Frontiers in Chemical Synthesis I Towards Sustainable Chemistry

Seminar Program June 6-7, BCH 3118

	Speaker	Title		
June 6, 2011				
Session I: New Technologies for Organic Chemistry (Chairman: Stefano Nicolai)				
9h30-10h45	Filippo De Simone	Flow Chemistry in Organic Synthesis		
10h45-12h00	Weija Gan	Design of Ligands for Metal-Catalyzed Reactions in Water		
Session II: Functionalization of Olefins and C-H bonds (Chairman: Jean-Baptiste Gualtierotti)				
13h30-14h45	Ala Bunescu	Palladium-Catalyzed C-H Amination		
14h45-16h00	Laetitia Souillart	Late Stage C-H Activation in Protecting Group Free Total Synthesis		
16h00-17h15	Baihua Ye	Rhodium-Catalyzed Hydroamination of Olefins		
June 7, 2011				
Session III: Organocatalysts and Radicals (Chairman: Filippo De Simone)				
8h15-9h30	Thomas Buyck	Organocatalysis by N-Heterocyclic Carbenes		
9h30-10h45	Florian De Nanteuil	Cooperative Catalysis: Organocatalysts and Metals		
10h45-12h00	Jean-Baptiste Gualtierotti	Metal and Enlightenment, Radical Pathways toward Complex Structures		
Session IV: Metal Catalysis (Chairman: Baihua Ye)				
13h30-14h45	Pablo Marcelo Perez Garcia	Enantioselective Reactions Catalyzed by Iron Complexes		
14h45-16h00	Daniel Lamey	Gold Nanoparticles for Heterogenous Catalysis in Organic Chemistry		
16h00-17h15	Stefano Nicolai	Rhodium-Catalyzed Cycloaddition Reactions		

Flow Chemistry in Organic Synthesis

Litterature Talk

Filippo De Simone

EPFL

6 June 2011

1) Try to identify the limitations of flow chemistry

2) In witch context flow chemistry is advantageous?

Table of contents

- Introduction...from batch to flow
- Temperature, pressure, light...µW, induction, photochemistry
- Flow on supported catalysts...oxidation and reduction
- Solid Phase...mono- and multi-components
- Multi-steps flow synthesis...from easy to complex

Flow chemistry

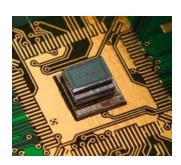
Microfluidics (10⁻⁹ to 10⁻¹⁸ L) Control of concentration in space/time

Molecular analysis (GC, HPLC, CE)

- Small volume
- Low cost
- Short analysis time

Biodefence

1990 Microfluidic detector (for chemical and biological threats)


Academic interest

Molecular biology

DNA sequencing

Microelectronics

Microelectronics Technologies

(DARPA = Defense Advanced Research Projects Agency from US Department of Defense

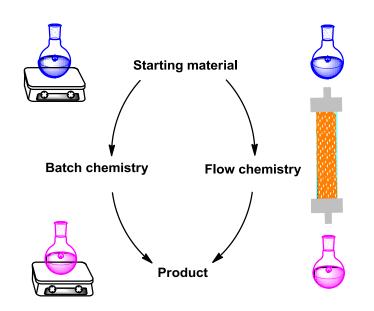
From batch to flow

- > Superior heat and mass transfer rates (hight surface/volume ratio)
- Easy scale up (bigger or multi columns)
- ➤ Safe use of extreme pressures and temperatures
- > Precise control of conditions
- ➤ Reduced chemical exposion and waste
- ➤ Ideal for fast reactions, esothermic reactions, instable intermediate

Microfluidic and Minifluidic

Microfluidic (ø 10-500 μm)

- High heat transfer
- Efficient mixing
- Low flow capacity
- High pressure drop
- Tendency to block


Minifluidic ($\emptyset > 0.5$ mm)

- High flow capacity
- Low pressure drop
- No blocking
- Multigrams-multikilogram scale
- Packed reactors
- Lower heat transfer

From batch to flow

Stoichiometry Concentration / Volumetric ratio

- Batch Volume
- Concentration
- Reaction time

Stoichiometry
Concentration / Flow rate

- Reactor Volume
- Residence time
- Operation time

EtOH → AcOH	Industrial batch process	Flow microreactor
Residence time (s)	1760	3
Conversion (%)	30/90	>99
Reaction volume (cm ³)	2900	3
Throughput (cm ³ /h)	5930	4300
Space-time yield (h ⁻¹)	0.7-2.0	500

From batch to flow Heck reaction

1.5 mol% Pd₂(dba)₃
1.1 equiv Cy₂NMe,
dioxane

3 mol% P(*t*Bu)₃

- Side biaryl compound
- Formation of black Pd
- Insoluble ammonium salt

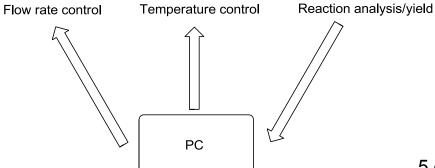
G. C. Fu, *JACS* **2001**, *123*, 6989.

1 mol% Pd(OAc)₂
1.2 equiv Cy₂NMe,
n-butanol, 90°C

PtBu₂
3 mol%

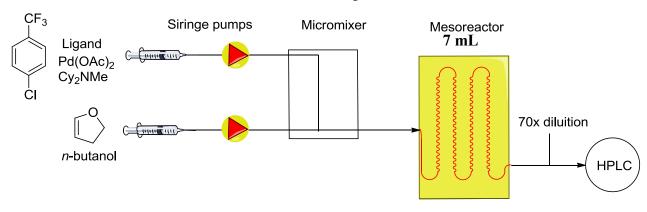
$$CF_3$$

S. L. Buchwald and K. F. Jensen, ACIE, 2010, 49, 7076.


From batch to flow Heck reaction

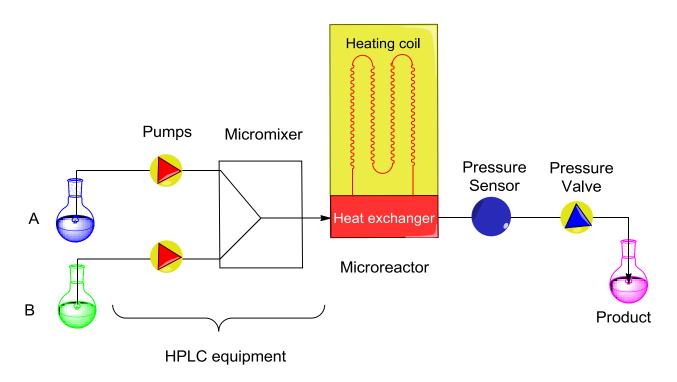
Self optimization

Variable:


- Residence time
- Equivalents of alchene
- Concentration
- Catalyst loading
- Ph value
- Ionic strenght

5 eq of alchene 6 gr of aryl chloride Yield 83% Process time 20 min

From batch to flow Heck reaction

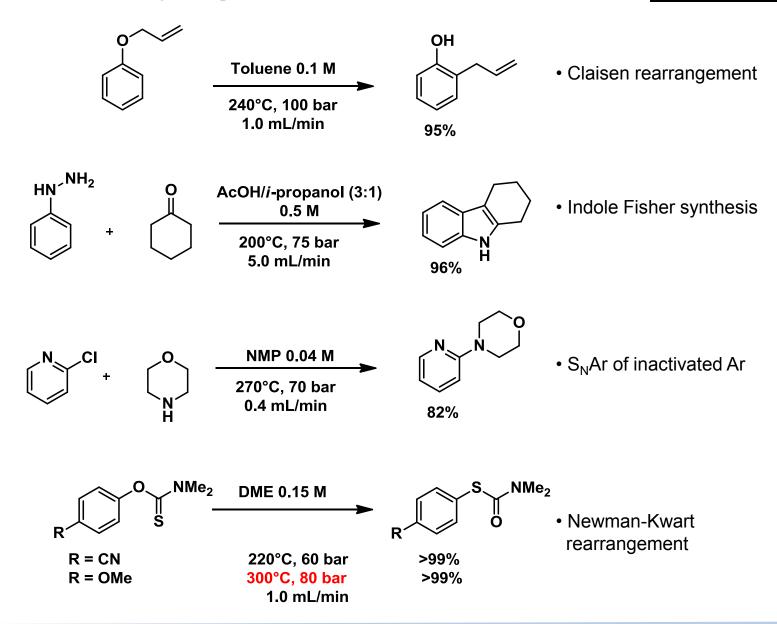

Scale up

Concentration of alchene adjusted manually No feedback control Comparison with microscale

5 eq of alchene 26.9 g of product Yield 80% Process time 2 hours

High Temperature/Pressure Conditions

Steal microreactor:

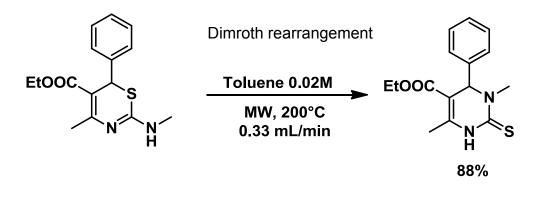

- Pressure up to 200 bar
- Temperature > 300°C
- Rapid heating and cooling
- Easily scale-up

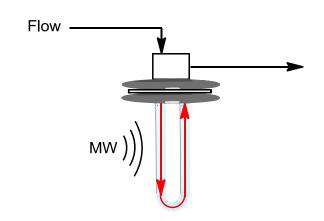
High Temperature/Pressure Conditions

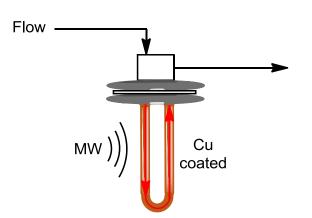
Li, Y.; Padias, A. B.; Hall, H. K., Jr. J. Org. Chem. 1993, 58, 7049.

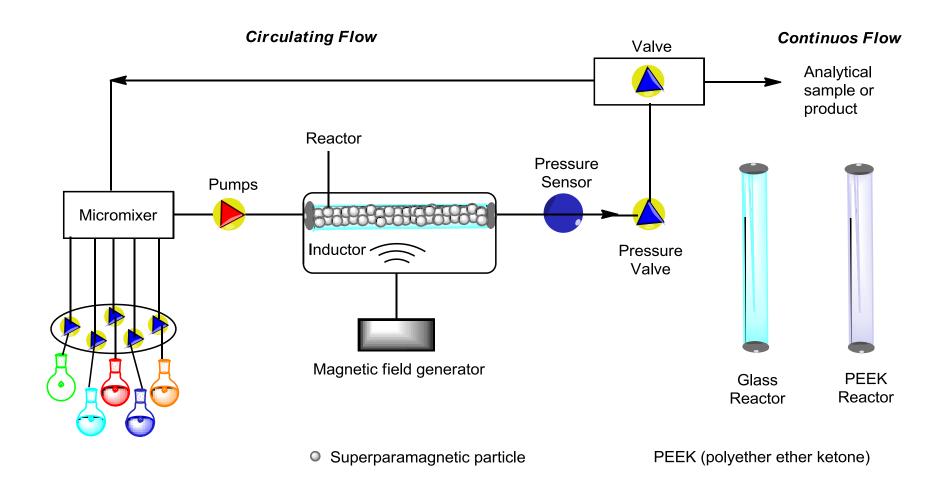
T. N. Glasnov and C. O. Kappe, Eur. J. Org. Chem., 2009, 1321

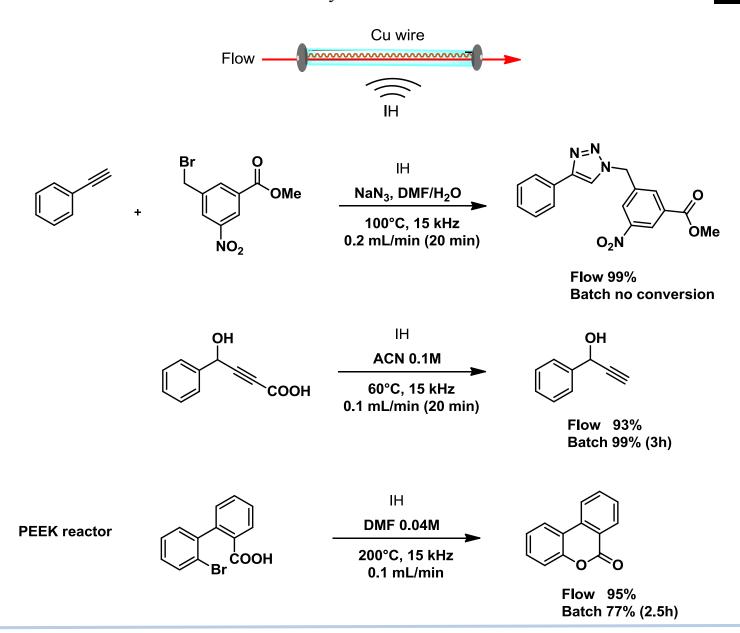
High Temperature/Pressure Conditions

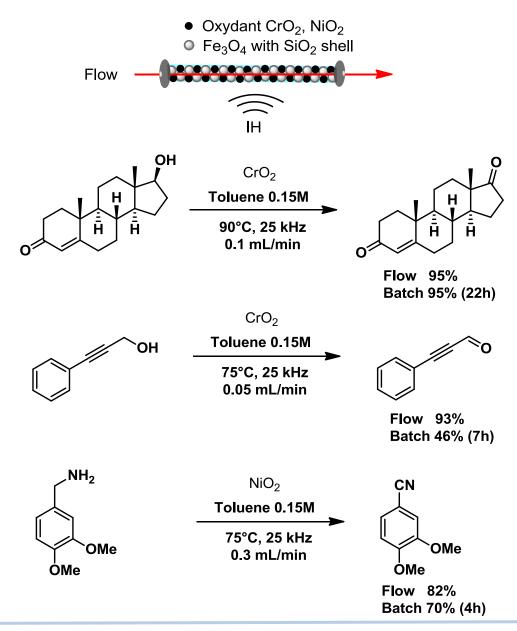


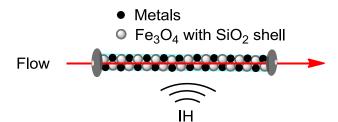

Supercritical Conditions

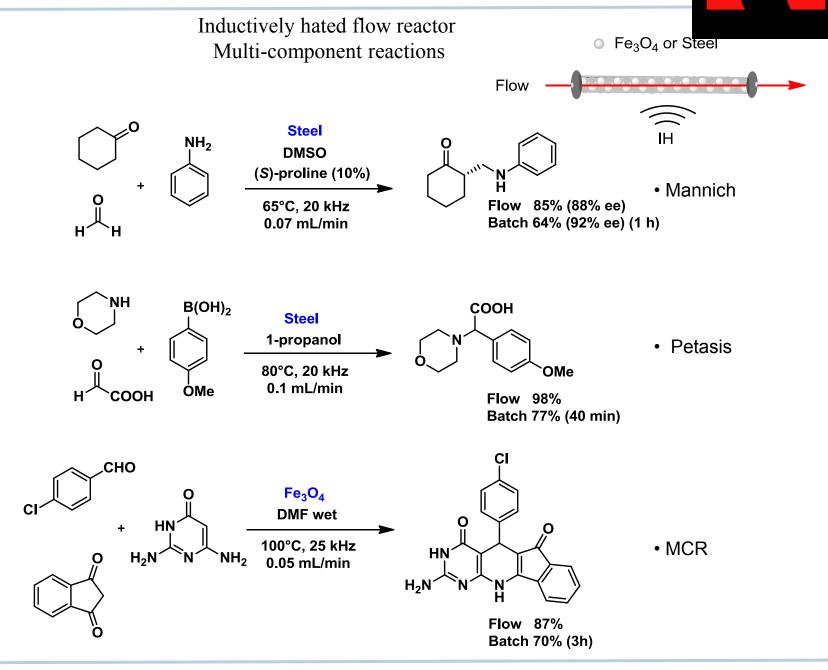

C. O. Kappe, Eur. J. Org. Chem., 2009, 1321


M. Poliakoff, Green Chem., 2008, 10, 98.

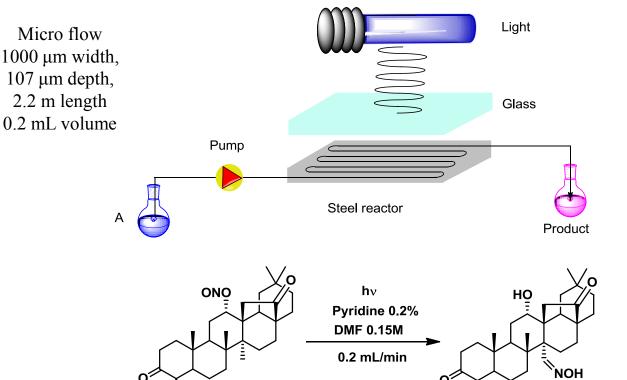

Microwave-assisted synthesis







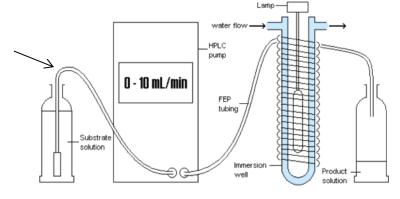
Hydrogenolysis


Reduction

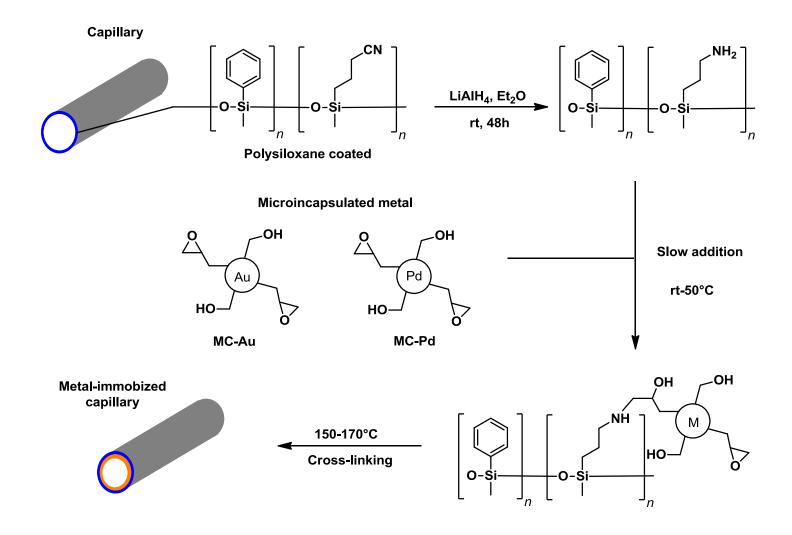
Reformatzky

Flow and photochemistry

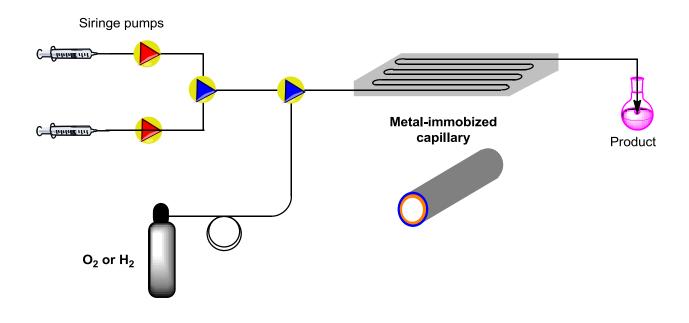
Burton reaction

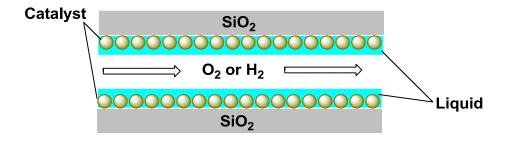

Mini flow 1000 μm width, 500 μm depth, 0.5 m length 4 mL volume

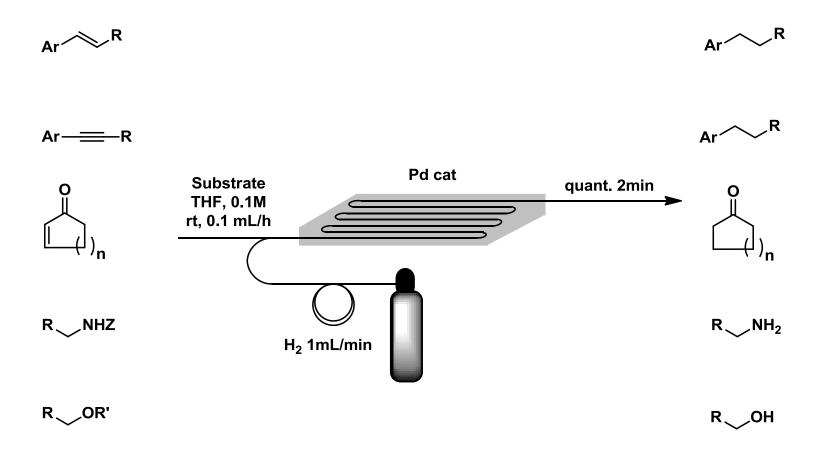
- Micro flow condition (10 mL)
- 15 W black light or LED
- Pyrex glass
- 71% yield
- mg scale, 0.05 mL/h
- 6-12 min residence time


- Mini flow condition
- 15 W black light (6x)
- Pyrex glass
- 61% yield
- 5.3 g (HPLC) 40 h of flow
- 20 min residence time

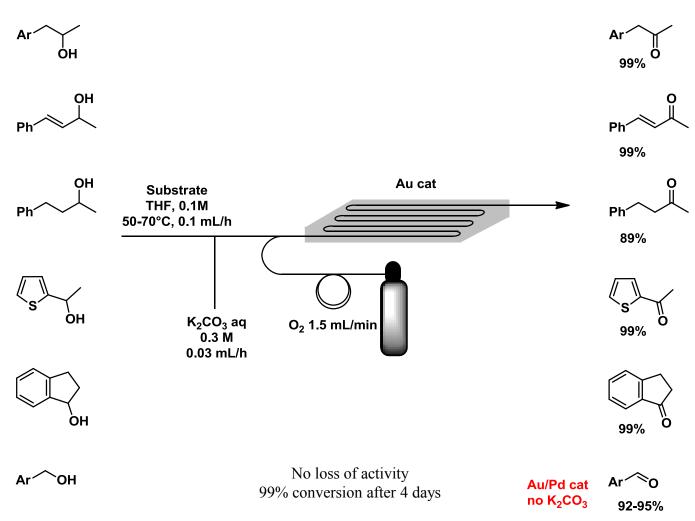
Flow and photochemistry Photocycloadditions


