Target validation

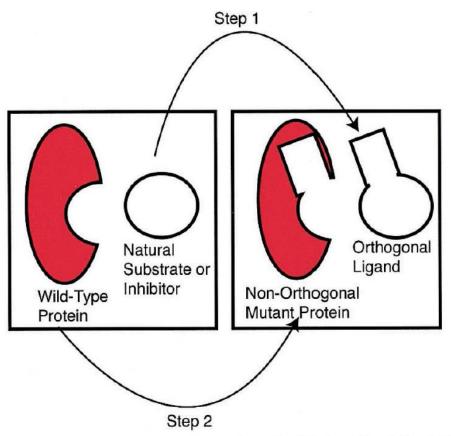
A chemical switch for inhibitorsensitive alleles of any protein kinase

Anthony C. Bishop*, Jeffrey A. Ubersax†, Dejah T. Petsch‡,
Dina P. Matheos§, Nathanael S. Gray||, Justin Blethrow†, Eiji Shimizu§,
Joe Z. Tsien§, Peter G. Schultz||, Mark D. Rose§, John L. Wood‡,
David O. Morgan† & Kevan M. Shokat*¶

Protein kinases have proved to be largely resistant to the design of highly specific inhibitors, even with the aid of combinatorial chemistry¹. The lack of these reagents has complicated efforts to assign specific signalling roles to individual kinases. Here we describe a chemical genetic strategy for sensitizing protein

Relevant for exam: Figures 1, 2 and SI Figure showing staurosporine structure (a) and K252a data (b)

^{*} Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA


[†] Departments of Physiology and Biochemistry & Biophysics, University of California San Francisco, San Francisco, California 94143-0444, USA ‡ Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, USA

[§] Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA

^{||} Genomics Institute of the Novartis Research Foundation, San Diego, California 92121, USA

«Bump and hole» strategy

Generating "orthogonal" ligand-protein pairs/ allele-specific inhibitors

Annu. Rev. Biophys. Biomol. Struct. 2000. 29:577-606

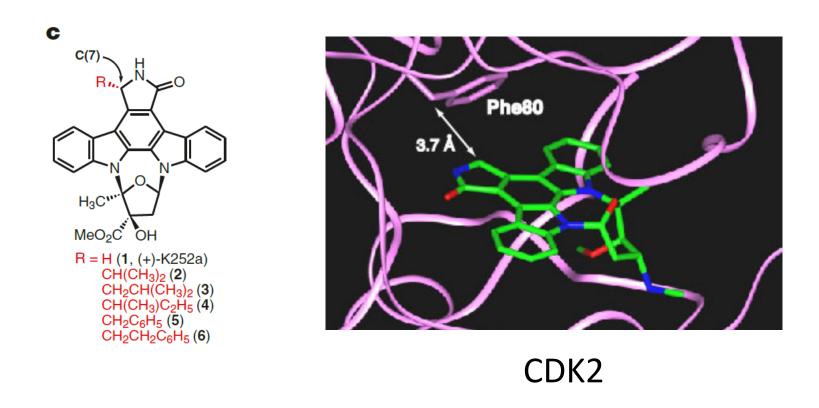
Figure 1a

a

Protein kinase	Kinase family	Specificity	Cellular function	% identity to v-Src
v-Src	Src	Tyr	oncogenic transformation	100
c-Fyn	Src	Tyr	lymphocyte activation	84
c-AbI	Abl	Tyr	F-actin binding, transcription	51
CAMK IIα	calcium/calmodulin dependent	Ser/Thr	long-term potentiation, memory	26
CDK2	cyclin dependent	Ser/Thr	mammalian cell-cycle progression	27
Cdc28	cyclin dependent	Ser/Thr	S. cerevisiae cell-cycle progression	27
Fus3	mitogen-activated	Ser/Thr	S. cerevisiae mating	28

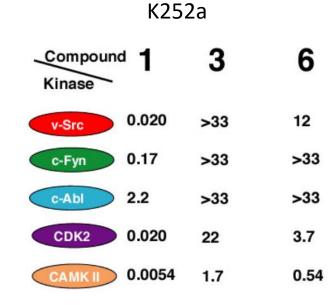
Figure 1b

Subdomain IV


V-Src [318]RHEKLVQLYAMVSE------EPIYIVIEYMSK--GSLLDFLKGEMG
c-Fyn [319]KHDKLVQLYAVVSE------EPIYIVTEYMNK-GSLLDFLKDGEG
c-Abl [294]KHPNLVQLLGVCTRE------PPFYIITEFMTY--GNLLDYLRECNR
Camk IIα [68] KHPNIVRLHDSISEE------GHHYLIFDLVTG--GELFEDIVAREY
Cdk2 [59] NHPNIVKLLDVIHTE-----NKLYLVFEFLHQ---DLKKFMDASAL
Cdc28(Cdk1)[66] KDDNIVRLYDIVHSDA-----HKLYLVFEFLDL---DLKRYMEGIPK
Fus3 [67] KHENIITIFNIQRPDSFENF---NEVYIIQELMQT---DLHRVISTQM

- Why mutation of position 338?
- Mutation to which amino acid?
- Was this strategy applied successfully before? To which enzyme?

