

Remarks:

 A splitter/splitting point does not alter the composition of the input and output streams; it only divides the total flow rate of the input stream into several output streams with different flow rates (see Problem 2)

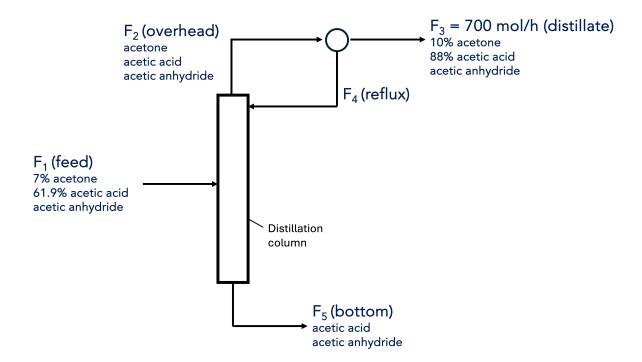
Problem 1: Pure Ethanol (Material Balance - Single Unit - Non-reactive)

Suppose you want to make 1000 kg/h of pure ethanol by separating a mixture that contains 60% water and 40% ethanol. To help with the separation, you add a pure benzene stream to the distillation column. This helps remove the water from the ethanol.

The distillate that comes out of the top of the distillation column has 75% benzene, 24% water, and the rest is ethanol. As mentionned above, the process also produces pure ethanol.

Start by drawing a labeled flowchart of the process and then determine how much benzene needs to be fed into the distillation column.

Problem 2: Distillation with Reflux (Material Balance – Multiple Units – Non-reactive)


You are tasked with calculating all the flow rates in a distillation system, where a three-component mixture is separated. The feed mixture consists of 7% acetone, 61.9% acetic acid, and 31.1% acetic anhydride (all percentages are in mol %).

The overall system is designed to produce:

- A bottoms stream with no acetone
- A distillate stream of 700 mol/h, containing 10% acetone and 88% acetic acid (in mol %).

Additionally, 60% of the overhead is returned as reflux to the column.

You are required to calculate all the flows within the system (in mol/h), assuming that all compositions are given in mol %

Problem 3: Orange juice (Material Balance - Multiple Units - Non-reactive)

Fresh orange juice contains 12.0 wt% solids (the solids include sugars, fibers, and other non-water components) and 88% water. Concentrated orange juice contains 42.0 wt% solids and 58% water. Initially, the juice was concentrated using a single evaporation process, but this caused many of the volatile flavor compounds to escape with the water, resulting in a flat-tasting concentrate.

A new process is introduced to solve this issue. In this process, a fraction of the fresh juice (containing 12% solids and 88% water) bypasses the evaporator, while the remaining juice enters the evaporator and is concentrated to 58 wt% solids and 42% water. The concentrated stream from the evaporator is then mixed with the bypassed fresh juice to achieve a final concentration of 42% solids and 58% water.

Tasks:

1. Draw and Label a Flowchart:

- You are asked to draw and label a flowchart for this process. Assume that only water is evaporated, meaning the solids and flavor compounds remain unaffected.
- o The species involved include:
 - Fresh juice (12% solids, 88% water)
 - Evaporated juice (58% solids, 42% water)
 - Final product (42% solids, 58% water)
 - Water vapor (the water removed by the evaporator)
- Prove that the subsystem, where the bypass stream splits off from the evaporator feed, has one degree of freedom (i.e., one variable that can be controlled independently).
- o Perform a degree-of-freedom analysis for:
 - The overall system
 - The evaporator
 - The bypass
 - The mixing point
- List the equations you would need to solve to determine all unknown stream variables. Circle the variable for which each equation would solve, but do not perform any calculations.

2. Calculate the Amount of Product and Fraction of Bypassed Feed:

- Calculate the amount of 42% concentrate orange juice produced per
 100 kg of fresh juice fed to the process.
- Determine the fraction of the fresh juice that bypasses the evaporator.

3. Consider a Different Concentration and Suggest Drawbacks:

- The **volatile flavor compounds** are primarily retained in the portion of the fresh juice that **bypasses the evaporator**.
- Consider how you could improve flavor retention by increasing the solids concentration to 90% in the evaporator, instead of 58%. This would result in bypassing a larger fraction of the fresh juice.
- o Suggest potential **drawbacks** of this approach