Fluorinated ethylpropylene

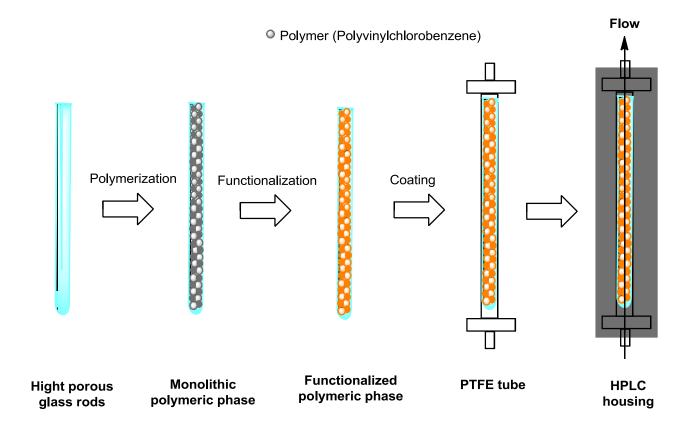

Flow on supported catalysts


Flow on supported catalysts

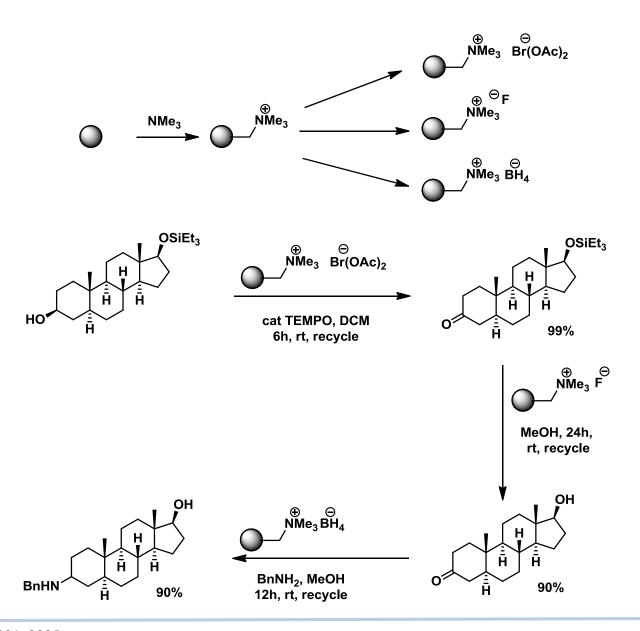
3 Phases



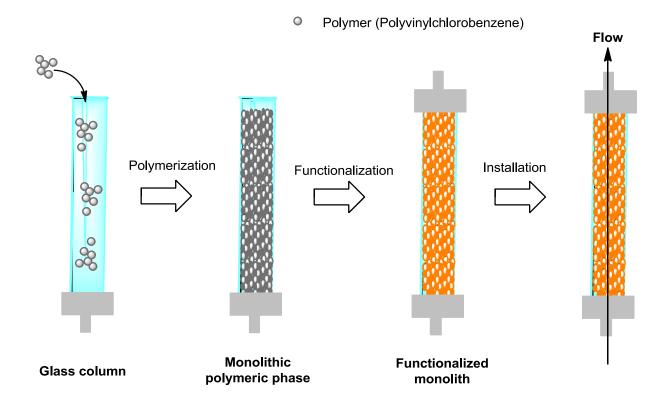
Flow on supported catalysts Hydrogenation


Flow on supported catalysts

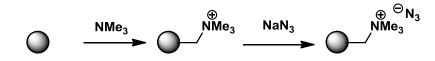
Oxidation

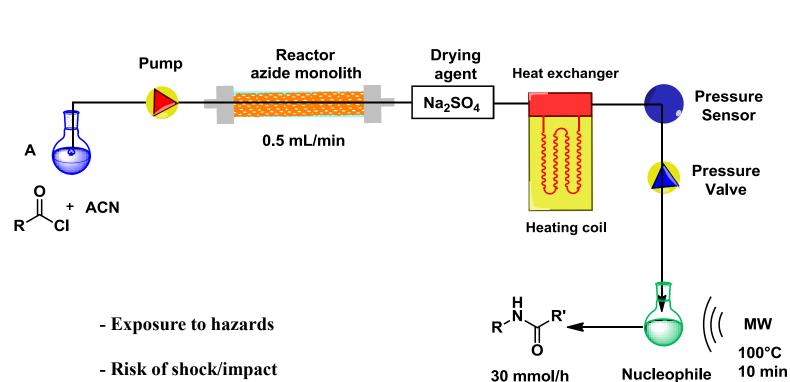


Full conversion in flow


PASSflow Polymer Assisted Solution-phase Synthesis

- Homogeneus surface
- Hight pressure drop avoided
- HPLC system used
- Wide functionalization

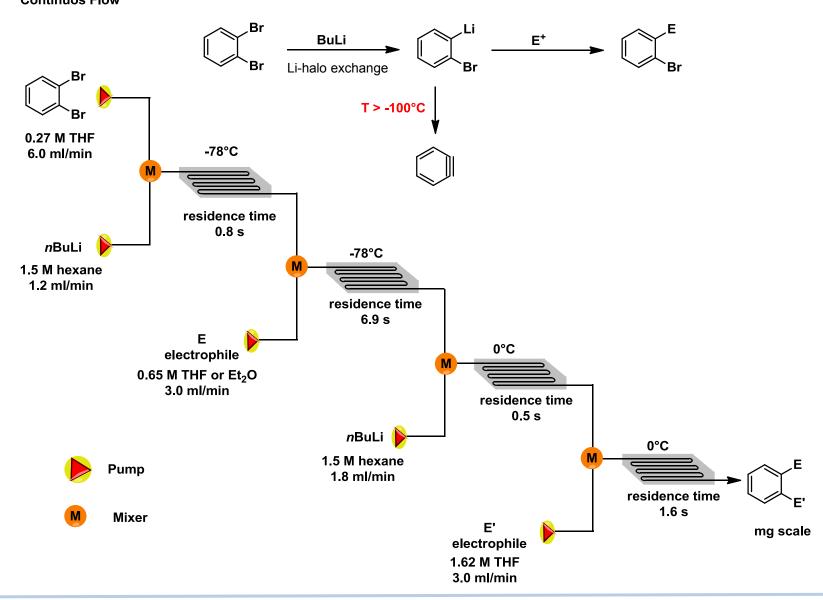



Curtius Rearrangement

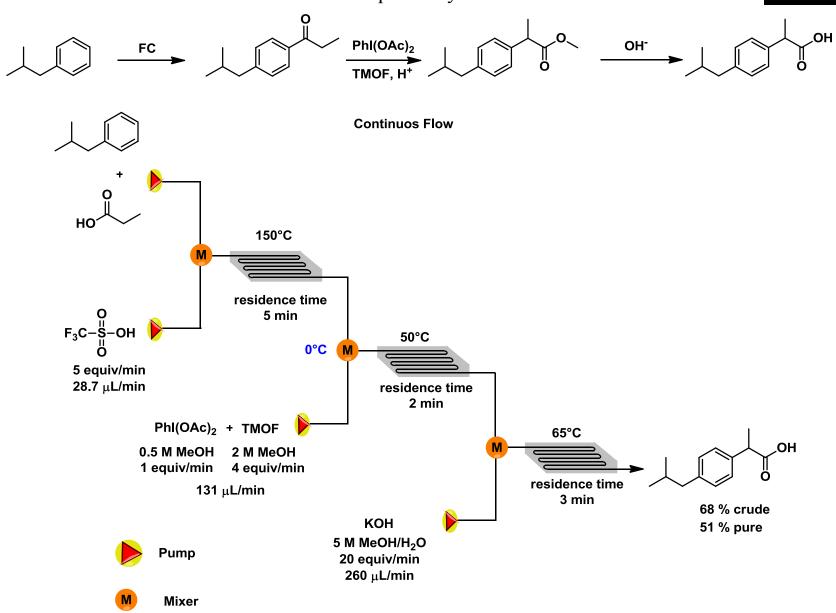
- Control of pore dimension
- Micro- and mini-flow system
- Easy to scale up
- Wide functionalization

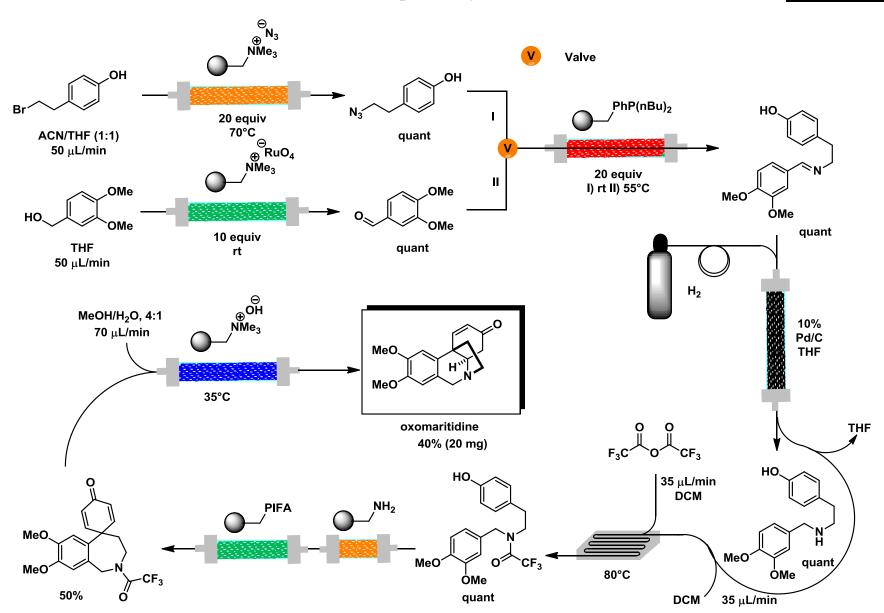
Curtius Rearrangement

- + Multiple usage
- + Easy regenaration

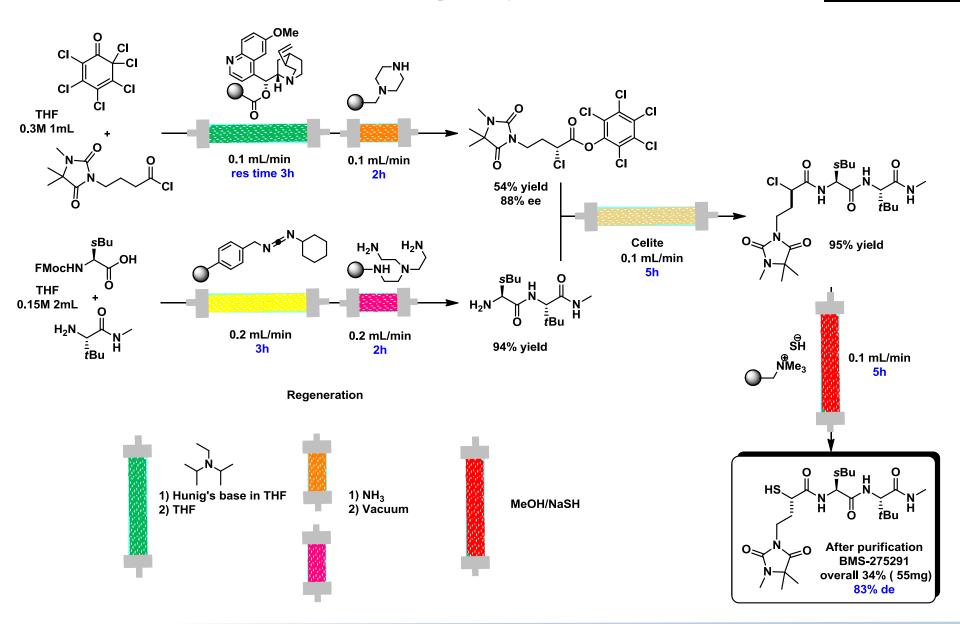

Curtius Rearrangement

78%


74%


90%

Continuos Flow



Multi step flow synthesis

Conclusion

- Flow chemistry high potential to improve synthesis process
- Flow chemistry: safe, time saving and easy scale up
- Progress needed in multi reactor assembly
- Collaboration between Chemists and Engineers are essential

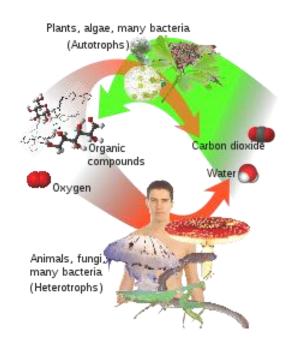
DESIGN AND APPLICATION OF HYDROPHILIC LIGANDS FOR AQUEOUS-PHASE METAL-CATALYZED ORGANIC REACTIONS

Questions?

How to improve the mass transport issue in aqueous-biphasic system?

How the hydrophilic functionalities could influence the ligand properties (water solubility, steric and electronic effects)?

Outline


- Introduction
 - Why and how to use water as the solvent for organic reactions
- Strategies to perform organic reaction in water using hydrophilic ligands
 - Examples of aqueous-phase hydroformylation
- Examples of the application of the hydrophilic ligands on some typical organic reactions
 - Hydrogenation; metathesis; cross-coupling; oxidation; etc.
- Conclusions and perspectives

Solvent of life - water

Water covers more than 70.9% of the earth's surface and makes up about 60% of the mass of the human body.

 Water plays an important role in the world economy as it functions as solvent for a wide variety of chemical substances and facilitates industrial cooling and transportation.

Organic solvents vs. water

Organic solvents

- Dissolve a wide range of organic compounds
- A variety of options and properties
- Volatile and easily removed
- Toxic, inflammable, nonrenewable, low heat capacities, etc.

Water

- Nontoxic
- Nonflammable
- High heat capacity
- Relatively inexpensive
- Green solvent
- Poor solvent for most organic molecules
- Highly reactive with many reagents.

Homogeneous metal catalyzed reactions

 Homogeneous catalysts offer unparalleled degrees of selectivity and tunability from

Pioneering industrial processes:

Wacker oxidation; olefin hydroformylation

Modern processes:

asymmetric hydrogenation; Pd-catalyzed cross-coupling; olefin metathesis, etc.

Similar solubility characteristics of the catalyst and product – how to recover the metal from the product?

How to recover the catalyst?

Catalyst immobilization

- To heterogenize the homogeneous catalyst by attaching it to a solid support, allowing the catalyst to be recovered in the same way as traditional heterogeneous catalysts.
- Synthetically challenging
- Decreased activity and selectivity
- Metal leaching

Organic immiscible solvents

- To constrain the catalytic species in an organic immiscible liquid, allowing the reaction to proceed by stirring the immiscible phases.
- Retain the reactivity and selectivity properties
- Good activities when sufficient interaction between the substrate phase and catalyst phase provided
- Simple decantation separation
- water, fluorous solvents, supercritical
 CO₂, and ionic liquids

Water as an organic immiscible solvent

- Proven track record of using water in industrial catalytic processes: Wacker oxidation;
 Rhône-Poulenc hydroformylation of propene.
- Poor solvent for most organic molecules
 - The hydrophilic catalysts and hydrophobic products strongly partition into their relative phase;
 - Phase separation can be easily achieved upon completion of reaction.
- Green solvent
 - Water in its pure form is completely benign;
 - Significant savings in the use of solvents and energy in the purification process can be realized by simplifying the separation \rightarrow low E-factor (kg of waste/kg of product).
- Water becomes waste itself once contacted with organic materials; its high heat capacity makes purification by distillation an energy intensive process.

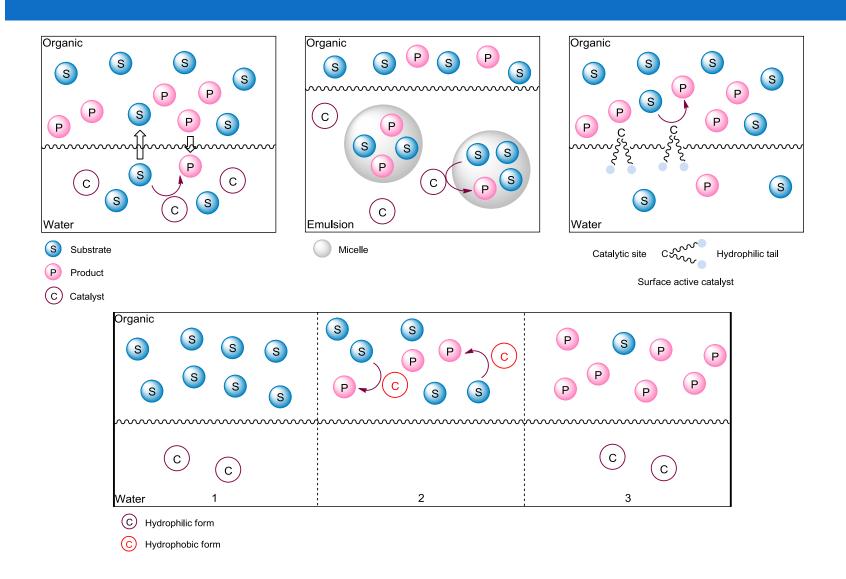
Water effect on chemical reactivity and selectivity

- Accelerating reactions through hydrophobic effect (organic reactants in water attempt to minimized their interaction with water), favoring reactions with negative volumes of activation;
- The Lewis-basic nature of water leads in some cases to accelerated reactions;
- Water is highly polar and provides effective solvation for ionic species, leading to solvent separated ions;
- Providing the opportunity to finely tune pH;
- Serving as an acid, base, nucleophilic reagent, and even a hydrogen source.

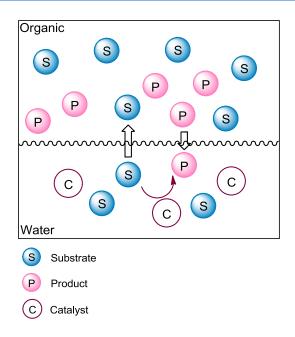
Reactions in water can in some cases proceed **much differently** than they do in traditional organic solvents.

Design of hydrophilic ligands

- Suitable hydrophilic functionality:
 - Partition into aqueous phase;
 - Providing the necessary steric and electronic properties to provide desired catalyst stability, activity and selectivity.
- Attaching water-solubilizing groups to known hydrophobic ligands:
 - Most common ionic substituents: -SO₃-, -COO-, -PO₃-, -NMe₃+
 - Non-ionic hydrophilic substituents: polyol, carbonhydrate, polyether


A major challenge in aqueous-biphasic catalysis is to bring the water soluble catalyst into contact with the hydrophobic substrate and other reagents.

L1: mTPPMS


L2: mTPPTS

S. Ahrland, et al. *J. Chem. Soc.*, **1958**, 276. E. G. Kuntz, French Patent, 2,314,910, **1975**.

Possible modes for aqueous-biphasic catalysis

For molecules with some degree of water solubility

The reaction can occur in the aqueous bulk through interaction of the watersoluble catalyst with the substrate dissolved in water.

Starting point of aqueous-phase catalysis: Rhône-Poulenc process

☐ Hydroformylation of Propene: Co → Rh

This process was commercialized in a plant in Oberhausen, Germany in 1984. Initial capacity was 100,000 tons/year.

E. G. Kuntz, French Patent, 2,314,910, 1975.

Other hydrophilic ligands applied to the hydroformylation of lower olefins

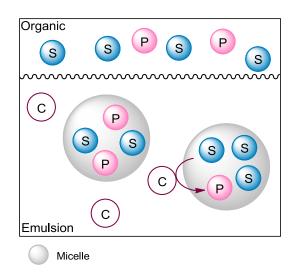
L3: THMP

PPh_nAr_{2-n}

$$PPh_nAr_{2-n}$$
PPh_nAr_{2-n}

$$PPh_nAr_{2-n}$$

Catalyst (Rh)	Substrate	l/b	Recyclability
L2 mTPPTS		24:1	Industrial process
L3		0.75:1	-
L4		97:3	-
L5		98:2	Constant conversion over 2 month period
L6		30:1 *	5 cycles in the absence of CO


^{*} Results obtained under low pressure (10 bar CO/H₂) when **L1** gave the l/b ration of 16:1.

PPh_nAr_{2-n}
PPh_nAr_{2-n}

$$Ar = m-C_6H_4SO_3$$

A. Fukuoka, et al. *Chem. Commun.* 1999, 489.
W. A. Herrmann, et al. *J. Mol. Catal.* 1992, 73, 191.
W. A. Herrmann, et al. *J. Mol. Catal. A*, 1995, 97, 65.
H. Bahrmann, et al. *J. Mol. Catal. A*, 1997, 116, 49.
M. Kranenburg, et al. *Organometallics.* 1995, 14, 3081.

For molecules less soluble in water

- To use water miscible organic co-solvents to increase the solubility of the hydrophobic substrate in the aqueous solution;
- □ To use surfactants or phase transfer agents to carry the organic reagent into the aqueous phase by formation of water-soluble micelles with hydrophobic interiors.

Strategies for hydroformylation of higher olefins

To use a water-miscible organic co-solvent to increase the solubility of the alkene in the aqueous phase or of the catalyst in the organic phase

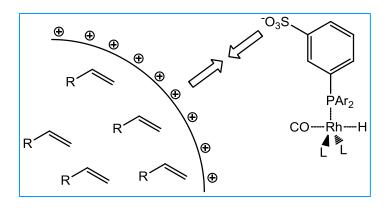
Catalyst	Substrate	Solvent	Reaction condition	Conversion
Rh- <i>m</i> TPPTS		H ₂ O		No conversion
	1-dodecene	ethanol/H ₂ O 1/1	2 h, 100°C	25%
		propanol/H ₂ O 1/1		42%
	4	H ₂ O	15 h, 80°C	24%
	1-octene	methanol/H ₂ O 1/1	10 h, 80°C	90%

- The linear selectivity decreased
- Catalyst leaching into the organic phase
- Undesirable reactions, such as acetal formation

- H. Chen, et al. J. Mol. Catal. A, 1999, 149, 1.
- F. Monteil, et al. J. Organomet. Chem. 1994, 480, 177.
- P. Purwanto, et al. Catal. Today, 1995, 135.

Strategies for hydroformylation of higher olefins

 To use surfactants to provide micelles to make the hydrophobic substrate dispersed in the aqueous phase, increasing the water/organic interfacial area significantly


Catalyst	Substrate	Surfactant	Reaction condition	Conversion
Rh-<i>m</i>TPPTS 1-dodecene		No surfactant		No conversion
	Cationic surfactant CTAB		61%	
	Dicationic surfactant	2 h, 100°C	78% - 85%	
	Neutral surfactant Tween 20 and Spam 40		3 - 4%	
		Anionic surfactant SDS		No conversion

- The linear selectivity was higher than using co-solvent
- Complicated phase separation

P. Purwanto, et al. Catal. Today, 1995, 135.

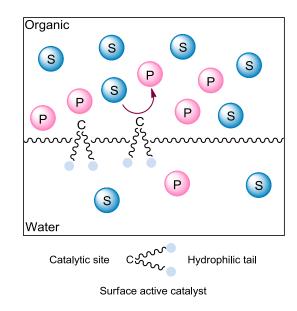
Micelle surface

The cationic surfactants play more than just a simple role of forming micelles

Strategies for hydroformylation of higher olefins

To use cyclodextrins (CD) as inverse phase transfer catalysts

Strategies for hydroformylation of higher olefins


The degree of methylation is an important parameter in these systems. Methylated CD has surface-active behavior and lower stability of the aldehyde inclusion complex.