Figure 1c


- Why was the molecule K252a used?
- Why modification at position C(7)?
- How did they know the binding orientation of K252a?
- Why trying five different modifications?

Supplementary figure (CDK2/staurosporine)

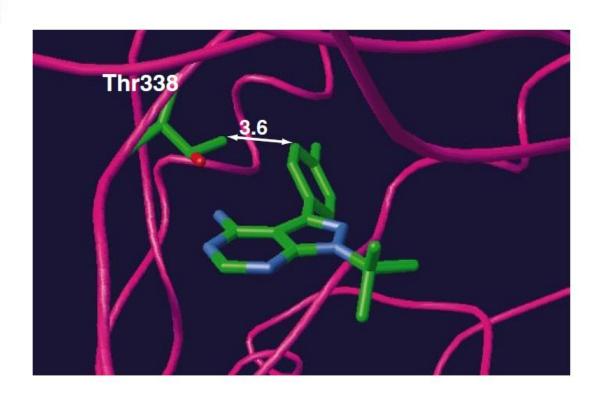
Why mutation of position 80 and not position 338?

Supplementary figure (K252a activity)

- Are the wild-type kinases inhibited by K252a variants 3 and 6?
- Are the kinase mutants inhibited?

Supplementary figure (K252a activity)

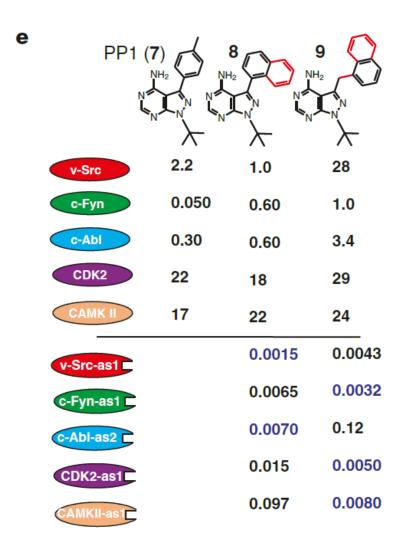
K252a


C
C(7) H
R _{II} , V
H ₃ C ^W
MeO ₂ C OH
R = H (1, (+)-K252a) $CH(CH_3)_2$ (2)
$CH_2CH(CH_3)_2$ (3) $CH(CH_3)C_2H_5$ (4)
CH ₂ C ₆ H ₅ (5) CH ₂ CH ₂ C ₆ H ₅ (6)
3112311206115 (0)

Compound 1	3	6
v-Src 0.020	>33	12
c-Fyn 0.17	>33	>33
c-Abl 2.2	>33	>33
CDK2 0.020	22	3.7
CAMK II 0.0054	1.7	0.54
v-Src-as1	0.00023	0.0023
v-Src-as1 c-Fyn-as1	0.00023 0.00055	0.0023
c-Fyn-as1	0.00055	0.0043

- What does «as1» mean?
- Which selectivity was achieved for the inhibition of v-Src kinase?
- Which selectivity was achieved for the inhibition of CDK2 kinase?

Figure 1d


d

- What does this structure show?
- What does the «arrow» show?

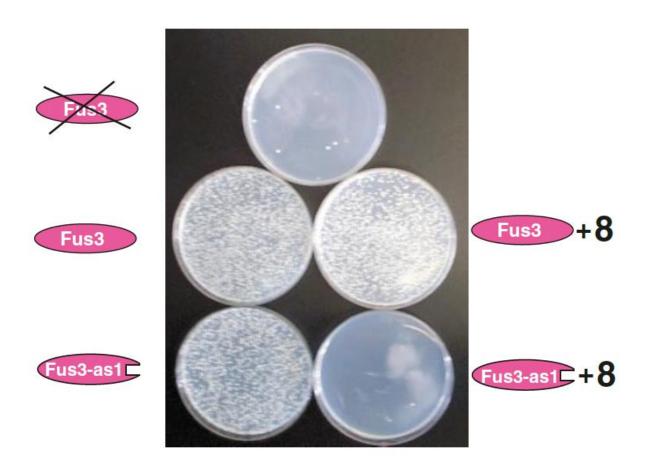

Hck

Figure 1e

- Are the wild-type kinases inhibited by PP1 (8) and PP1 (9)?
- Are the mutants inhibited?
- Which selectivity was achieved for the inhibition of v-Src kinase?
- Which selectivity was achieved for the inhibition of CDK2 kinase?