Catalyst	Substrate	Surfactant	Reaction condition	Conversion	Aldehyde selectivity
		No CD		< 1%	-
Rh-		β-CD	18 h, 80°C	6%	90%
mTPPTS	1-decene	Dimethylated β-CD		51%	90%
		Randomly methylated β-CD (12.6 methyl/CD)	8 h, 80°C	100%	95%
Rh-L7/L8	1-octene		18 h, 80°C	100%	> 99%

■ The steric congestion of CD-supported olefin can also increase linear selectivity in some cases.

E. Monflier, et al. *Tetrahedron Lett*, **1995**, *36*, 9481.
M. Dessoudeix, et al. *Eur. J. Inorg. Chem.* **2001**, 1797.
E. Monflier, et al. *Angew. Chem. Int. Ed.*, **1995**, *34*, 2269.
M. Reetz, et al. *Angew. Chem. Int. Ed.*, **1997**, *36*, 865.

For molecules less soluble in water – surface active ligands

- Surfactant-like structures with long aliphatic tails connected to an hydrophilic functionality; the metal coordination site is placed on the hydrophobic end of the ligand;
- In some cases the ligand itself can form micelles, in addition to supporting the metal catalyst.

Strategies for hydroformylation of higher olefins

The development of ligands that can act as surfactants themselves

coo-	
-00C	
L9 : <i>m</i> TPPTC	

Catalyst (Rh)	Substrate	Reaction condition	Conversion	Aldehyde selectivity	I/b
<i>m</i> TPPTS		3 h, 80°C	2%	45%	2.8:1
L9 <i>m</i> TPPTC	1-octene		94%	87%	2.3:1
L10 (n=3)		10 h, 120°C		85% yield	8:1
L11		5 h, 120°C		73% yield	94 : 6
L12 (n=6)		24 h, 120°C		97% yield	98 : 2

$$P + (CH_2)_n - SO_3$$

$$L10$$

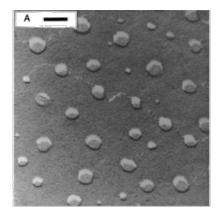
$$Ar = \xi - O(CH_2)_n - SO_3^-$$

L12

- S. Tilloy, et al. Adv. Synth. Catal., 2006, 348, 1547.
- T. Bartik, et al. J. Mol. Catal., 1994, 88, 43.
- H. Ding, et al. J. Mol. Catal. A, 1997, 124, 21.
- M. S. Goedheijt, et al. J. Am. Chem. Soc., 2000, 122, 1650.

Vesicles formed by ligands

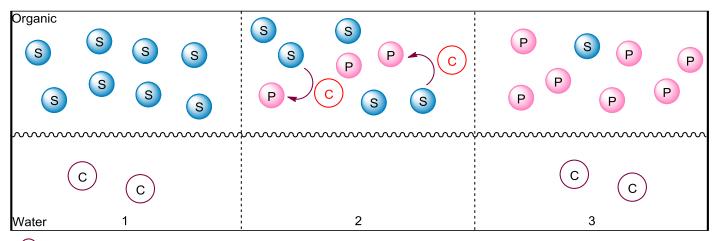
- Electron microscopy pictures showed the vesicles formed by L12 in aqueous solution.
 - A. A uniform distribution of vesicles of L12 (n=3);
 - B. A large and an average sized vesicle formed by L12 (n=6).


$$PAr_{2}$$

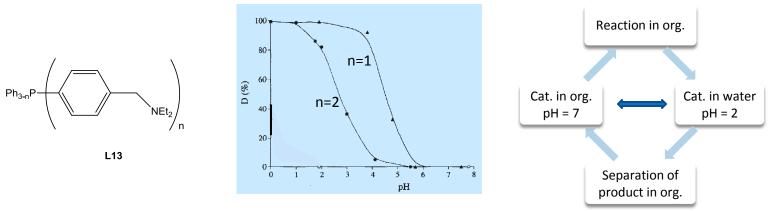

$$PAr_{2}$$

$$O(CH_{2})_{n}$$

$$SO_{3}$$


$$L12$$

Aqueous-biphasic catalysis - Mass transport issue


The ideal catalyst would have controllable solubility properties.

- C Hydrophilic form
- C Hydrophobic form
- To carry out the reaction using an ionic ligand in a polar solvent under homogeneous conditions. Upon completion, water can be added to give a biphasic mixture with the products in the organic phase and the catalyst in the aqueous phase;
- To design ligands with adjustable solvent properties: by changing a reaction variable (pH or Temperature), the catalyst partitions into the organic phase to provide high activity; at the end of reaction, the conditions are changed back to allow easy separation

pH responsive ligands for Rh-catalyzed hydroformylation of 1-octene

Amine-functionalized ligands has pH-controlled phase preference

- Activity nearly identical to PPh₃ in toluene;
- The recovered catalyst retained 98.5% of Rh and 86% of its original activity. The loss of activity is likely due to decomposition of the catalyst under the strongly acidic and basic conditions used for recovery.

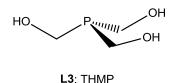
A. Buhling, et al. J. Mol. Catal. A, 1997, 116, 297.
M. Karlsson, et al. J. Chem. Soc. Dalton Trans., 1999, 4187.
A. Buhling, et al. J. Chem. Soc. Dalton Trans., 1996, 2143.
A. Buhling, et al. Organometallics. 1997, 16, 3027.

PEG-substituted ligands with inverse temperature-dependent solubility

$$\mathsf{Ph}_{2\text{-m}}\mathsf{P} - \mathsf{O}(\mathsf{CH}_2\mathsf{CH}_2\mathsf{O})_\mathsf{n}\mathsf{H} \\ \mathsf{L17}$$

m	n	Cloud point (°C)
1	8	26
	16	52
	25	75
2	15	55
	20	71
3	18	95

	T (°C)	Aldehyde yield	I/b
	70	10.4%	160 : 1
Rh-L18 catalyzed hydroformylation of	80	26.4%	1.42 : 1
1-decene, time 5h	90	81.7%	0.98 : 1
	100	95.6%	0.64 : 1

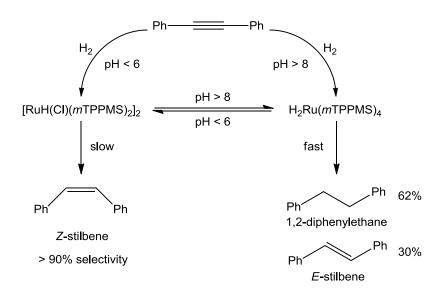

□ For Rh-L19, the TOF was 418 h⁻¹ at 100°C; at room temperature, the catalyst located exclusively in the aqueous phase, which could be used for 20 reaction cycles with only 5% loss in activity.

Examples of the application of hydrophilic ligands

- Aqueous-phase hydrogenation
- Aqueous-phase olefin metathesis
- Aqueous-phase palladium-catalyzed cross-coupling
- Aqueous-phase catalytic oxidation
- Substrate partitioning-controlled reaction in aqueous phase.

Olefin hydrogenation

 One of the earliest examples of the use of a hydrophilic ligand for aqueous-phase catalysis: to use Rh-THMP catalyzing the hydrogenation of 1-octene in ethanol (rapid hydrogenation) and water (no activity).



"We conclude that these complexes show no obviously useful catalytic properties"

THMP complexes of ruthenium and iridium have shown modest activity in some hydrogenation and hydroformylation reactions in water.

Ru-mTPPMS catalyzed hydrogenation

- Early examples of alkene hydrogenation in aqueous-biphasic systems by Manassen, Joó and Wilkinson.
- pH-dependent hydrogenation by [RuCl₂(mTPPMS)₂]₂

Y. Dror, et al. J. Mol. Catal. 1977, 2, 219.
F. Joó, et al. Inorg. Chim. Acta., 1977, 25, L61.
A. F. Borowski, et al. Nouv. J. Chim., 1978, 2, 137.
H. H. Horváth, et al. React. Kinet. Catal. Lett., 2005, 85, 355.
F. Joó, et al. Angew. Chem. Int. Ed., 1998, 37, 969.

pH-dependent hydrogenation of cinnamaldehyde

- \Box Hydrogenation of α, β-unsaturated aldehydes, such as cinnamaldehyde, can give the **unsaturated allylic alcohol** by reduction of aldehyde; the **saturated aldehyde** by reduction of alkene; or the **fully reduced saturated alcohol**.
- Hydrogenation of cinnamaldehyde under comparable conditions in toluene using Ru/PPh₃ complexes give low selectivity with the fully reduced alcohol being the major product in most cases.

$$[RuH(CI)(mTPPMS)_{2}]_{2}$$

$$pH > 8$$

$$pH > 8$$

$$pH > 8$$

$$pH < 6$$

$$fast$$

$$h_{2}$$

$$pH < 6$$

$$fast$$

$$h_{3}$$

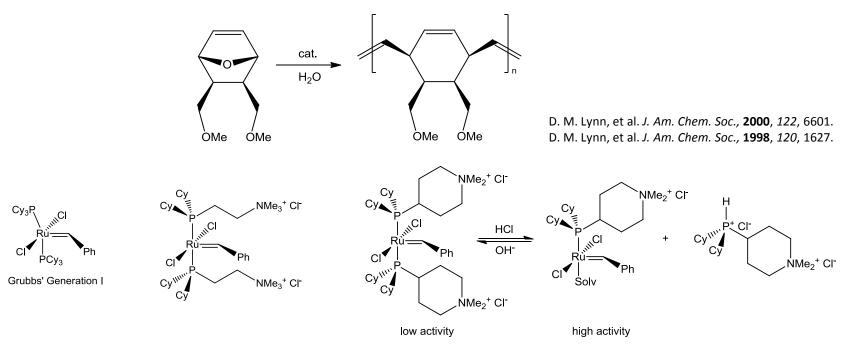
$$h_{4}$$

$$h_{2}$$

$$h_{2}$$

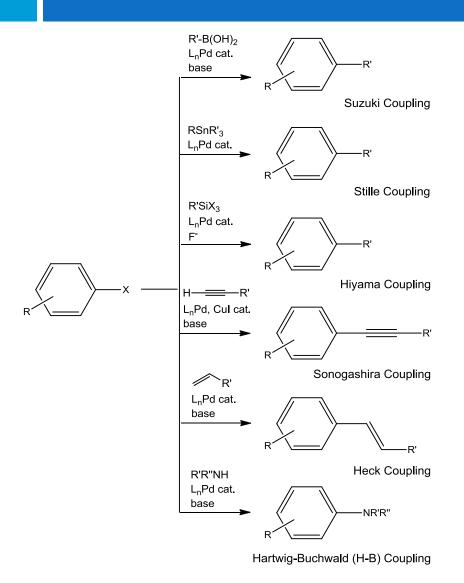
$$h_{3}$$

$$h_{4}$$


$$h_{5}$$

pH-dependent hydrogenation of cinnamaldehyde

The product selectivity for cinnamaldehyde reduction under transfer hydrogenation conditions was found to be dependent on the reaction pH when using Cp/Dp-Ru-PTA complexes


Metathesis

- The molybdenum complexes developed by Schrock are sensitive to water; the ruthenium catalysts developed by Grubbs are quite stable in water.
- The first examples of water-soluble olefin metathesis: ring opening metathesis polymerization of functionalized oxanorbornene.

 Addition of acid to complexes resulted in loss of a phosphine ligand to give a highly active ROMP catalyst.

Aqueous-phase Pd-catalyzed cross-coupling

- The history of using aqueous solvent systems in Pd-catalyzed cross-coupling goes back to the early development of the Suzuki coupling, which utilized aqueous base to activate the organoboron nucleophile.
- □ The first example of the use of a water-soluble ligand for Pd-catalyzed cross-coupling in water was reported by Casalnuovo in 1990:
 - Using Pd-mTPPMS catalyst for the cross-coupling of aryl iodides and activated aryl bromides in H₂O/CH₃CN.

Aqueous-phase Pd-catalyzed cross-coupling

Sterically demanding trialkylphosphines provide effective catalysts for a range of coupling reactions of aryl bromides and chlorides. Catalyst derived from t-Bu-Amphos and Pd(OAc)₂ gave good activity for Suzuki, Sonogashira and Heck couplings of aryl bromides in aqueous-biphasic reactions.

- The t-Bu-Amphos/Pd(OAc)₂ system gave turnover values of 730,000 mol/mol of Pd at 80°C for the coupling of 4-bromotoluene and phenylboronic acid.
- Using hydrophilic palladacycles in combination with t-Bu-Amphos gave a highly stable catalyst systems.

Pd-catalyzed cross-coupling with hydrophilic nitrogen ligands

 Palladacyclic complexes showed significant promise as catalyst precursors in crosscoupling of aryl bromides and chlorides reactions.

$$H_3C$$
 OH $Pd-| CI-| Ph$ $CI-| Ph$ $O.01 - 0.1 mol%) $O.01 - 0.1 mol$ $O.01 - 0.1$$

Aqueous-phase catalytic oxidation

- Water is an attractive solvent for metal catalyzed oxidations as the oxidants and their byproducts are often water-soluble, which allows them to be easily separated from the organic product;
- These reactions typically rely on hydrophilic nitrogen-based ligands.

Because oxygen is more soluble in water than nitrogen, nitrogen diluted oxygen (8% O₂, not explosive in combination with organic materials) was used at high pressure.

Selective cycloisomerization controlled by substrate partitioning

Cyclization of triynes to give polycyclic arenes typically are carried out under ultradilute conditions to avoid intermolecular reactions; by using a water-soluble catalyst, the [2+2+2] cyclization would occur in the aqueous phase where the concentration of the substrate would be low.

□ The intermolecular [2+2+2] cyclization of a diyne and propargyl alcohol often fives low yields due to oligomerization of the diyne.

Telomerization of butadiene with ethylene glycol in water

- Telomerization of butadiene with ethylene glycol using Pd/PPh₃ give 50-60% selectivity for the monotelomers.
- The high selectivity was believed to be due to the low solubility of the product in water, which prevented further reaction to give ditelomeric products.
- The catalyst can be recycled up to six times with only slight loss of activity.

Conclusions and perspectives

- Since the report of the Rhône-Poulenc aqueous-phase hydroformylation process, nearly any catalytic reaction involving late transition metals can be adapted to the use of water as a solvent provided the reagents themselves are water stable;
- The majority of hydrophilic ligands developed are based on known hydrophobic ligands. Most commonly ionic and non-ionic hydrophilic substituents have been attached, providing the necessary solubility and steric and electronic properties;
- There remain few examples of industrial processes that use water-soluble catalyst systems, thus further effort is needed develop industrially viable systems. These must be demonstrated to be economically advantageous over current processes.

Conclusions and perspectives

- The major drivers/advantages to develop aqueous-phase catalysts:
 - The aqueous-phase catalyst systems can simplify the separation of the catalytic active species from the hydrophobic product stream, which is of significant importance for industrial application. The expensive and rare metals can be recovered and the products have low levels of metal or ligand derived impurities;
 - Water is potentially a more environmentally benign solvent than traditional organic solvents. Issues related to handling water contaminated with organic impurities must be addressed. Thus aqueous-phase catalyst systems that provide comparable activity and selectivity to homogeneous processes have the potential to provide significant savings if implemented;
 - Another advantage is the ability to use water's unique properties to fundamentally change the nature of the reaction, e.g. the formation of macrocycles in water.

Conclusions and perspectives

- One of the key questions is how does water affect the fundamental organometallic reaction steps that make up catalytic cycles. By better understanding the role of water in catalytic processes, and how this differs from typical organic solvents, the unique properties of water can be better utilized. In this way, not only can water be used as a substitute for organic solvents, but it can be used to create new types reactivity or selectivity.
- While continuing the development of new ligand architectures and adapting new reactions to the aqueous phase, fundamental studies of organometallic reactivity related to catalysis in aqueous environments will be critical to the rational development of novel aqueous-phase catalytic reactions.

Palladium Catalyzed C-H Amination

Presented by Ala Bunescu: 1st year PhD student, LSPN, EPFL

PhD supervisor: Prof. Jieping Zhu

Questions:

- What is the mechanism of C-H amination?
- What are the limits of C-H amination?

1. Introduction

2. Pd-Catalyzed direct C-H amination: Mechanistic overview

- 3. Examples found in literature:
 - Mechanistical pathway
 - Type of oxidant: internal/external
 - Type of C-H bond: sp³, allylic, aromatic
 - Inter/Intra Molecular C-H amination

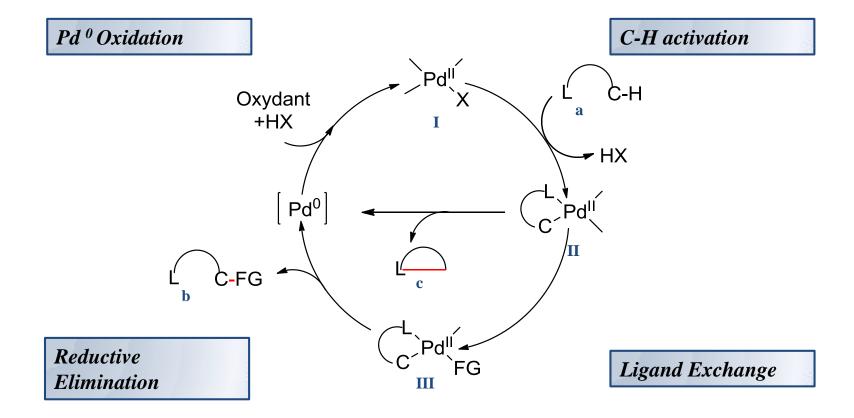
Pd-Catalyzed direct C-H functionalization

Advantages:

- Atom economy /low energy starting material
- Direct route to complex product
- An alternative approach for Buchwald-Hartwig
 Amination

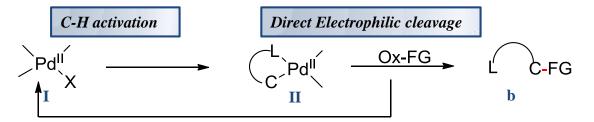
Desavantages:

- Inert nature of most C-H carbon bonds: harsh conditions
- Requirement of site selectivity: directory group

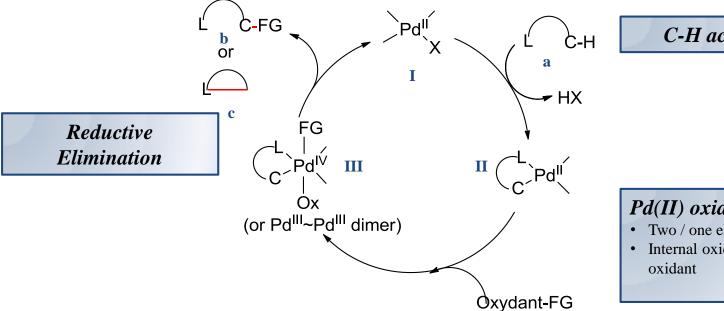

6/5/2011 4

Pd-Catalyzed direct C-H amination: Mechanistical Overview

- Reductive functionalization pathway
- Electrophilic functionalization pathway
- C-H activation


Reductive Functionalization Pathway

• Pd II/0 Catalytic Cycle



Electrophilic Functionalization Pathway

Direct electrophilic Functionalization of Paladacycle:

One or Two electron Oxidation of Palladacycle:

C-H activation

Pd(II) oxidation:

- Two / one electron oxidant
- Internal oxidant /external

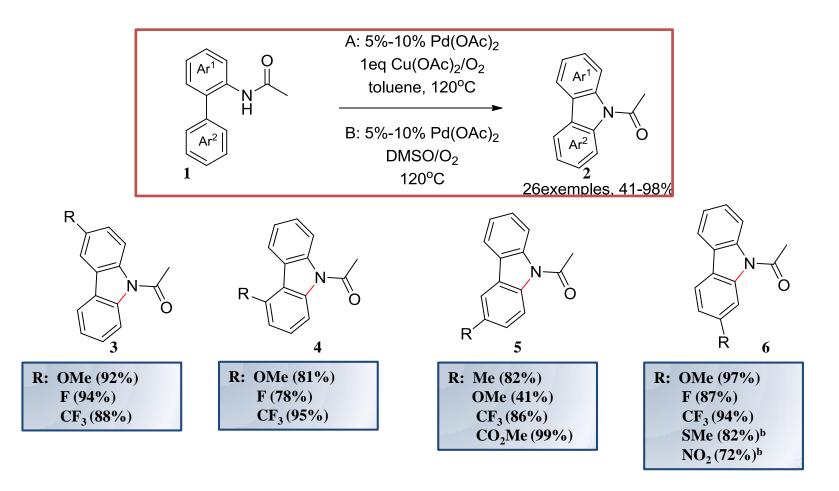
Transition states for C-H activation : DFT calculation

Electrophilic Activation (metal arenium): Th. instable via DFT calculation

Intra-deprotonation
From C-H agostic form:
32kcal/mol

Oxidative addition: 23kcal/mol

Deprotonation (external base) 15.6kcal/mol


Intra-deprotonation (internal base)
15.1kcal/mol

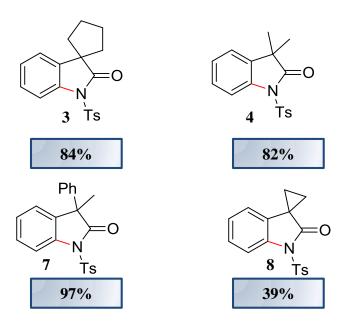
Cundary, T. *Organometallics*, Vol. 29, No. 4, **2010**, 821

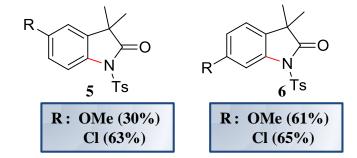
Examples: Type of Mechanism

- Pd(0)/Pd(II): 2 examples
- Pd(II)/Pd(IV): 2 examples
- Nitrene insertion: 1 example

C-H Amination to carbazole: Pd(0)/Pd(II)

Buchwald, S.L. *J. Am. Chem.Soc.*, **2005**, 127, 14560-14561 Buchwald, S.L. *J. Org. Chem.*, **2008**, 73,7603-7610

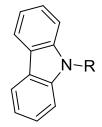

Initial Proposed Pathway


Experimental observation:

- OMe group in position 3 give just 41% yield
- At lower temperature just 2'-acetamino- 4-metoxybiphenyl cyclizide in73% (inductive effect of MeO)

Alternative Pathway

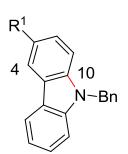
C-H amination to oxindole: Pd(0)/Pd(II)


- Non-substituted substrates failed: Thorpe- Ingold effect
- PMB instead Ts group: no reaction
- MeO in 4 retarded the process : no S_EAr for C-H activation
- Proposed mechanism: via six membered palladacycle in Pd(0)/Pd(II)

Murakami, M. Chemistry Lett., 2009, 38, 328-329

Oxidative Pd(II) C-H Bond Amination to

Carbazole


Scope of reaction

3

Ra: Bn (96%) i-Pr (96%) Allyl (79%) Me (80%)

^a Use of 1eq of AcOH

4

R¹: OMe (85%)^b
Me (86%)^{b,a}
F (79%)
CO₂Me(95%)^a

^b Mixture C10/C4 carbazole isomer

R²: OMe (81%) CO₂Me(94%)

6

R³: Me (56%)*
OMe(75%)

Gaunt, M. J. Am. Chem. Soc, **2008**, 130, 16184–16186 6/5/2011

Proposed Mechanism: Pd(II)/Pd(IV)

Experimental observation:

- Electron rich substrate react faster: -electrophilic mechanism
 -stronger interaction of C-H with the metal
- X ray of **IIa**: trinuclear complex
- IIa can be transformed to the carbazole: PhI(OAc)₂, PhMe, rt
- No oxidation in DMSO or in presence of coordinating additive (Py): monomeric paladacycle

Pd(II) C-H Activation to β, γ, δ-lactame

Yu, J.-Q. J.Am. Chem. Soc. 2008, 130, 14058–14059

Pd(II) C-H Activation to β, γ, δ-lactame

<u>β-lactame</u>

- One-pot procedure
- Reductive elimination of R-Cl from five membered palladacycle
- Strained transition state

Proposed Mechanism: Pd(II)/Pd(IV)

Experimental observation/ hypothesis

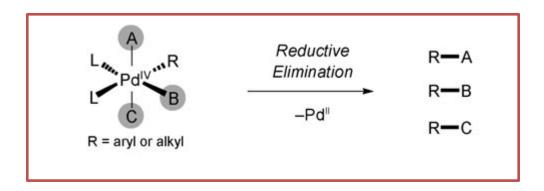
- Using PhI(OAc)₂ give 10% of desired oxindole
- CuCl₂ source of Cl⁺: 1ē or 2ē?
- PdCl₂ ligand exchange with AgOAc
- Sequential chlorination –amination excluded:

C-H activation via nitrene insertion

Sp3 C-H amination

• **Proposed mechanism:** cyclopalladation then nitrene insertion into Pd-C bond or Pd(II) nitrene. Pd(II)/Pd(IV) is not excluded

Chi-Ming Che *J.Am. Chem. Soc*, **2006**, *128*, 9048-9049 6/5/2011


Examples: Type of oxidant

- External Oxidant:
 - ✓ bystanding oxidant: definition
 - \checkmark F⁺:baystanding oxidant
 - ✓ Example1: Indoline synthesis via Pd(II)/Pd(IV)
- Internal Oxidant:
 - ✓ Example1: N-Nosyl carbamate
 - ✓ Example2: Oxime esters

6/5/2011

20

External Oxidant Pd(II)/Pd(IV)

- Octahedral Pd IV: lack of selectivity
- Bystanding oxidant: "A reagent that participates in electron transfer to increase the oxidation state of a transition metal species but is not incorporated into the final product during subsequent reductive elimination"
- Why F⁺ bystanding oxidant?

Yu J.-Q. Angew. Chem. Int. Ed. 2011, 50, 1478 – 1491

F+: Bystanding Oxidants in Pd(II)/Pd(IV) Catalysis

- Cl₂, CuCl₂, NCS, NBS, NIS, IOAc, and PhICl₂ source of X ⁺: halogenating agent C-H activation reactions
- F⁺ more problematic:

- F⁺ reagent : strong sigma donor ligand hamper the C-H activation
- Highly electronegative, low polarizability: attenuate the reductive elimination

C-H amination using F⁺ and Ce⁴⁺as oxidant: Indoline synthesis

- Using classical oxidation agent (CuCl₂, NCS, NBS, NIS, IOAc) give halogenation/ acetoxylation side product
- 22 examples, yield 53-91% when F⁺ (two electron oxidant) is used: large number of functionalities are tolerated (Br,Cl, F, CN, NO₂...), quinoline low yield
- 9 examples, yield 40-80% when $Ce(SO_4)_2$

Yu J., Q. J. Am. Chem. Soc., 2009, 131, 10806–10807

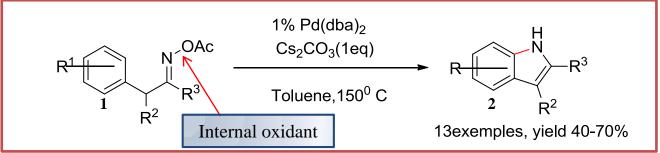
External-oxidant free oxidative amination:

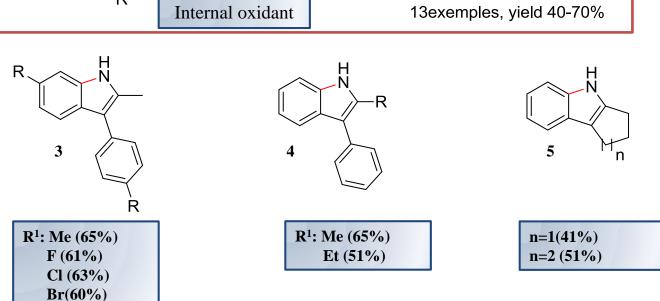
Yu, J. M., J. Am. Chem. Soc., 2010, 132, 12862–12864

Proposed mechanism: Pd(II)/Pd(IV) or nitrene:

$$[Pd^{\parallel}] \xrightarrow{a} NHPiv$$

$$Ts \qquad [Pd^{\parallel}] \qquad NHPiv$$


$$NHCO_{2}Et \qquad ab$$


$$NSO \{NHCO_{2}Et \qquad "N-CO_{2}Et" \qquad Nitrene insertion or Pd(III)/Pd(IV) intermediate$$

Experimental observation:

- Isotope effect $(k_H/k_D) = 3.7$
- Stoichiometric amidation of cyclopaladated intermediate afford 45% of **ab**
- Anilide stabilized reactive intermediary species
- Treating **a-Pd**, **a** with **b** in presence of K₂CO₃(generate nitrene) give 74% desired compound

External-oxidant free oxidative amination: Indole synthesis

Hartwig J., F. J. Am. Chem. Soc., 2010, 132, 3676–3677

OMe(40%)

Proposed mechanism Pd(0)/Pd(II)

C-N bond reductive elimination

N-O bond oxidative addition

C-H activation

Tautomerization

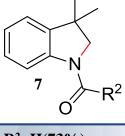
Experimental observation:

- Complex **V** was isolated (X-Ray structure)
- Complex (1%) catalyzed the reaction with **a** in 58%
- By heating **V** indole **b** is obtained in 31%

$$C_6F_5$$
 O PCy_3 Cy_3P N Ph Ph

Type of C-H bond

- $C(sp^3)$ -H
- Allylic
- Aromatic

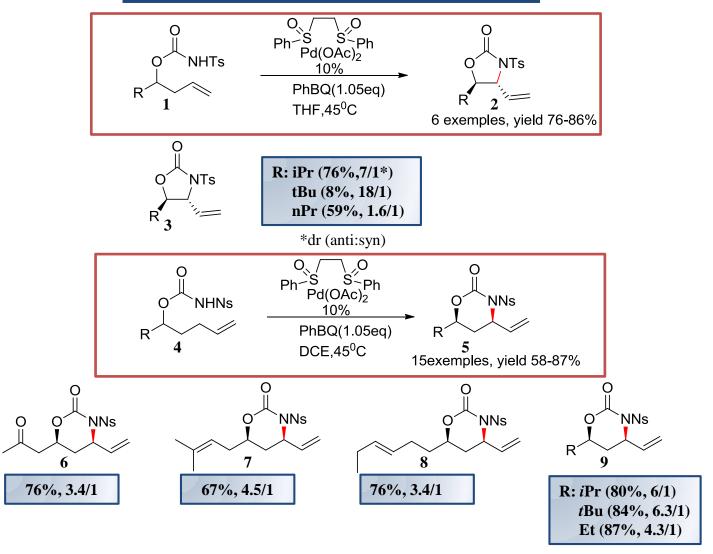

Note: Pd(II) catlyzed addition of nitrogen nucleophiles to the alkene is not included in this talk

Sp3-CH Amination: from aniline to indoline

R
10%-Pd(OAc)₂
AgOAc, Na₂CO₃

mesytylene,140
0
C

2
22exemples, yield 24-80%

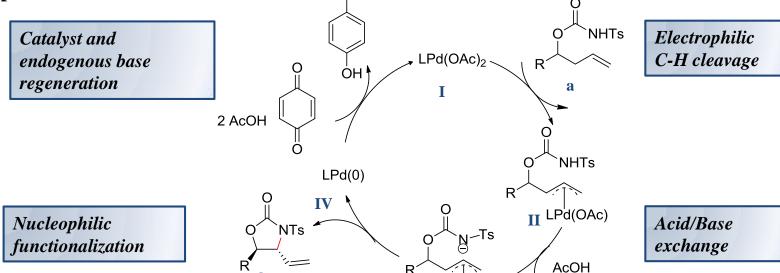


R²: H(73%) Me(80%) Et (59%) iPr(24%)

• Large variety of groups is tolerated: Cl, OMe, CHO, ketone...

Glorius, F. Angew. Chem. Int. Ed., 2009, 48, 6892 –6895

Allylic intramolecular C-H amination: syn-1,3 and 1,2-Aminoalcohols


White, C. J. Am. Chem. Soc., **2007**, 129, 7274-7276; White, C. J. Am. Chem. Soc., **2009**, 131, 11707-11711 Stoichiometric allylic amination: Hegedus, L.S. J. Am. Chem. SOC. **1981**, 103, 3037; Trost, B.M. Tetrahedron, **1977**, 33, 2615

Possible mechanism:

• Allylic C-H amination / isomerization of double bond followed by aminopalladation

• Alkene 4 give very poor yield (9% for Z, 20% for E)

Proposed mechanism:

OH

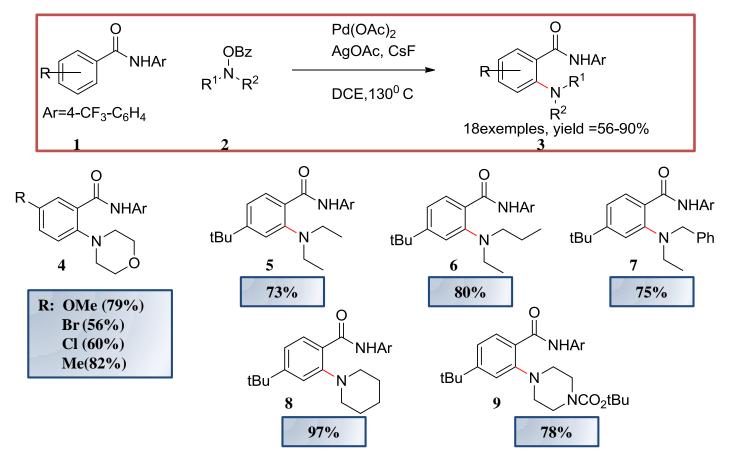
Ш

LP'd+

Allylic intermolecular C-H amination

Heterobimetallic catalysis:

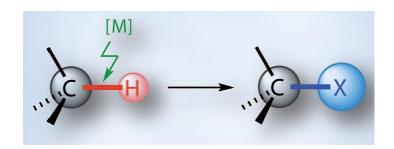
• Lewis Acid catalysis Cr bind to BQ $-\pi$ -Allyl complex increasing his electrophilicity


Bronsted base activation:

• Exogenous base will increase the concentration of deprotonated nucleophile nitrogen

White, C. J.Am. Chem. Soc., **2008**, 130, 3316-3318 White, C. J.Am. Chem. Soc., **2009**, 131, 11701–11706

6/5/2011


Aromatic intramolecular amination with amine

- No external oxidant is required
- Reaction work as well with amine in presence of benzoyl peroxide
- CsF as base, cycloppaladation, Pd(II)/Pd(IV) or electrophilic amination
- Pd(dba)₂ catalyzed as the reaction: N-O bond oxidative addition

Thank you for your attention!

Late stage transition metal catalyzed C-H functionalization in total synthesis

Questions

Complete the following syntheses:

СООМе

Introduction to the concept of « economy »

- Hendrickson "ideal synthesis"1:
- "The ideal synthesis creates a complex molecule from available small molecules ... linking them together in a sequence only of successive construction reactions involving no intermediary refunctionalizations, and leading directly to the structure of the target, not only its skeleton but also its correctly placed functionality."

Introduction to the concept of « economy »

Palytoxin, Kishi, 1994 ¹ HO, "ОН **₄**OH "OH HO. 'ОН Me HO Ме НО HO. HO 64 stereogenic centers ΗŌ ŌН HO' 'OH` from 7 building blocks in 39 steps

(11 skeleton forming, 15 refunctionalization, 13 protecting group management steps)

→ far away from Hendrickson's « ideal synthesis »

C-H bond functionalization

- Formally, any retrosynthetic disconnection resulting in a C-H synthon in a C-H bond functionalization ¹
- Generally, restricted to "inert" C-H bonds

- → C-H bonds are omnipresent so that methods must be selective
- → Methods must be tolerant to the other functionalities to be applied at a late stage

Pioneering work

■ 1909: Nicotine, Löffler ¹

- earliest example of C–H functionalization in total synthesis
- one single step
- 1958: Dihydroconessine, Corey ²

^{1.} K. Löffler, Ber., 1909, 42, 3431-3438

^{2.} E.J. Corey, J.A.C.S., 1958, 80, 2905-2906

Pioneering work

1978: Ibogamine, Trost ¹

- earliest example of transition metal catalyzed C–H activation in total synthesis
- stoichiometric quantities of palladium and silver salts
- 4 steps; 17% overall yield

(previous synthesis by Ziegler² was 14 steps and overall yield <1%)

^{1.} B.M. Trost, J.A.C.S., 1978, 100, 3930-3931

^{2.} E. Ziegler, J.A.C.S., 1965, 87, 2073-2075

2005: Allocolchicine, Fagnou ¹

- intramolecular direct arylation of aryl chloride
- 10 steps, 24% overall yield

(previous synthesis by Wulff ² was 14 steps, 7% overall yield)

^{1.} K. Fagnou, Org. Lett., 2005, 7, 2849-2852

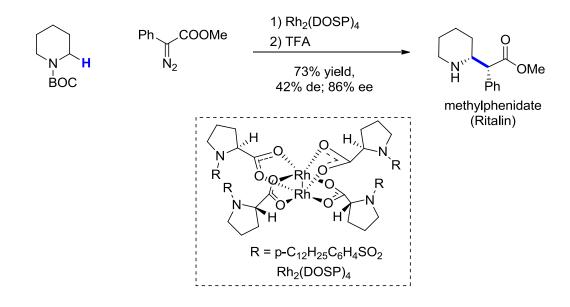
^{2.} W. D. Wulff, J. Org. Chem., 2003, 68, 5826-5831

2005: Rhazinilam, Trauner ¹

- Palladium(II)-catalyzed intramolecular direct arylation
- 7 steps, 8% overall yield

$$\begin{array}{c} 10\text{mol\% Pd(OAc)}_2\\ 10\text{mol\% DavePhos}\\ \hline\\ MOMN \end{array} \begin{array}{c} K_2\text{CO}_3\\ \hline\\ 47\% \text{ yield} \end{array} \begin{array}{c} \text{MeOOC}\\ \hline\\ \text{H} \end{array} \begin{array}{c} \text{MeOOC}\\ \hline\\ \text{PdJ} \end{array} \begin{array}{c} \text{-PdL}_n \end{array} \begin{array}{c} \text{MeOOC}\\ \hline\\ \text{NMOM} \end{array}$$

- 2004: Methylphenidate (Ritalin), Davies ¹
- Previous synthesis, 1999, Matsumura ²


5 steps, 54% overall yield 95% de, >99% ee

Stoichiometric amount of Evans chiral auxiliary

^{1.} H.M.L. Davies, Bioorg. Med. Chem. Lett., 2004, 14, 1799-1802

^{2.} Y. Matsumura, Org. Lett., 1999, 1, 175-178

2004: Methylphenidate (Ritalin), Davies ¹

Rhodium(II)-catalyzed intermolecular C–H insertion 2 steps, 73% yield 42% de, 86% ee

2011: Lithospermic acid, J.Q. Yu¹

2005: Ellman²: 14 steps, 6% overall yield

2011: J.Q. Yu: 13 steps, 10% overall yield

2 key C-H functionalization reactions

First key step:

Rhodium(II)-catalyzed intermolecular C–H insertion using Davies' conditions³

- 1. J. Q. Yu, J.A.C.S., **2011**, 133, 5765-5769
- 2. J. A. Ellman, J.A.C.S., 2005, 127, 13496
- 3. H.M.L. Davies, Bioorg. Med. Chem. Lett., 2004, 14, 1799-1802

2011: Lithospermic acid, J.Q. Yu¹

Second key step:

Palladium(II)-catalyzed intermolecular C-H olefination

- 2002: core of Teleocidin B4, Sames ¹
- 9 steps including 4 C-C bond forming step including:
 - a palladium(II) catalyzed intramolecular alkenylation
 - two tandem cycles of directed C-h bond functionalization of t-Bu group

Conclusion and outlook

- Advantages of applying C-H functionalization to total synthesis:
 - Atom economy
 - Step economy
 - Redox economy
- New methods for functionalizing C-H bonds rapidly growing leading to new retrosynthetic disconnections
- → C-H bond is a new function

Questions

Corey's hydratoaustamide synthesis¹:

- Indole is palladated at C-2 position (similar to Trost's ibogamine synthesis)

Solutions to questions

Davies' Elisapterosin synthesis¹:

Rhodium-catalyzed hydroamination of olefin

Baihua YE

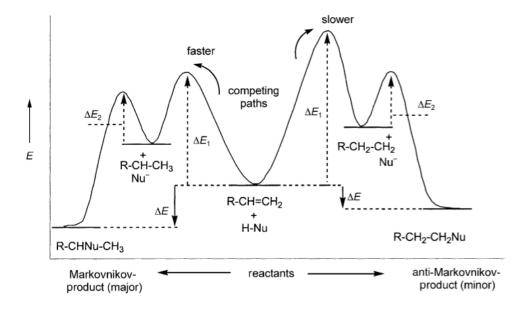
06/06/2011

Summary

- 1. Introduction
- 2. Rhodium-catalyzed intermolecular hydroamination
 - 2.1. Rh-catalyzed hydroamination of ethylene
 - 2.2. Rh-catalyzed hydroamination of norbornene
 - 2.3. Rh-catalyzed hydroamination of aryl olefin
- 3. Rhodium-catalyzed intramolecular hydroamination
 - 3.1. Markovnikov cyclization
 - 3.2. Anti-Markovnikov cyclization
- 4. Enantioselective intramolecular hydroamination
- 5. Conclusion and Outlook

1. Introduction

The ubiquity of nitrogen-containing compounds in naturally occurring and biologically active molecules


Hydroamination^d: Direct formation of C-N bonds from amine and alkene or alkyne

- •One of the simplest and most atom-economical methods
- •From the inexpensive starting materials to the nitrogen heterocycles.

1. Introduction

Intermolecular
$$R'$$
 + HNR₂ M + HNR₂

Energy diagram of the addition of H-Nu to olefins^a

2.1. Rh-catalyzed hydroamination of ethylene

Coulson^a, 1970: First example of a homogeneous transition metal-catalyzed hydroamination

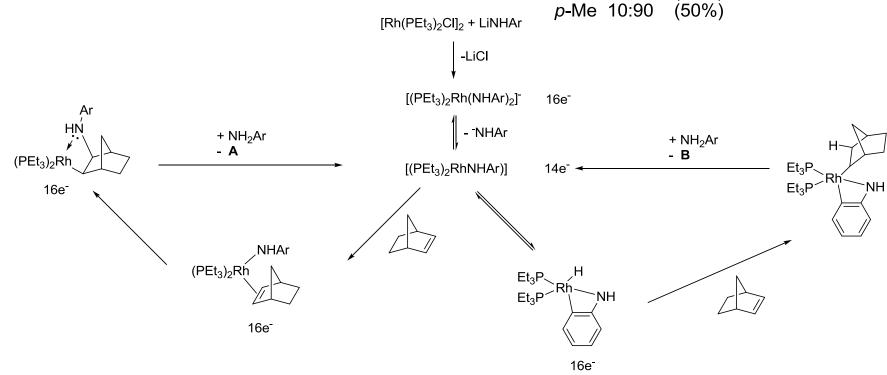
$$NHR^{1}R^{2} + = \underbrace{\frac{1mol\% RhCl_{3} \ 3H_{2}O}{THF, \ 180^{\circ}C, \ 3hr}}_{(100bar)} + \underbrace{\frac{H}{N}R^{1}}_{N-R^{2}}$$

$$\frac{Me}{H} \underbrace{\frac{H}{N}Et}_{H} \underbrace{\frac{H}{N}Et}_{H} \underbrace{\frac{H}{N}Et}_{N-R^{2}} + \underbrace{\frac{H}{N}R^{1}}_{N-R^{2}}$$
•Steric hindrance •Basicity (or nucleophilicity)

Diamond^b, 1979: subsequent investigation

- •10% overall yield
- •Main side reaction: the dimerization of ethylene to butene

2.1. Rh-catalyzed hydroamination of ethylene


Brunet^a: more active catalytic system

- About 65% overall yield
- Increase of catalytic efficiency
- •Basicity: diethylaniline>ethylaniline

2.2. Rh-catalyzed hydroamination of norbornene

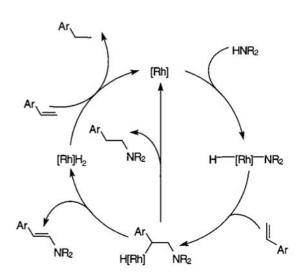
Bruneta: norbornene

Hypothesized mechanism:

Orthometallation

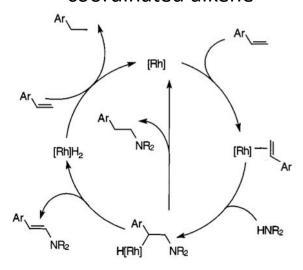
A:B 0:100

(95%)


(50%)

o-Me

m-Me 40:60


Brunet^a: Styrene

N-H oxidative addition

Ar = Aryl; R'= Alkyl

Nucleophilic attack on coordinated alkene

Beller^b: anti-Markovnikov product

	Α	В	C	A/B
R=H	74%	14%	84%	5.3
R=4-Me	76%	15%	99%	5.1
R=2-Me	27%	6%	20%	4.5
R=4-OMe	50%	12%	47%	4.2
R=4-F	60%	19%	85%	3.1
R=4-CF ₃	21%	2%	9%	10.5

Electronic and steric factors of aryl olefin

Beller^a: vinyl pyridine

- •Increased amount of PPh₃ leads to enamine product.
- •Coordination of N-atom of pyridine to Rh metal center leads a decreased in a electron density of vinyl group (Micheal acceptor).
- Mechanism: N-H oxidative addition

96:4

85:15

57:43

Excess equivalent of aryl olefin is essential:

63:37

(amine:enamine)

86:14

3.1. Intramolecular hydroamination- Markovnikov cyclization

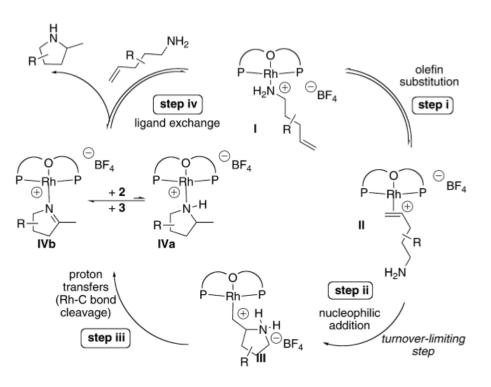
Hartwig^a: Primary Aminoalkene: initial results

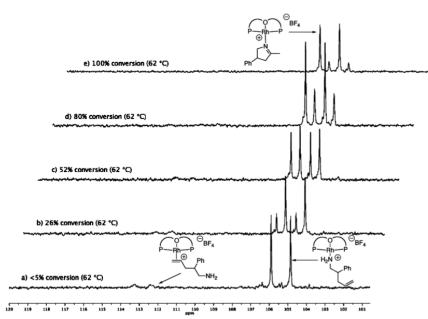
- Markovnikov product
- •Geminal disubstitution on the alkyl linker
- •t-Bu group on the xanthene backbond had little effect on the reactivity or selectivity of the catalyst

3.1. Intramolecular hydroamination- Markovnikov cyclization

Investigation of suitable substitution on the Xantphos^a:

$$tBu$$
 tBu
 tBu


SM	mol % [Rh]	Ligand	time(h) conversion (%)		Α	В	С	D
Ph NH ₂	1	L1	2	100	87%	5%	5%	3%
Ph´ Š	3	L2	2	83	18%	2%	0%	80%
	3	L2'	2	62	10%	2%	0%	88%
	3	L3	2	47	50%	25%	25%	3%
	3	L4	2	100	70%	12%	12%	6%


3.1. Intramolecular hydroamination- Markovnikov cyclization

Scope of Rh-Catalyzed Hydroamination of primary and secondary amines Catalytic loading 1-18mol%

3.1. Intramolecular hydroamination- Markovnikov cyclization

Proposed mechanism^a

3.1. Intramolecular hydroamination- Markovnikov cyclization

Hartwig^a:biarylphosphine ligand

$$\begin{array}{c} & & & \\ & &$$

Primary amines:

^aJACS. **2008**, 130, 1570; JACS, **2011**, 2772


3.1. Intramolecular hydroamination- Markovnikov cyclization

Nucleophilic attack generates a coordinatively saturaed, 18-electrons aminoalkyl complex

Disfavor β -hydrogen elimination

3.1. Intramolecular hydroamination-Markovnikov cyclization

$$R'$$
 $(Et_2N)_2P$
 $P(NEt_2)_2$
 $L1; R'=tBu$
 $L1'; R'=H$

•Advantage :

Primary and secondary amines

Mild condition

High degree of tolerance for polar functional group

Aminophosphine groups on ligand are involved in creating the high rates and selectivity

Limitation

Basic amine is required

Five to six-membered rings of Markovnikov product

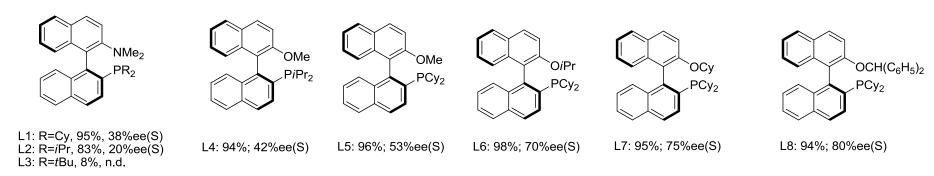
3.2. Intramolecular hydroamination-Anti-Markovnikov cyclization

Hartwig^a: Anti-Markovnikov piperidine:

1-4% enamine only each case

High diastereoselectivity to *cis* product

No product detected if R_1 , R_3 = H.


Mechanism unkown yet.

aJACS. 2006, 6042

4. Enantioselective intramolecular hydroamination

Buchwalda: first Rh-catalyzed asymmetric intramolecular addition of amines to olefins

Ligand development:

L9: 9%; n.d.

4. Enantioselective intramolecular hydroamination

Scope of Rh-catalyzed enantioselective intramolecular hydroamination of aminoalkene with ligand L8

Unprotected aminoolefins exhibited poor reactivity; 2-allylaniline is the exceptional

5. Conclusion and Outlook

- Rhodium-mediated catalyst have been employed successfully in addressing specific challenges for both the inter- and intramolecular variants of the alkene hydroamination reaction.
- Important contributions towards anti-Markovnikov additions in the intermolecular hydroamination.
- Phosphine ligand can modulate either Markovnikov or anti-Markovnikov addtions.
- No Rh-catalyzed asymmetric intermolecular hydroamination yet.
- Scope of substrate is still limited.

N-Heterocyclic carbenes: A powerful tool in organic synthesis

Thomas Buyck

PhD Student in Prof. Zhu Group, LSPN, EPFL

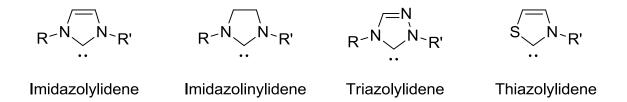
Frontiers in Chemical Synthesis

June 6th, 2011

Questions

- I. Why is this type of catalysis important?
- II. What is the name of the reactive specie in all the presented reactions?

Plan

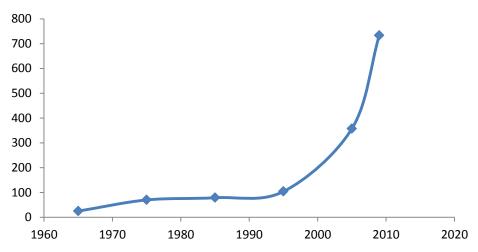

Introduction

- I. Benzoin condensation and Stetter reaction
- II. Homoenolate reactivity
- III. Miscellanous reactions

Introduction

N-Heterocyclic carbenes

- Alternative to metal catalysed reactions
- Cheaper and more environment friendly

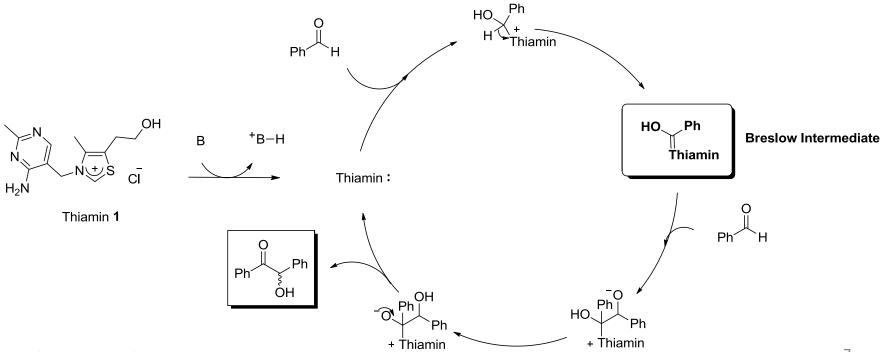

New field in organic chemistry

Introduction

Explosion in this field during the last decade

Publications containing "NHC"

Introduction


Multigram scale synthesis of carben by Enders

Commercially available from Acros® 195 CHF/g

Autocondensation of benzaldehyde

F. Wöhler, J. Liebig, Ann. Pharm., **1832**, *3*, 249-282; T. Ukai, *J. Pham Soc. Jpn*, **1943**, 63, 296-300

R. Breslow, J. Am. Chem. Soc., 1958, 80, 3719-3726

Creation of a stereogenic center

How to control the selectivity of this reaction to obtain a single enantiomer?

Enantiomeric version

First example in 1966 by Sheehan

Cat = O * T N S Ph

J. Sheehan, J. Am. Chem. Soc., 1966, 88, 3666-3667

Enders published in 2002 a more efficient method

Enantiomeric version

4a, R = TBS **4b**, R = TIPS

In the early 70's Stetter described a new reaction usefull to create 1,4 dicarbonyl

$$R_1$$
 H $Catalyst,$ $Base$ R_2 CN R_2 R_1 R_2 CN R_2 R_1 CN

X = R, OR

Catalyst:

- CN⁻ (1973)
- Thiazolium salt (1976)

Enantiomeric version

First example in 1996 by Enders

CHO
$$R_1$$
 CHO CO_2R_2 $Cat. (20 mol %) CO_2R_2 $CO_2R_2$$

$$Cat. = \bigvee_{0 \neq 0}^{+,Ph} CIO_{4}$$

Model explaining the facial selectivity

Re-face shielded by Phenyl group

Enantiomeric version

The second example is published only in 2002 by Rovis

Extension of the scope

Merck published in 2001 an Aldehyde-Imine Cross-Coupling

J. A. Murry, D. E. Franz, J. Am. Chem. Soc., 2001, 123, 9696-9697

Enantiomeric version is described by the group of Miller in 2005

Extension of the scope

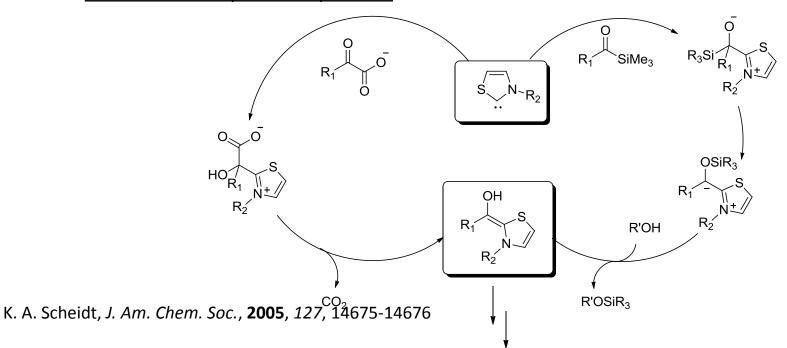
Sila-Stetter reaction

Ph SiMe₃ +
$$R_1$$
 R_2 R_2 R_2 R_3 R_4 R_5 R_5 R_6 R_6 R_7 R_8 R_9 R_9

K. A. Scheidt, J. Am. Chem. Soc., 2004, 126, 2314-2315

Cat. =

Addition of acylsilanes to Imines



Extension of the scope

Keto carboxylate as acyl anion precursor

16

Generation of acyl anion equivalent

In 2004, Glorius and Bode reported independently a new reaction

$$R_1$$
 R_1 R_1 R_1

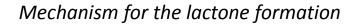
Homobenzoin products

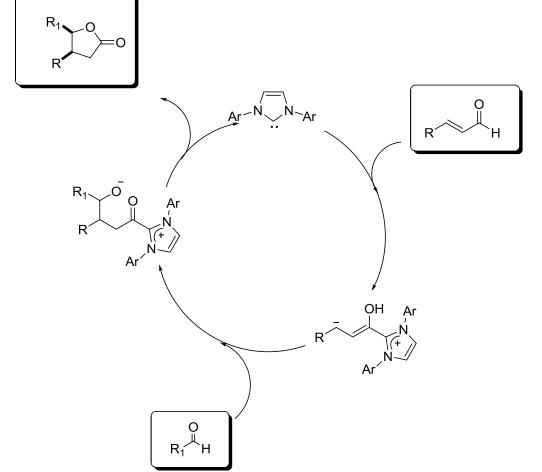
$$R \longrightarrow R_1$$
 OH

$$R_1$$
 O R OH

Crossbenzoin products

Stetter products




$$R \xrightarrow{O} H + R_1 \xrightarrow{O} H \xrightarrow{NHC} R_1 \xrightarrow{R_1} R$$

Homoenolate formation

$$Ar \sim N \sim Ar$$
 $R \sim H$
 $R \sim N \sim Ar$
 $R \sim N \sim Ar$

IMes IPr unselective

ICy unreactive Enantiomeric version

Enantiomeric version but with only 25% ee

Electrophile diversification

• N-Sulfonylimines

- J. Bode, Org. Lett, 2005, 7, 3131-3134
 - Proton trapping followed by addition of a Nucleophile

Electrophile diversification

• Azadiene Diels-Alder reaction

Electrophile diversification

Azadiene Diels-Alder reaction

Electrophile diversification

Azadiene Diels-Alder reaction

Model explaining the selectivity

$$ArO_2S_{-N}$$
 R_2
 N_{-N}
 Ar
 N_{-N}
 R'

Electrophile diversification

• <u>1,2-Dicarbonyl Compounds</u>

or + R CHO
$$\frac{\text{Cat. (6 mol \%)}}{\text{DBU (12 mol \%)}}$$
 or $\frac{\text{60-78\%}}{\text{THF, 12h}}$ or $\frac{\text{O}}{\text{Choolemol Molemol M$

Electrophile diversification

• α,β unsaturated ketone

Mechanism to form the cyclopentene

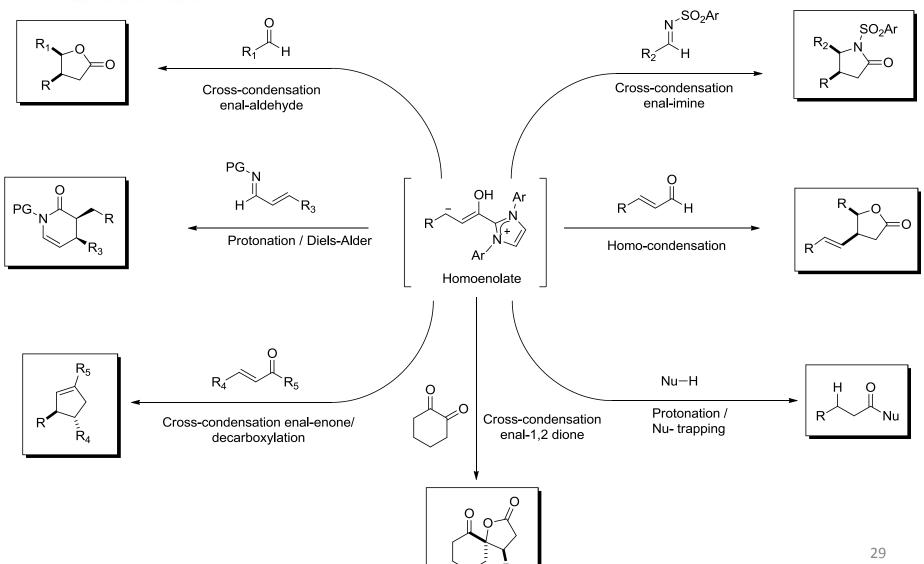
$$\begin{array}{c} R_1 \\ R_2 \\ CO_2 \\ R_3 \\ R_2 \\ R_3 \\ R_2 \\ R_3 \\ R_2 \\ R_3 \\ R_2 \\ R_3 \\ R_4 \\ R_5 \\ R_7 \\ R_8 \\ R_8 \\ R_8 \\ R_9 \\ R_8 \\ R_9 \\ R_9$$

Intramolecular alkylation of α β unsaturated ester

$$n = 1, 48\%$$
 $n = 2, 94\%$
 $n = 3, 81\%$
OMe

CN
OMe

CN
OMe


71%

Homoenolates obtention via α β unsaturated ester

Homoenolates

Trans-esterification

Amide formation

O N OH IMes (5 mol %)
$$R_1 \longrightarrow OH \longrightarrow OH \longrightarrow R_1 \longrightarrow OH \longrightarrow OH \longrightarrow OH$$

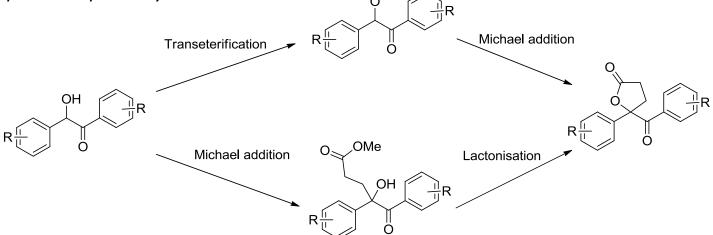
$$THF, RT \longrightarrow R_2 \longrightarrow OH \longrightarrow OH \longrightarrow OH$$

$$\begin{array}{c}
\text{Mes} \\
\stackrel{\stackrel{\stackrel{}}{\stackrel{}}}{\stackrel{}} : --- \\
\stackrel{\stackrel{}}{\stackrel{}} \\
\text{Mes}
\end{array}$$

$$\begin{array}{c}
\text{Mes} \\
\stackrel{\stackrel{}}{\stackrel{}} \\
\text{OMe} \\
\stackrel{\stackrel{}}{\stackrel{}} \\
\text{Mes}
\end{array}$$

$$\begin{array}{c}
\text{Mes} \\
\stackrel{\stackrel{}}{\stackrel{}} \\
\text{OMe} \\
\stackrel{\stackrel{}}{\stackrel{}} \\
\text{NHR}_{2}
\end{array}$$

Proposed mechanism



Trans-esterification

γ-butyrolactone formation

$$\begin{array}{c|c}
0 & & \\
\hline
0 & & \\
\hline
0 & & \\
\hline
0 & & \\
\end{array}$$

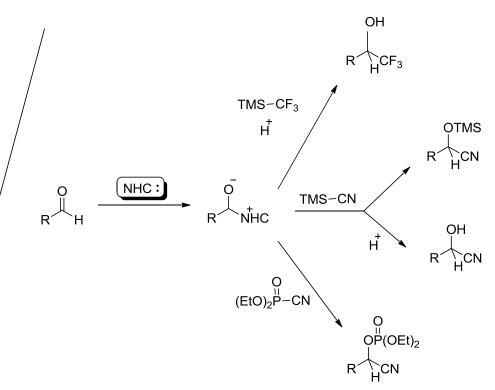
2 possibles pathways

Acylation reaction

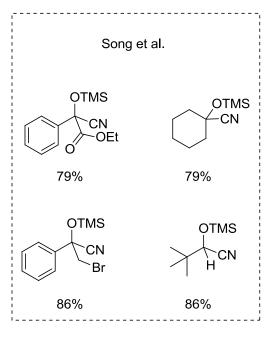
Kinetic resolution with chiral NHCs

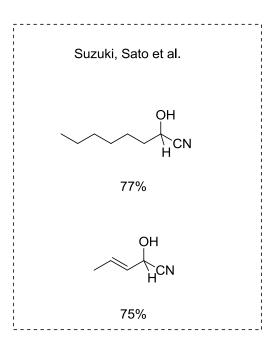
Cat. =
$$Ar \underbrace{N}_{N} \underbrace{N}_{N} Ar$$

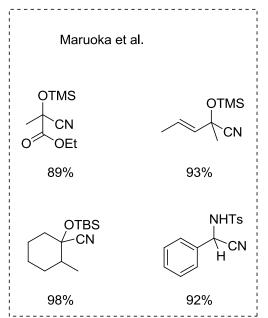
Ar = Ph, α -naphthyl


Need to have a hindered acylating agent

1,2-Addition reactions


Reaction with E-Nu


Possible activation by NHC



1,2-Addition reactions

- Ketone
 - Enal
 - Imine
- α-ester

Asymetric version was tried by Suzuki and Sato with a poor ee 22%

1,2-Addition reactions

Cyanophosphorylation of aldehyde

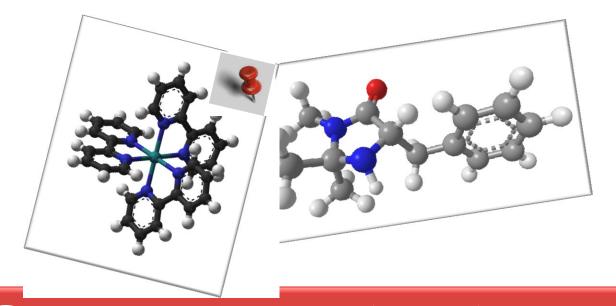
Cat =
$$\frac{1}{N}$$

Reaction time less than 5 min

Conclusion

NHC as an organocatalyst allows access to a wide diversity of molecules

- Still a lot of reactions to develop
- Enantiomeric version of homoenolate reaction to upgrade



Conclusion

Questions

Reviews:

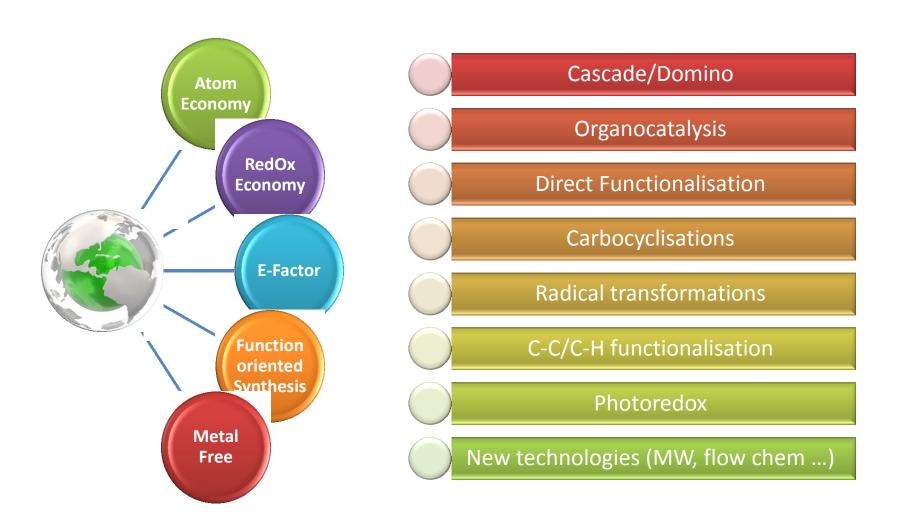
- N-Heterocyclic carbenes as organocatalysts
- N. Marion, S. Díez-González*, and S. P. Nolan*, *Angew. Chem. Int. Ed.*, **2007**, *46*, 2988-3000
- Nucleophilic cabenes in asymetric organocatalysis
- D. Enders*, T. Balensiefer, Acc. Chem. Res., 2004, 37, 534-541

Cooperative catalysis between metals and organocatalysis

LITERATURE TALK
Florian de Nanteuil
EPFL 2011

Questions

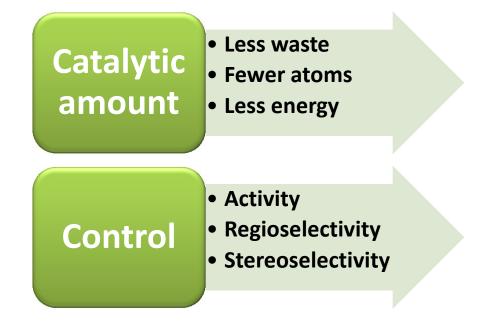
- What is the difference in terms of reactivity between the MacMillan SOMO and Photoredox-catalysis?
- In the case of a cationic-gold complex, why the chiral-counteranion strategy is particularly interesting in order to induce chirality?


Sustainable Chemistry

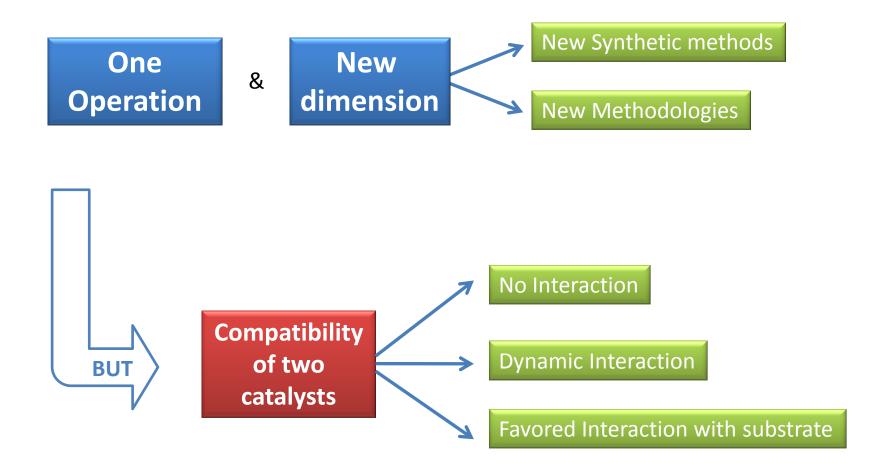
"meets the needs of the present without compromising the ability of future generations to meet their own needs."

1. **Table 1. **Table 2. **Ta

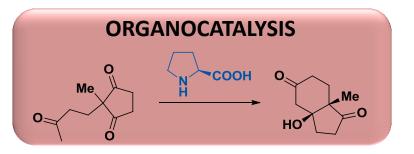
Sustainability in organic chemistry

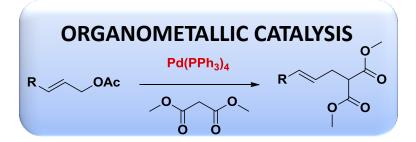


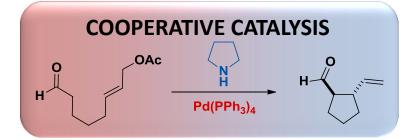
Catalysis

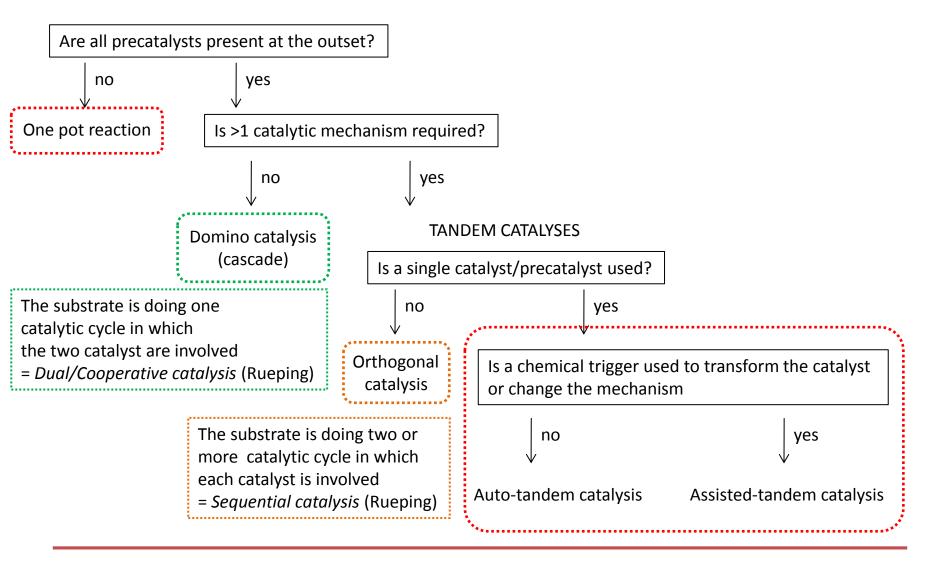

1836, Berzelius

Lower Activation Energy = Enhancement of the rate of a reaction - Unblock a reaction


Two catalysts?



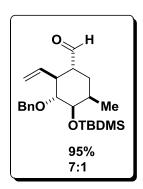

Cooperative catalysis



REVIEWS:

Chem. Soc. Rev., **2009**, 38, 2745-2755 *Chem. Eur. J.* **2010**, 16, 9350 – 9365 *Eur. J. Org. Chem.* **2010**, 2999–3025

Content



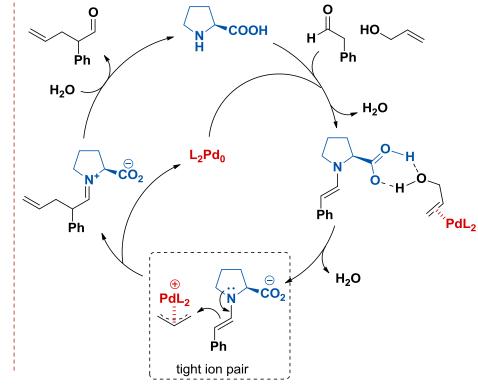
$$\begin{array}{c|c}
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\$$

Saicic - 2007

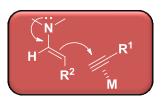
Saicic - 2009

Tomioka – 2008

Breit - 2009


HO
$$\mathbb{R}^3 + \mathbb{R}^1$$
 \mathbb{R}^2

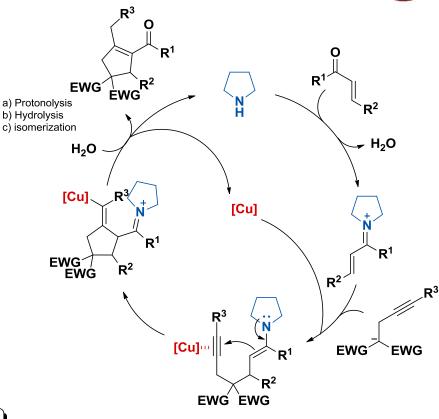
R1 = H, alkyl; R2 = alkylR3 = H, Ph


 $[(\eta^3-allyl)Pd]Cl_2$ (2.5 mol%) Xantphos (5 mol%)

(DL)-proline (30 mol%) DMSO, 70 °C, 20h

$$R^1$$
 R^2

Wu - 2007


R¹ = Ar, cyclopropyl, n-Bu,TMS; R² = Ar; R³ = alkyl; R⁴ =H, alkyl

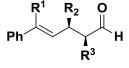
Kirsch - 2008

Dixon - 2008

Whang - 2009

Cozzi - 2010

$$R^1$$
 OH R^2 R^3 R^3


 $R^3 = Alkyl$

 $R^1 = H, Ph$ $R^2 = Ar$ Organocatalyst, (20 mol%) InBr_{3,} (20 mol%)

DCM, 0°C

.CF₃CO₂H

Organocatalyst

Up to 90% yield Up to 20:1 dr Up to 99% ee syn Up to 87% ee *anti*

Cozzi - 2011

$$Ar \xrightarrow{R} R^2 \xrightarrow{R}$$

 $Ar = pNMe_2Ph$ $R = SiR_{3}$, Alkyl $R_2 = Alkyl$ Organocatalyst, (20 mol%) In(OTf)_{3,} (20 mol%)

H₂O, 0°C

Ar R²

Up to 98% yield Up to 6.7:1 dr Up to 99% ee *anti* Up to 99% ee *syn*

Nishibayashi — 2010/2011

Ar

N
Ar

H
OTMS

Ar =
$$3.5$$
-(CF₃)₂C₆H₃

Organocatalyst

R₁ = H, [M] = [{Cp*RuCl(SMe)}₂], (5 mol%)
Organocatalyst, (5 mol%)

Up to 93% yield

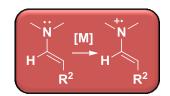
Up to 3.3:1 dr

Up to 99% ee *syn*

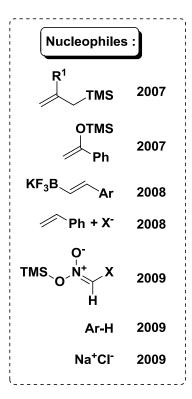
Up to 95% ee anti

 $R_1 = COR^{2}$, [M] = CuOTf.0.5C₆H₆, rac-BINAP, (5 mol%) Organocatalyst, (5 mol%)

Up to 64% yield


Up to 3.5:1 dr

Up to 99% ee *syn*


Up to 98% ee anti

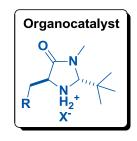
Amine - Oxidant metal

MacMillan – SOMO catalysis

Amine - Oxidant metal

Huang - 2010

Amine – Photoactivated metal

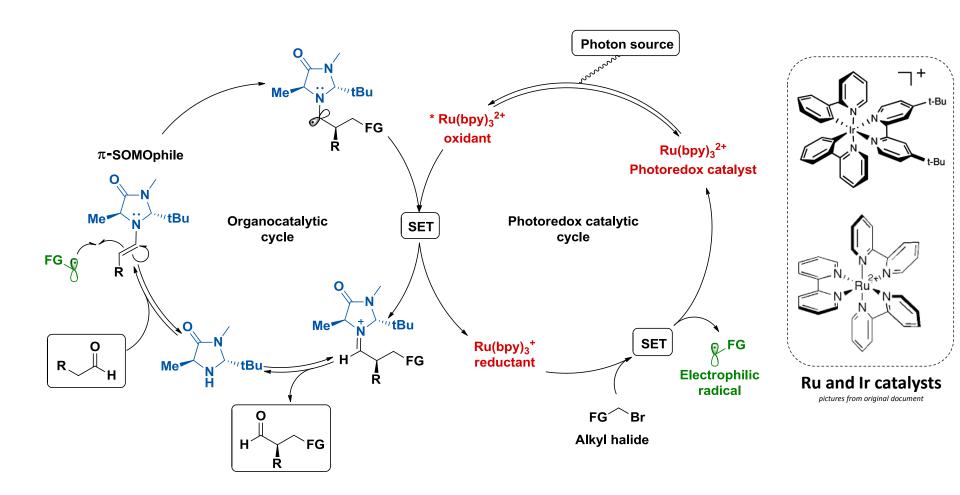


MacMillan – Photoredox catalysis

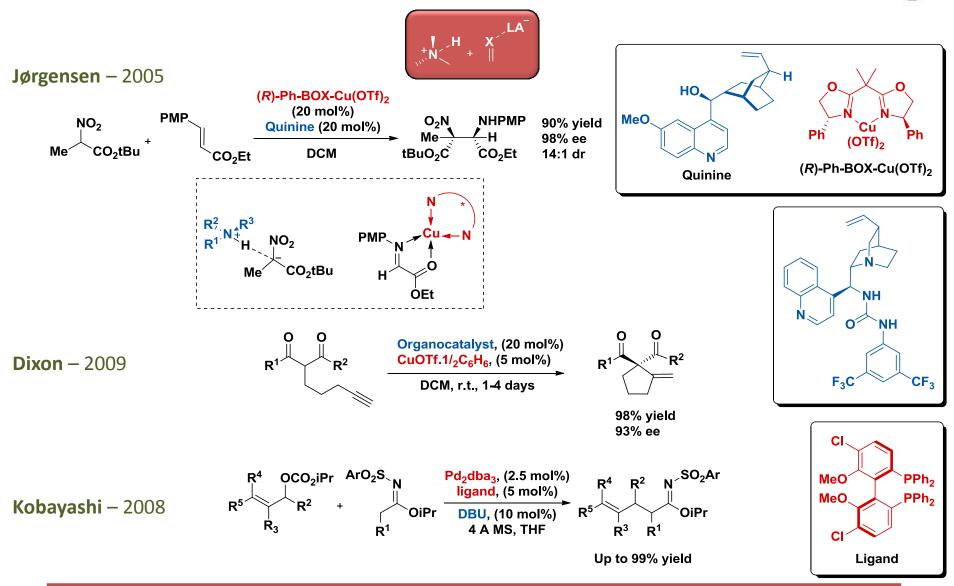
$$\begin{array}{c|c}
\vdots \\
N \\
+ \\
R^2
\end{array}$$

2008

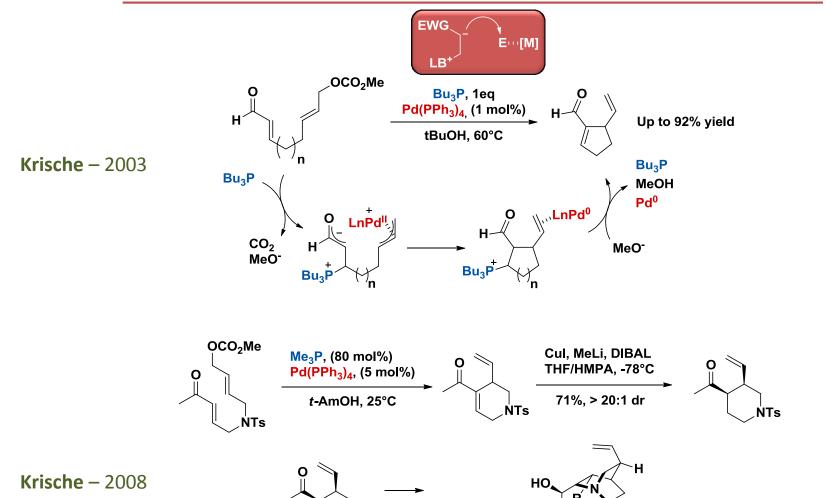
$$R = Alkyl$$



Amine - Photoactivated metal



MacMillan – Photoredox catalysis



Brønsted base – Lewis acid

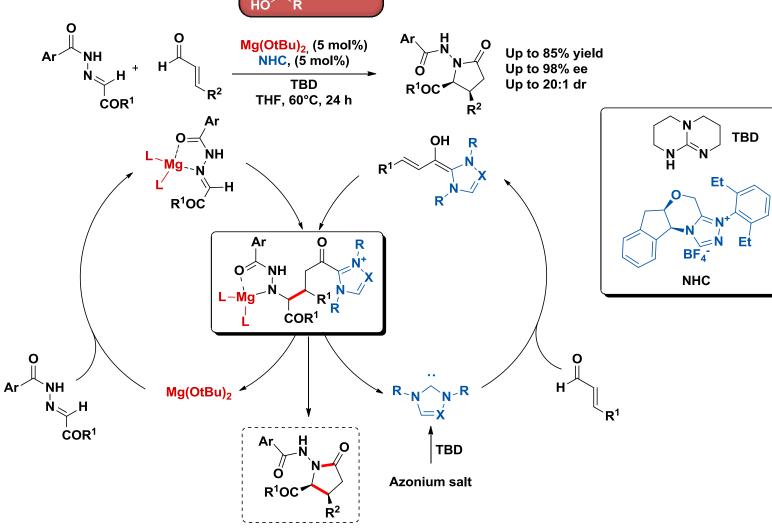
T. Yang, A. Ferrali, F. Sladojevich, L. Campbell, D. J. Dixon, J. Am. Chem. Soc. 2009, 131, 9140 – 9141

R = H: Quinine

MeO

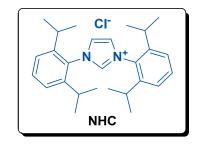
R = OH: 7-Hydroxyquinine

ŅTs


Total synthesis of Quinine

Wu – 2009

NHC- Transition metal

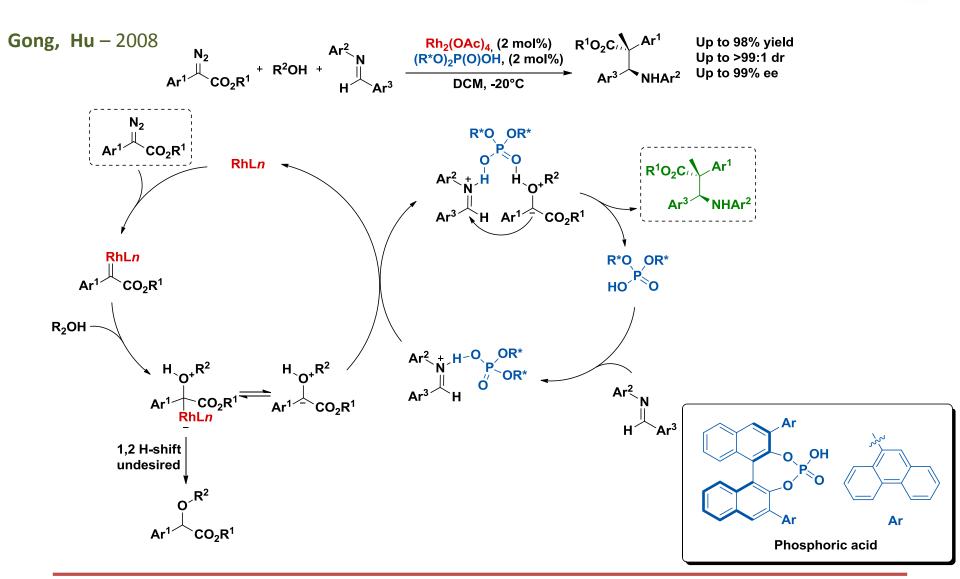

Scheidt – 2010

NHC- Transition metal

Gois – 2011

$$R^1$$
 R^1
 R^1
 R^1
 R^1
 R^1
 R^1
 R^1
 R^1

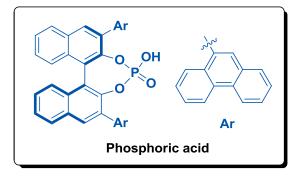
 R^2 = H, Me, EWG

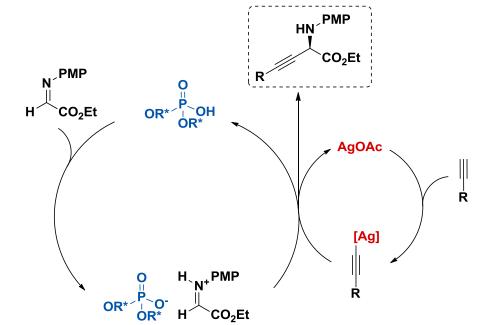

Brønsted acid- Rhodium carbene

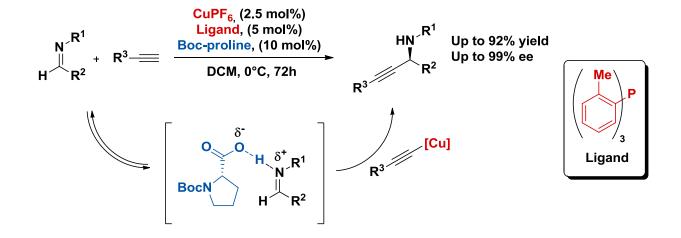
Krische – 2006

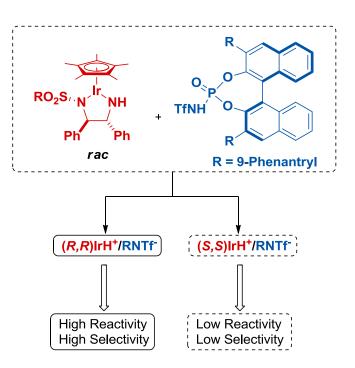
Brønsted acid- Rhodium carbene

Brønsted acid- Rhodium carbene

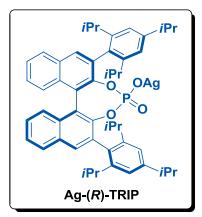

Hu – 2008


Brønsted acid- Transition metal

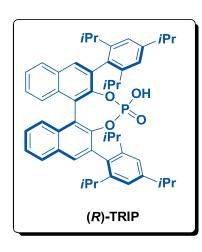




Arndsten – 2009


Rueping - 2011

Beller – 2011


Toste – 2007

 $R^3 = R^4 = H$, Me $R^5 = R^6 = H$, Me

List – 2007

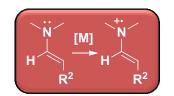
Toste – 2008

List - 2010

Sc, Inanaga, fluorination
Yb, Inanaga, Michael addition
Li, Ishiara, cyanosilation
Fe, Huang, Friedel-Craft
Mg, Luo, Friedel-Craft
Zn, Charette, Cyclopropanation
Cu, Shi, diamination
Na, Feng, cyanosilation
Ca, Ishiara, Mannich

Perspectives

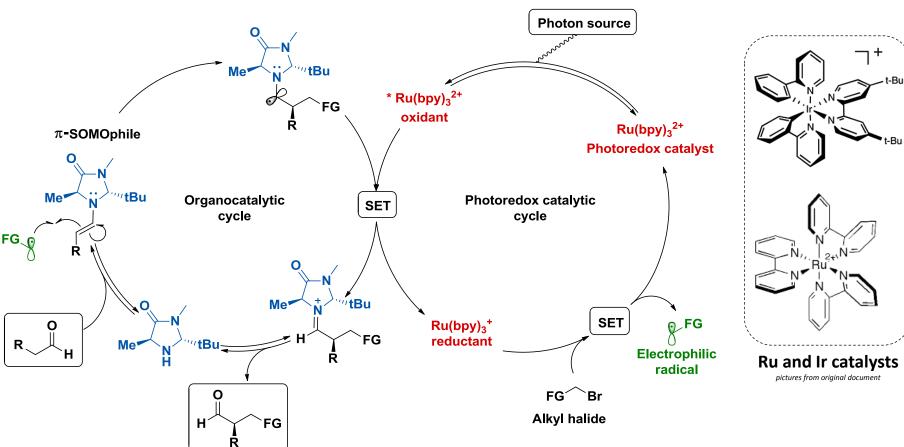
- -Attractive concept
- -Simplifying catalyst evaluation
- -Reactive intermediates present in low concentration
- -Lot of combinations that have to be discovered
- Mechanistic studies


Thank you for your attention

Questions

- 1: What is the difference of reactivity between the MacMillan SOMO and Photoredox-catalysis?
- In the case of a cationic-gold complex, why the chiral-counteranion strategy is particularly interesting in order to induce chirality?

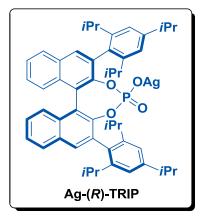
Amine - Oxidant metal



MacMillan – SOMO catalysis

Amine - Photoactivated metal

MacMillan – Photoredox catalysis



Questions

- What is the difference of reactivity between the MacMillan SOMO and Photoredox-catalysis?
- In the case of a cationic-gold complex, why the chiral-counteranion strategy is particularly interesting in order to induce chirality?

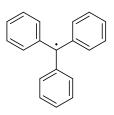
Toste – 2007

 $R^5 = R^6 = H$, Me

ENLIGHTENMENT, RADICAL PATHWAY TOWARDS COMPLEX STRUCTURES

Jean-Baptiste Gualtierotti

FRONTIERS IN CHEMICAL SYNTHESIS: TOWARDS SUSTAINABLE CHEMISTRY


SESSION III: ORGANOCATALYSTS AND RADICALS

LAYOUT

- Historical Background
- Methods for the formation of complex structures through total synthesis
 - Photo-cycloadditions
 - Photo-rearrangements
 - Norrish 1 and 2
 - Photo-extrusion
 - Photo-oxidation
 - Photo-protecting groups
- Summary and questions

PRIMARY RADICALS

Gomberg (U. of Michigan 1900): first who recognized he had stumbled the evidence of a free radical

- 1911 enough evidence for the community to accept their existence
- Giacomo Ciamician, by some called the father of photochemistry, proposed the concept of solar energy as green source to replace societies dependency on coal (1912)
 - 1929: Paneth and Hofeditz produced the methyl free radical, CH₃
 - In 1933, Morris Kharasch and his student, Frank Mayo, invoked a free-radical mechanism and discovered
 "the peroxide effect"
 - · Evolved towards plastic, understanding of many processes (ie oxidative stress) and so on
 - 1970's and onwards: truly used in synthesis i.e Barton reaction in steroid synthesis

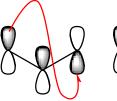
On the arid lands there will spring up industrial colonies without smoke and without smokestacks; forests of glass tubes will extend over the plains and glass buildings will rise everywhere; inside of these will take place the photochemical processes that hitherto have been the guarded secret of the plants, but that will have been mastered by human industry which will know how to make them bear even more abundant fruit than nature, for nature is not in a hurry and mankind is.

Giacomo Ciamician science 36, 385, 1912

A SINGULAR ENTITY

Advantageous over ionic counterparts

- More FG tolerant
- Lesser pH dependence
- Potential cascade reactions
- Can acess congested «areas»


In addition light based chemistry

Atom economy =
$$\frac{Mw \ product}{\sum Mw \ reactants}$$

Mw light << Standard reagents

$$E factor = \frac{m \ overall \ waste}{m \ product}$$
Light waste?

Photochemical reactions lead to a reversal of terminal symmetry relation-ships and reversal of stereospecificity Woodward-Hoffmann rules

Thermal [1.3] antarafacial sigmatropic shift

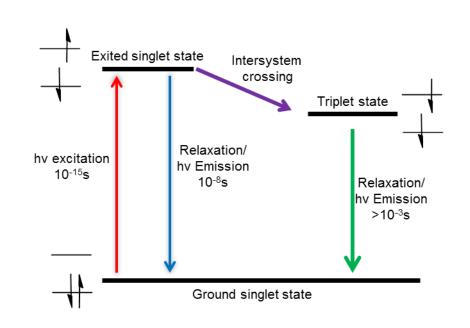
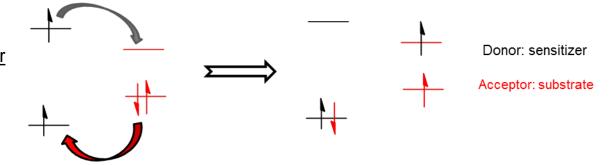

Photo [1.3] superafacial sigmatropic shift

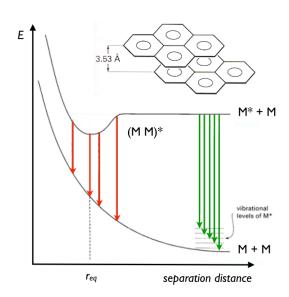
PHOTO-EXCITATION PATHWAYS

Simplified Jablonski diagram:


Quantum yield:

$$\Phi = \frac{Nbre\ events}{Nbre\ of\ photons\ absorbed}$$

Sensitization by energy transfer


Dexter or FRET mechanism

Complex formed by the stabilizing interactions between ground state molecule and exited state molecule

M + M*: eximer M + N*: exiplex

TOWARDS COMPLEX STRUCTURES THROUGH RADICALS

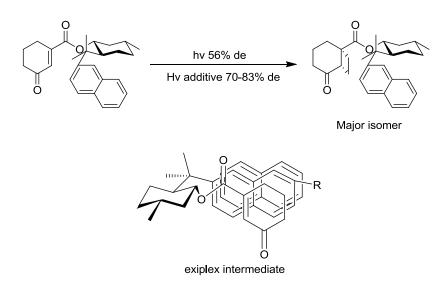
Questions

How to control the formation of an intermediate singlet or triplet state?

What reaction media are available for the following reactions?

Most common photochemical reaction, based on excitation to the reactive long lived $\pi\pi^*$ triplet (biradical) state

Photosensitivisation oft needed for ISC


Solanoclepin A

Buu Hue, B. T.; Dijkink, J.; Kuiper, S.; van Schaik, S.; van Maarseveen, J. H.; Hiemstra, H Eur. J. Org. Chem. 2006, 127-137.

Ginkgolide B 1

Crimmins, Michael T.; Pace, Jennifer M.; Nantermet, Philippe G.; Kim-Meade, Agnes S.; Thomas, James B.; Watterson, Scott H.; Wagman, Allan S.. *J. Am. Chem. Soc.* **2000**, *122*, 8453-8463

Additives to enhance diaselectivity

Tsutsumi, K.; Nakano, H.; Furutani, A.; Endou, K.; Merpuge, A.; Shintani, T.; Morimoto, T.; Kakiuchi, K., *J. Org . Chem* **2004**, *69* (3), 785-789.

De Mayo varient

Enol followed by retro-aldol

David E. Minter and, Christopher D. Winslow J. Org. Chem 2004 69 (5), 1603-1606

Paternó-Büchi varient

Hetero 2+2 cycloadditon, passing through triplet $n\pi^*$ or $\pi\pi^*$ carbonyl biradical

Nehrings, A.; Scharf, H.-D.; Runsink, J., Angew Chem 1985, 97 (10), 882-883.

Boxall, Richard J.; Ferris, Leigh; Grainger, Richard S. Synlett 2004 2379-2381

Paternó-Büchi varient

Efforts to reach stero-control have been made

Guo, H.; Herdtweck, E.; Bach, T., Angew. Chem. Int. Ed. 2010, 49 (42), 7782-7785.

Rarer: photoexcitation dealigns orbitals

Some examples exist: based on photoswitching rather than photoactivation

Davies, H. M. L.; Loe, Ø.; Stafford, D. G., Org Let 2005, 7 (25), 5561-5563.

PHOTOCYCLOADDITIONS

Additions on aromatic cores leading to the loss of aromaticity

Intra/inter selectivity:

Regioselective issues: Controllable by tethering and substituant optimisation

Steroselective issues: endo prefered

Facial selectivity: Structure dependent

PHOTOCYCLOADDITIONS

Meta-photocycloaddition

Howbert J.J. Wender P.A., J. Am. Chem. Soc, 103, 688-690

Deicated review: Chappell, D.; Russell, A. T., Organic & Biomolecular Chemistry 2006, 4 (24), 4409-4430.

5+2 PHOTOCYCLOADDITIONS

Unusual intramolecular reaction, protecting group free

Lainchbury, M. D.; Medley, M. I.; Taylor, P. M.; Hirst, P.; Dohle, W.; Booker-Milburn, K. I., *J. Org. Chem.* **2008**, *73* (17), 6497-6505.

6+2 PHOTOCYCLOADDITIONS

6 + 2 also exists, although rare in synthesis

Feldman, K. S.; Wu, M. J.; Rotella, D. P., J.Am.Chem.Soc 1990, 112 (23), 8490-8496.

OTO-REARANGEMEN

$$X = CH2 Di-π$$
-methane rearangement $X = O Oxa-Di-π$ -methane rearangement

OH hv OH OH
$$\frac{1}{70\%}$$
 OH OH $\frac{1}{70\%}$ OH $\frac{1}$

Singh, V.; Sahu, P. K.; Mobin, S. M., Tetrahedron 2004, 60 (44), 9925-9930

PHOTO-REARANGEMENTS

Barton Nitrite ester reaction

5 hydrogen abstraction

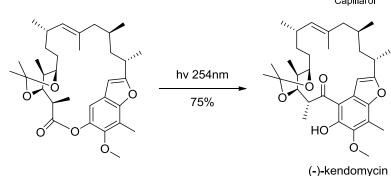
1-Dethia-3-aza-1-carba-2-oxacephem

Hakimelahi G.H., Li P., Moosavi-Movahedi A., Chamani J., Khodarahmi G. A., Ly T. W., Valiyev F., Leong M. K., Hakimelahi S., Shia K. Chao I. *Org. Biomol. Chem.*, 2003, **1**, 2461-2467

Similar to the Hofmann-Löffler-Freytag Reaction, amine instead of alcohol

PHOTO-FRIES REARANGEMENT

Strong lewis acid


Mild alternative

Through homolitical cleavage of the ester bond

Regioselectivity dependant on substituded positions

«standard» reaction did not work

Okada K., Suzuki R., Yokota T. Biosci. Biotechnol, Biochem. 1999, 63, 257-260

Standard Fries in general requires unencumbered arenes

Magauer, T.; Martin, H. J.; Mulzer, J., Angew Chem. Int. Ed. **2009**, *48* (33), 6032-6036.

NORRISH-YANG REACTION

Kraus, G. A.; Chen, L., J. Am. Chem. Soc 1990, 112 (9), 3464-3466.

Wessig, P; Teubner, J Synlett 2006, 1543-1546

21

NORRISH CLEAVAGE

C.-H Lin, Y.-L. Su, H.-M. Tai, Heterocycles 2006, 68, 771-777

Molander, G. A.; St. Jean, D. J.; Haas, J., J. Am. Chem. Soc 2004, 126 (6), 1642-1643.

PHOTOEXTRUSION

Veerman, M.; Resendiz, M. J. E.; Garcia-Garibay, M. A., Org Lett 2006, 8 (12), 2615-2617.

Tetrazo-option also known

PHOTOOXYDATION

Singlet oxygen is far more reactive than ground state triplet oxygen

Easy oxidation, sunlight is sufficient.

Vassilikogiannakis, G.; Margaros, I.; Montagnon, T.; Stratakis, M., Chem.-Eur. J. 2005, 11 (20), 5899-5907.

Photo-oxydation of furans gave several natural products

Cladocorane A

(+/-)-Toluccanolide C

Miyaoka, H.; Yamanishi, M.; Kajiwara, Y.; Yamada, Y., *J Org Chem* **2003**, *68* (9), 3476-3479.

Mace, L. H.; Shanmugham, M. S.; White, J. D.; Drew, M. G. B., *Org. Biomol. Chem.* **2006**, *4* (6), 1020-1031.

PROTECTING GROUPS

Cleavage by light avoids reagents and is rapid and clean

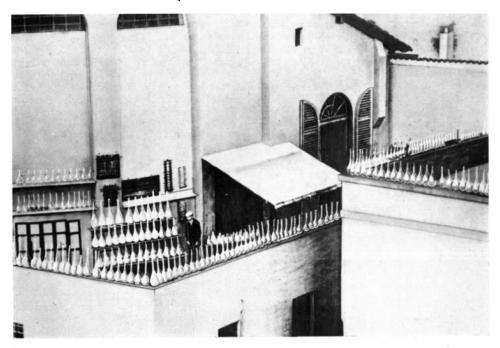
Snider, B. B.; Busuyek, M. V., Tetrahedron 2001, 57 (16), 3301-3307.

PHOTOCHEMICAL MCR

Light as an auxillary for radical chemistry

Ryu, I.; Kreimerman, S.; Araki, F.; Nishitani, S.; Oderaotoshi, Y.; Minakata, S.; Komatsu, M., J. Am. Chem. Soc 2002, 124 (15), 3812-3813.

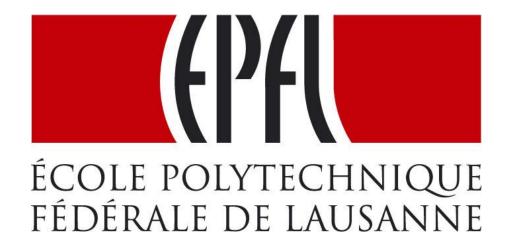
Recent similar work by Corey R. J. Stephenson on light photoredox catalysis


SUMMARY

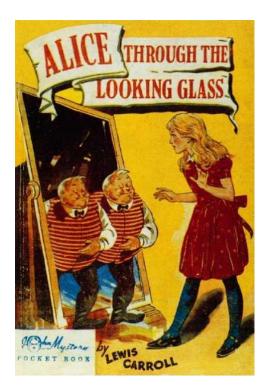
Many structures are accessible through photo-induced radical reactions

Oft in greener conditions, even at times in crystal phase

Sensitizers, additives and carefully chosen substituents can induce selectivity on several levels


Questions?

CIAMICIAN passant eu revue les centaines de flacons exposés au soleil sur le toit de son laboratoire.


Enantioselective Reactions Catalyzed by Iron Complexes

Pablo Pérez

General Introduction

"How would you like to live in Looking-glass House Kitty? I wonder if they'd give you milk in there? Perhaps looking glass milk isn't good to drink.." Lewis Carroll, *Through the looking-glass and what Alice found there*, Macmillan, 1872

HO

NH2

$$CO_2H$$

(S)-dopa

Restores nerve function

 CO_2H
 CO_2H
 CO_2H
 CO_2H
 CO_2H
 CO_2H
 CO_2H

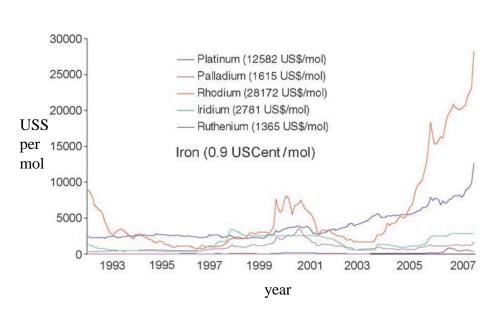
General Introduction

Chiral Components

Sales of enantiomeric intermediates and single-enantiomer drugs are up

	ENANTIOMERIC INTERMEDIATES			BULK ENANTIOMERIC DRUGS		
\$ MILLIONS	1999	2000	2005	1999	2000	2005
Anti- inflammatory/analgesics	\$150	\$156	\$168	\$200	\$223	\$241
Antiviral	794	830	1,643	983	1,180	2,054
Cancer	892	1,073	1,297	1,783	2,146	2,593
Cardiovascular	1,133	2,281	3,269	1,889	3,802	5,449
Central nervous system	1,038	1,142	1,821	1,483	1,632	2,602
Dermatology	82	85	106	164	170	212
Gastrointestinal	251	331	649	413	567	1,082
Ophthalmic	238	284	401	340	405	573
Respiratory	576	656	914	1,151	1,511	2,287
Other	140	170	356	315	426	891
TOTAL	\$5,294	\$7,008	\$10,624	\$8,721	\$12,062	\$17,984

S. C. Stinson Chem. Eng. News. 2001, 79(40), 79


General Introduction

Why to do catalysis with Iron?

Biological iron-based catalysts

2H⁺ H-cluster H₂ 2e⁻

Market prices of transition metals

M. Beller et al. Angew. Chem. Int. Ed. 2008, 47, 3317

Large use of iron as catalyst in organic chemistry

- Addition Reactions.
- Substitution Reactions.
- Cycloadditions.
- Hydrogenations.
- Isomerizations and Rearrangements
- Polymerizations
- Other (Sulfide oxidations, CO insertions, Baeyer Villiger Reactions, etc)

C. Bolm Chem. Rev. 2004, 104, 6217

- Carbon heteroatom bond forming processes.
- Heteroatom heteroatom bond forming processes.

C. Bolm Chem. Soc. Rev. 2008, 37, 1108

Goal of the talk: Try to give a summary of principal enantiomeric synthesis applications of iron catalysis.

Organization

- Addition Reaction: Asymmetric Michael Reaction.

 Asymmetric Olefin cis-Dihydroxylation

 Asymmetric Epoxidation
- Substitution Reactions: Stereoselective Allylic Alkylation.
- Cycloadditions: Asymmetric Diels Alder Reaction,
 Asymmetric 1,3-Dipolar Cycloaddition
- Hydrogenations: Asymmetric Hydrogenation of Ketones.

 Asymmetric Transfer Hydrogenation of Imines.
- Other: Asymmetric Sulfide Oxidation, Enantioselective O-H bond insertions, Selective Aliphatic C-H Oxidation Reaction, Enantioriched Cross-coupling of 2-Naphtols.

Questions

1. For the following reaction, during the catalytic cycle, the alkene double bond is sigma or pi coordinated to the iron?

n-Bu
$$\begin{array}{c} \text{Me} \\ \text{OCO}_2\text{Me} \end{array} + \text{NaCH(CO}_2\text{Me)}_2 \\ \hline \\ \text{CO 1 atm, THF} \\ \text{reflux 12 h} \end{array}$$

2. For the following reaction analyzing the structure of the product, the nitrone approach preferentially the C_{alpha} -Si-face or the C_{alpha} -Re-face of the enal?

Asymmetric Michael Reaction

Intermediate Proposed:

J. Christoffers et al. Angew. Chem. Int. Ed. 2000, 39, 2752

Asymmetric Michael Reaction

C-S bond formation

RSH + Me
$$\sim$$
 Fe(BF₄)₂ 10 mol% \sim Me \sim N \sim O \sim THF \sim 20°C, 24 h

R: Ph 86 %, 90 % ee

R: *o*-Tolyl 92 %, 95 % *ee*

R: 2-Naphthyl 96 %, 89 % ee

$$iPr$$
 L: $iPr\{(S,S)-ip$ -Pybox $\}$ iPr

T. Itoh et al. Tetrahedron Letters 2007, 48, 6480

Asymmetric Olefin cis-Dihydroxylation

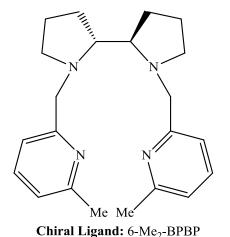
nBu

Me

(Fe] cat. 2 mol %

$$H_2O_2$$
 10 eq.

MeCN 30 min


NBu

OH

OH

97 % ee

Pr Pr
$$\frac{[\text{Fe}] \text{ cat. 2 mol }\%}{\text{H}_2\text{O}_2 \text{ 10 eq.}}$$
MeCN 30 min Pr OH
96 % ee

[Fe^{II}(6-Me₂-BPBP)(OTf)₂]

Asymmetric Epoxidation

FeCl₃ (5 mol%)
L: Ligand

$$H_2O_2$$
 2 eq.
 H_3pydic (5 mol%)
2-methylbutan-2-ol, 1 h

FeCl₃ (5 mol%)
L: Ligand

 H_2O_2 2 eq.
 H_3pydic (5 mol%)
2-methylbutan-2-ol, 1 h

 H_3O_4 2 eq.
 H_3pydic (5 mol%)
2-methylbutan-2-ol, 1 h

 H_3O_4 2 eq.
 H_3pydic (5 mol%)
2-methylbutan-2-ol, 1 h

 H_3O_4 2 eq.
 H_3pydic (5 mol%)
2-methylbutan-2-ol, 1 h

 H_3O_4 2 eq.
 H_3pydic (5 mol%)
2-methylbutan-2-ol, 1 h

 H_3O_4 2 eq.
 H_3pydic (5 mol%)
2-methylbutan-2-ol, 1 h

Stereoselective Allylic Alkylation

n-Bu
$$\frac{Me}{OCO_2Me}$$
 + NaCH(CO₂Me)₂ $\frac{Fe(CO)_3NO^- NBu_4^+ 25 \text{ mol}\%}{CO_1 \text{ atm, THF reflux 12 h}}$ $\frac{CO_2Me}{CO_2Me}$ + NaCH(CO₂Me)₂ $\frac{Fe(CO)_3NO^- NBu_4^+ 25 \text{ mol}\%}{CO_1 \text{ atm, THF}}$

reflux 12 h

OCO₂Me

Y. Xu et al. J. Org. Chem. 1987, 52, 974

 $^{\prime}$ CH(CO₂Me)₂

Asymmetric Diels – Alder Reactions

E. P. Kündig et al. Angew. Chem. Int. Ed. 1994, 33, 1856

Asymmetric 1,3-Dipolar Cycloaddition

E. P. Kündig et al. J. Am. Chem. Soc. 2002, 124, 4968

Asymmetric Transfer Hydrogenation of Ketones

13 examples all ee around to 35%

Asymmetric Transfer Hydrogenation of Imines

Applications:

17 examples all ee up to 90%

M. Beller et al. Angew. Chem. Int. Ed. 2010, 49, 8121

Asymmetric Sulfide Oxidation

$$R^{1} = S - R^{2} \xrightarrow{\begin{array}{c} [\text{Fe}(\text{acac})_{3}] (2 \text{ mol\%}) \\ \text{ligand L } (4 \text{ mol\%}) \\ \text{Additive A } (0.5\text{eq. / Fe}) \\ 30\text{-}35\% \text{ aq. H}_{2}O_{2} (1.2 \text{ eq.}) \\ \text{CH}_{2}CI_{2}, \text{ r.t., 16h} \end{array}} R^{2}$$

$$R^{1} : Ph$$

$$R^{2} : Me$$

$$R^{1} : 4\text{-BrC}_{6}H_{4}$$

$$R^{2} : Me$$

$$R^{1} : 2\text{-naphthyl}$$

$$R^{2} : Me$$

$$R^{1} : 2\text{-naphthyl}$$

$$R^{2} : Me$$

$$R^{2} : Me$$

$$R^{1} : 2\text{-naphthyl}$$

$$R^{2} : Me$$

$$R^{2} : Me$$

$$R^{3} : 2\text{-naphthyl}$$

$$R^{3} : 2\text{-naphthyl}$$

$$R^{4} : 2\text{-naphthyl}$$

$$R^{5} : Me$$

$$R^{7} : 2\text{-naphthyl}$$

$$R^{7} : 2\text{-naphthyl}$$

$$R^{7} : 3\text{-naphthyl}$$

C. Bolm et al. Chem. Eur. J. 2005, 11, 1086

Enantioselective O-H bond insertions

Alcohol insertion

L: Spirobox

Qi-Lin Zhou et al. Nature Chemistry 2010, 2, 546

Enantioselective O-H bond insertions

Water insertion

Clopidogrel: Platelet aggregation inhibitor

92 % ee with 1 mol% of catalyst

OH ONS ONS ONS
$$CH_2$$
 CI CO_2Me ONS $CH_2CI_2, 0^{\circ}C$ O ONS ONS

17 examples all ee up to 90%

Qi-Lin Zhou et al. Nature Chemistry 2010, 2, 546

Selective Aliphatic C-H Oxidation Reaction

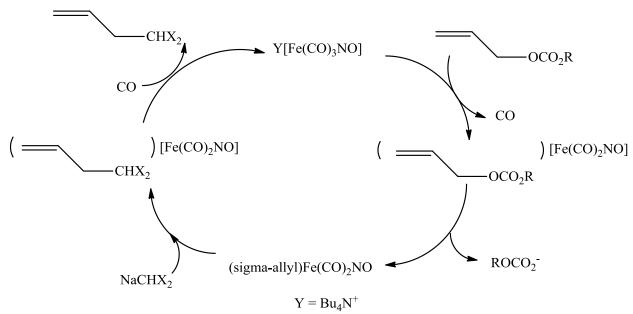
Enantioriched Cross-coupling of 2-Naphtols

R¹: electron-donating group

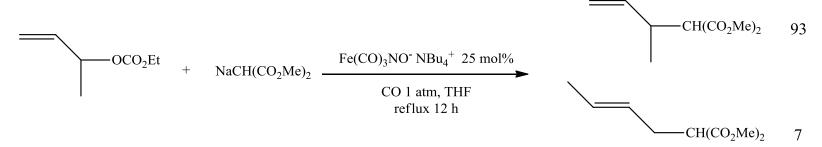
R²: electron-withdrawing group of H

R³: H or electron-withdrawing (or less donating) group

T. Katsuki et al. J. Am. Chem. Soc. 2010, 132, 13633


Conclusions

- Iron is a very interesting option for a catalyst center due to its ready availability, environmental friendliness and low market price.
- It has been shown that iron is useful for several kinds of enantiomeric reactions showing generally a high enantioselectivity.
- It is hoped that the methodologies will be more developed to be applied in more "real synthesis".
- The understanding of the catalysis mechanism is crucial for the improvement of catalyst activity and productivity.


Stereoselective Allylic Alkylation

Question 1

Proposed mechanism:

Pi to Sigma allyl coordination:

Asymmetric 1,3-Dipolar Cycloaddition

Question 2

E. P. Kündig et al. J. Am. Chem. Soc. 2002, 124, 4968

Questions

The intramolecular Rh(I) catalyzed [5+2] carbocyclization of alkene-tethered VCPs is a highly diastereoselective reaction:the cis isomer is always the only one or the major one to be observed, for what concern the bridges-bond in the obtained bicyclic cycloadduct. How could this outcome be justified?

Sterical effects can explain the feasibility of the intermolecular Rh(I) catalyzed [5+2] carbocyclization with 1-alkyl substituted VCPs (favoring the preorganization). An alkoxy or siloxy group on the same position can also favor the reactivity in intermolecular systems, by lowering the energy of TS3 (transition state for the rate determing step). How could this effect be rationalized?

Frontiers in Chemical Synthesis: Towards Sustainable Chemistry June 6-7, 2011

Rhodium(I)-Catalyzed Carbocyclization Reactions A Straightforward Access to Medium-Size Rings

Stefano Nicolai

Outline

Introduction

Cycloaddition vs Metal-Catalyzed Carbocyclizations

Synthesis of 7-Membered Rings: Rh(I) Catalyzed [5+2] Carbocyclisations

- Catalytic systems
- Regio/Stereoselectivity
- Applications in Total synthesis

Synthesis of 8-Membered Rings:

- Rh(I) Catalysed [4+2+2] Carbocyclisation Reactions
- Rh(I) Catalysed [6+2] Carbocyclisation Reactions

Conclusions

Cycloaddition Reactions: Effective Synthetic Tools towards Complexity

- Simultaneous formation of multiple σ -bonds
- Possible control on Regio- and Stereo Selectivity
- Complex cyclic systems accessible in a convergent way

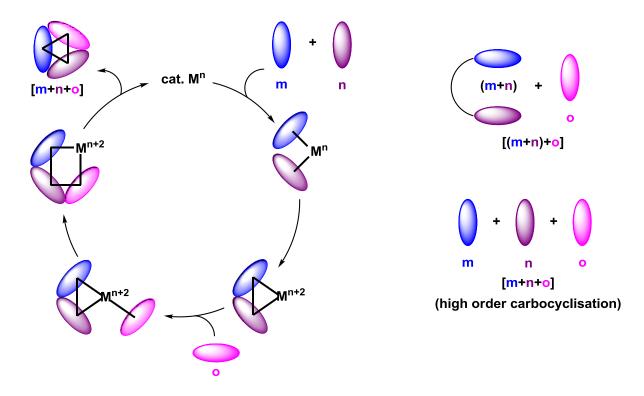
Highly Step-Economical Reactions

Diels-Alder Cycloaddition: a Classical Model

Newly formed in one step:

- 2 σ -bonds
- Up to 4 stereocenters

HOMO – LUMO MATCHING required for reactivity

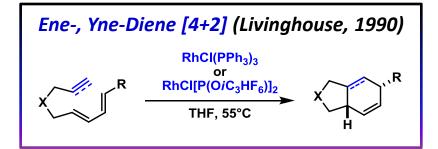

D.-A. Cycloddition Limitation:

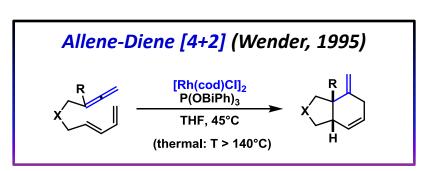
- → Electronically dissimilar components required;
- → Low Rate or no reactivity;
- → Forcing conditions.

Transition Metal Catalyzed Carbocyclisation Reactions

Formal Cycloaddition processes:

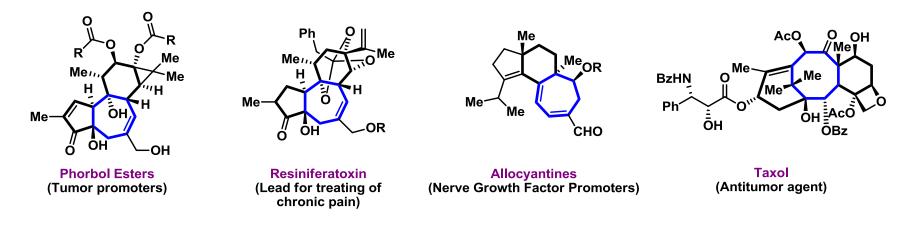
- Coordination/Activation of two unsaturated units m, n;
- Oxidative Cyclisation → Metallacycle formation.
- Interception of unsaturated unit o;
- Reductive elimination → Cycloadduct release.

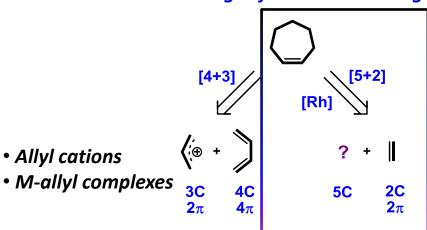



Most commonly used metal: Ni, Co, Ru, Rh, Pd

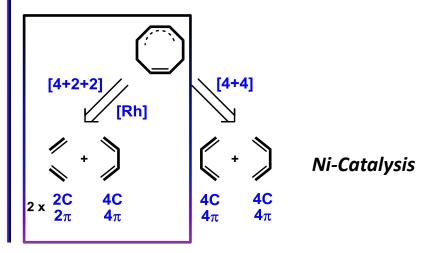
Rh: High versatility; high FG tolerance; compatible with mild conditions

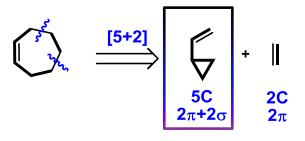
Rhodium-Catalyzed [4+2] Carbocyclization: "Diels-Alder" with unactivated substrates


$$\frac{\mathsf{Rh}(\mathsf{I})\mathsf{L}_{\mathsf{n}}}{\mathsf{Rh}(\mathsf{I})\mathsf{L}_{\mathsf{n}}} \xrightarrow{\mathsf{oxidative}} \frac{\mathsf{oxidative}}{\mathsf{addition}} + \mathsf{Rh}(\mathsf{I})\mathsf{L}_{\mathsf{n}}$$

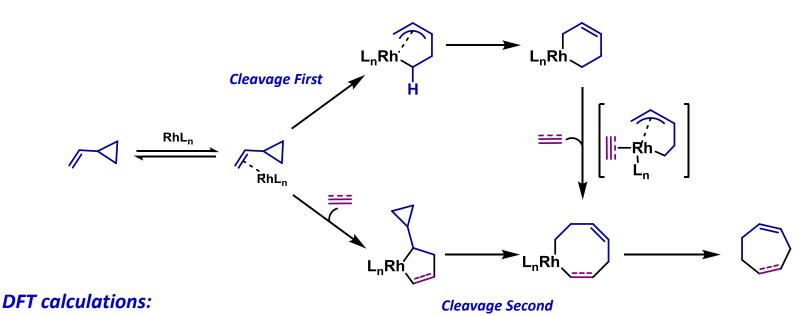


Medium Size Membered Rings: Targets for Cycloadditions?

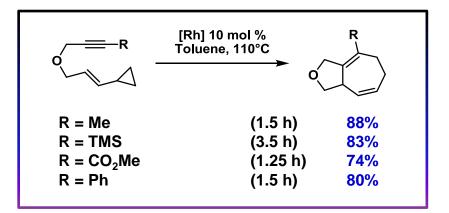

Cycloeptanoyds and Cyclooctanoids: widely present in bio- and pharmacologically active compounds

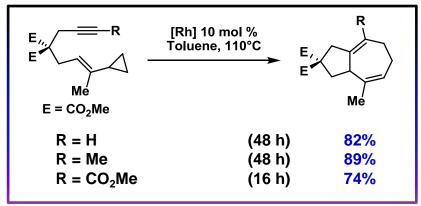

7-Membered Rings Homologs of 6 membered rings

8-Membered Rings



Aiming to [5+2] Carbocyclizations: Vinylcyclopropanes (VCPs)


VCPs: potential homologs of dienes:


- Kinetically stable (high ΔG^{\dagger} for thermal isomerisation);
- C=C available for metal coordination;
- Strained Cyclopropane available for cleavage upon activation;
- Isomerization to dienes/cyclopentene is known to be promoted by Rh(I)*

Intramolecular: Cleavage Second Intermolecular: Cleavage First

Intramolecular [5+2] Cycloadditions of VCPs Discovery of the Reaction: Tethered Alkynes and Alkenes

$$\begin{array}{c} \text{MeOOC}, \\ \text{MeOOC} \\ \\ \text{R}^1 \\ \\ \text{R}^2 \end{array} \begin{array}{c} \text{RhCl(PPh}_3)_3/\text{AgOTf} \\ \text{(1-10 mol\%)} \\ \\ \text{Toluene, 110°C} \end{array} \begin{array}{c} \text{MeOOC}, \\ \\ \text{MeOOC} \\ \\ \text{R}^1 \\ \\ \text{R}^2 \end{array} \\ \\ \text{R}^1 \\ \text{R}^2 \\ \\ \text{R}^1 \\ \text{R}^2 \end{array}$$

Regioselectivity and Diastereoselectivity in the Intramolecular [5+2] Cycloaddition

Stereochemistry of VCP translated to the cycloadduct (no C/D)

A usually favored over B (with bulky R: d.r. > 20:1)

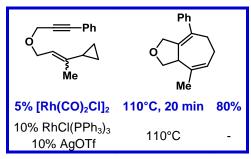
Cleavage b

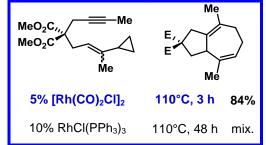
R remote from the alkene:

2 and 2' in equilibrium: Curtin-Hammett

Rate Determining Step: $4 \rightarrow 5$

Cleavage a


Improved Catalytic Systems: [Rh(CO)₂CI]₂


Wilkinson Catalyst [RhCl(PPh₃)₃]:

- High temperatures required;
- Not generally applicable (No Reactivity or isomerisation depending on thether and VCP)

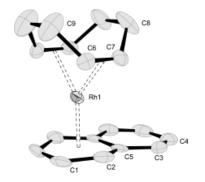
Wender, 1998: [Rh(CO)₂Cl]₂

- Less sterically encumbered;
- •Requires milder conditions in related additions.

Improved reactivity with « problematic substrates »

Milder conditions generally possible

No reactivity observed with alkenes and terminal alkynes


Other Catalyst Systems: [(C₁₀H₈)Rh(cod)]⁺

Chung, 1999: [(C₁₀H₈)Rh(cod)]BF₄

efficient catalyst for [4+2] cycloadditions of dienes and alkynes.

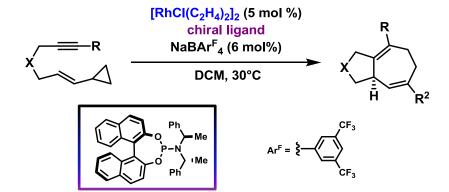
Wender, 2002: [(C₁₀H₈)Rh(cod)]SbF₆

- readily prepared from [RhCl(cod)₂], AgSbF₆ and naphthalene;
- air stable at rt, catalytic activity is retained for long times;

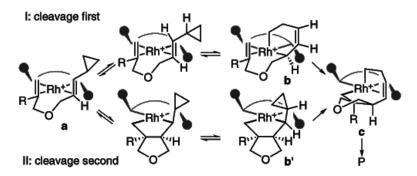

- More general catalytic system than Wilkinson catalyst and [Rh(CO)₂CI]₂;
- Effective under mild conditions.

A Further Improvement: Rhodium-NHCs

Vinylic Oxiranes: Synthesis of [3.1.0] Hexanes by Hetero-[5+2] Cycloaddition/Claisen Rearrangement


Asymmetric Rh-Catalyzed [5+2] Cycloaddition of VCPs

Wender (2006): Alkene-VCPs



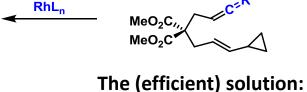
X	R ¹	R ²	Yield	ee
$C(CO_2Me)_2$	Н	Н	73%	52 %
	Ме	Н	72%	>95%
	CH₂OBn	Н	80%	>99%
	Н	Me	92%	95%
NTs	Н	Н	90%	96%

Hayashi (2009): Alkyne-VCPs

X	R	Yield	ee
C(CO ₂ Me) ₂	Ph	82	83%
NTs	Ph	88%	99%
	Me	87%	>99.5%
	н	53%	92%
0	CH ₂ CH ₂ Ph	90%	95%

Reaction with Tethered Allenes

1,1-disubstituted alkenes: good reactivity observed


$$\begin{array}{c} R \\ MeO_2C \\ MeO_2C \end{array}$$

$$R = Me$$

1,2-disubstituted alkenes: *low reactivity*(competitive β-hydride elimination)

MeO2C

Allenes used as surrogates of 1,2 disubstituted alkenes

1 mol% RhCl(PPh)₃ PhMe, 110°C, 5h 96%

5 mol% [Rh(CO)₂Cl]₂ DCE, 90°C, 3.5 h 83% (cis:trans > 20:1)

10 mol% [Rh(CO)₂Cl]₂ PhMe, 90°C, 0.75 h 90% (cis:trans > 10:1)

Total Synthesis of (+)-Aphanamol (Wender)

Total Synthesis of (-)-Pseudolaric Acid B (Waser, Trost)

- Proved antifungal, antifertility and citotoxic activity; potential application for cancer therapy.
- Complex multifunctionalized triyclic core; four contiguous stereocenters (one quaternary).
- Fused [5 7] ring system (polyhydroazulene): Target for [5+2] cycloaddition.

(-)-Pseudolaric Acid B: [5+2] Cycloaddition

VCP
$$\frac{23 \text{ mol}\% [Ru]}{\text{acetone}}$$

$$\frac{11 \text{ mol}\% [Rh]}{\text{DCE}}$$

$$\frac{11 \text{ mol}\% [Rh]}{\text{DCE}}$$

$$\frac{88\%}{\text{dr} = 15:1}$$

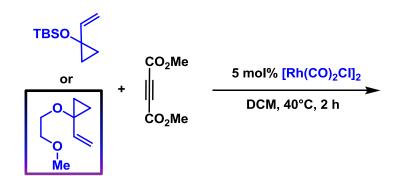
$$\text{TBSO}$$

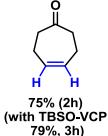
$$\frac{11 \text{ mol}\% [Rh]}{\text{Me}}$$

$$\frac{15\%}{\text{Me}}$$

$$\frac{15\%}{\text{Me}}$$

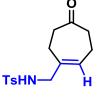
$$\frac{11 \text{ mol}\% [Rh]}{\text{Me}}$$


Intermolecular [5+2] cycloaddition of VCPs and alkynes


- No reactivity
- Isomerization of the VCP
- Trimerization of the alkyne

Previously observed:

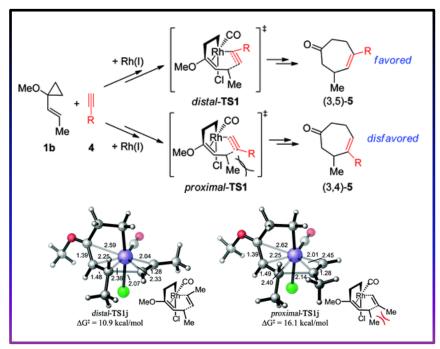
Increase of intramolecular reactivity with O-substituted VCPs;

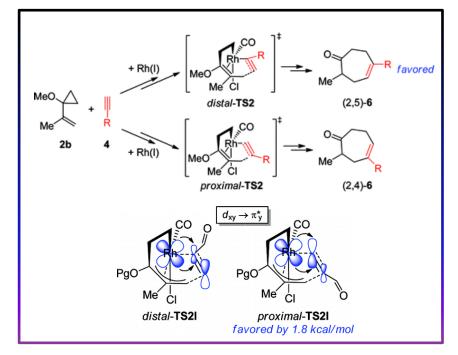

 $[Rh(CO)_2CI]_2$ effective with unreactive substrates.

MeOOC H

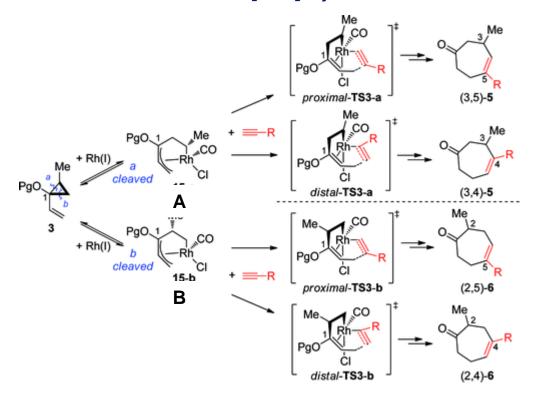
84%, 10 min (with TBSO-VCP: 93%, 2h)

87% (15 min)


Intermolecular [5+2] Cycloadditions with Substituted VCPs: Regioselectivity

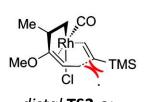

No tether present \rightarrow two possible orientations for interception of monosubtituted alkynes.

$$R^{1}O \longrightarrow R^{2} \longrightarrow R^{$$

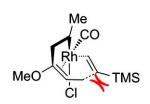

(2,4)-6 selectively formed if R⁴ is large and not strongly EWG; (3,4)-5 never observed

Intermolecular [5+2] Cycloadditions with Substituted VCPs: Regioselectivity

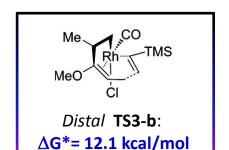
Intermolecular [5+2] Cycloadditions with Substituted VCPs: Regioselectivity


Low activation barriers for cleavage of both bonds **a** and **b** in VCP cyclopropyl:

Cleavage of Cyclopropyl bonds reversible
Metallacycles A and B in equilibrium



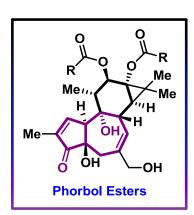
Curtin-Hammett conditions applied


Example: R on alkyne large and electron-donating (TMS): Sterical Effect Dominating

distal **TS3-a**: $\Delta G^* = 13.9 \text{ kcal/mol}$

Proximal **TS3-a**: $\Delta G^* = 15.1 \text{ kcal/mol}$

Proximal **TS3-b**: $\Delta G^* = 14.3 \text{ kcal/mol}$


Aiming to Step-Economy: Intermolecular [5+2] Cycloadditions in Cascade Reactions

Serial [5+2]/[4+2] Cycloaddition Reactions

Complete Chemoselectivity for the alkyne over the alkene

- Tricyclic system
- Up to four stereocenters

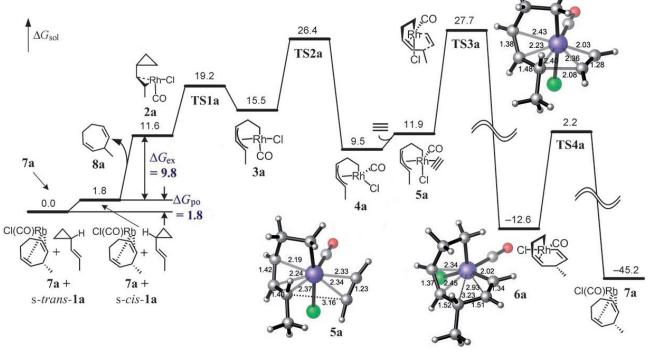
Serial [5+2] Cycloaddition/Nazarov Cyclisation

- Sequence (two-flask): $[Rh(CO)_2CI]_2 \rightarrow isolation of C.A. \rightarrow AgSbF_6$
- Sequence (one-flask, two catalysts): $[Rh(CO)_2CI]_2 \rightarrow AgSbF_6$ (68-82% yields)
- Cascade (one flask, one catalyst): [Rh(CO)₂Cl]₂/AgSbF₆ (56-95% yields)

[5+2] Cycloadditions with Unactivated, Alkyl-Substituted VCPs (I)

Heteroatom required to allow intermolecular [5+2]cycloaddition?

Reactivity also observed with alkyl geminally substituted VCPs!


[5+2] Cycloadditions with Unactivated, Alkyl-Substituted VCPs (II)

With monosubstituted alkynes: High (>10:1) to complete regioselectivity observed.

Intermolecular Reactivity: Effect of Substituents on VCP-C1

 $\Delta G^{\dagger} = \Delta G_{po} + \Delta G(TS3-2) + \Delta G_{ex}$

- Bulky R reduces ΔG_{po}
- R = OR' reduces $\Delta G(TS3-2)$
- **∆Gex** lowly influent

Rhodium-Catalyzed [(4+2)+2] Cycloaddition

Gilbertson: Alkyne Interception by [4+2]

Rhodium-Catalyzed [4+(2+2)] Cycloaddition

Evans: Carbocyclization by interception of butadiene.

Rhodium-Catalyzed [4+(2+2)] Cycloaddition

Evans: Temporary Silicon-Tethered Rh(I) Catalyzed [4+(2+2)] Carbocyclisation Reactions

$$E \longrightarrow \begin{pmatrix} R \\ IPr \\$$

[6+2] Cycloadditions of Vinylcyclobutanones

Strain energies similar in simple Cyclopropane and Cyclobutane (27 kcal/mol vs 26 kcal/mol).

No reactivity observed with Vinylcyclobutanes

- VCPs reactivity tunable by substitution of the Cyclopropane subunit;
- •Rh known to be able to efficiently insert Cyclobutenones (ring expansion) (Libeskind).*

Multicomponent [5+2+1] Cycloadditions of VCPs, alkynes and CO

Conclusions

Carbocyclization Reactions:

An effective alternative to « thermal » cycloaddition reaction with unactivated substrates.

Rh(I) Catalyzed [5+2] Cycloadditions:

- Easy access to 7-membered rings by reaction of VCPs with alkynes, alkenes, allenes;
- Intramolecular and Intermolecular versions optimized;
- Good FG tolerance;
- High Regio- and Diastereoselectivities;
- Key step in total syntheses.

Rh(I) Catalazed Carbocyclization to generate 8-Memberd Rings

Possible Future Developments:

- Further efforts towards Asymmetry?
- Hetero Cycloadditions;
- Applications to more complex systems and in total synthesis.