Figure 2


- What is Fus3?
- What is a "yeast mating" experiment
- How can «mated» yeast be identified experimentally? Why were Δ URA and Δ His strains used?
- Why are there almost no colonies on the plate «Fus3»
- Is the result for the lower four plates as expected?

Fus3

- Induction of pheromone-inducible genes
- Cell cycle arrest
- Cell fusion during yeast mating

No temperature sensitive mutant is available!

Yeast cell mating

Fus3 is required for cell fusion during yeast mating

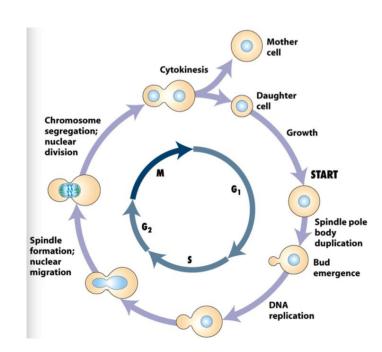
Yeast cell mating

Mating haploid cells:

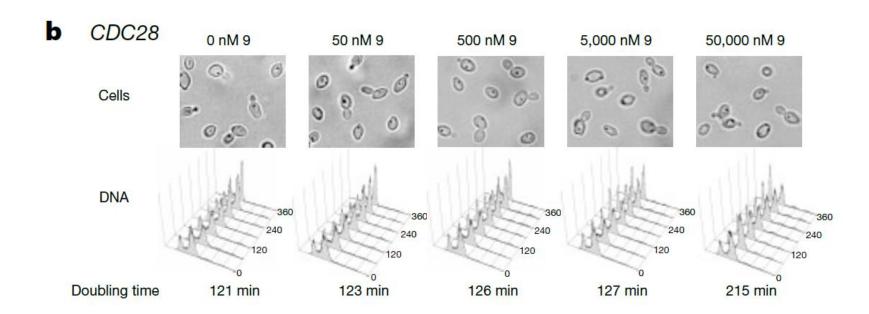
Wild-type or Fus mutant cells (URA3 his3) Wild-type or Fus mutant cells ($fus1 \Delta fus2 \Delta ura3 \Delta$ HIS3)

Growth on media lacking uracil and His \rightarrow Selection for diploid cells

Figure 3a


а			ATP kinetics			IC ₅₀ (μM 9)	
	Kinase	κ _Μ (μΜ)	k _{cat} (min ⁻¹)	k _{cat} /K _M (μM ⁻¹ min ⁻¹)	@ 10 μM ATP	@ 1 mM ATP	
	Cdc28/Clb2	35	132	3.730	22	44	
	Cdc28-as1/Clb2	322	21.3	0.066	.0020	.0029	

- What is Cdc28? Why did they choose to work with it?
- Is the kinase mutant «as1» as active as the wild-type?
- Which inhibitor was used? How selective is it?


Cdc28

Application to Cdc28

- Principle CDK in budding yeast
- Essential for progression through cell cycle
- Studied by termperature-sensitive mutants
- At 37 °C, mutants arrest in G1
- Is Cdc28 also involved in G2/M transition?

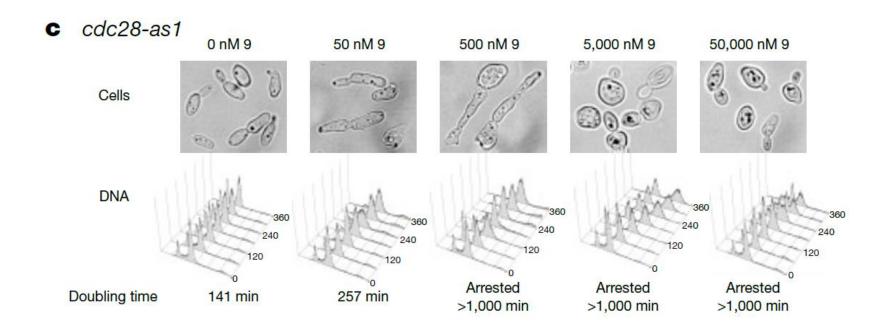


Figure 3b

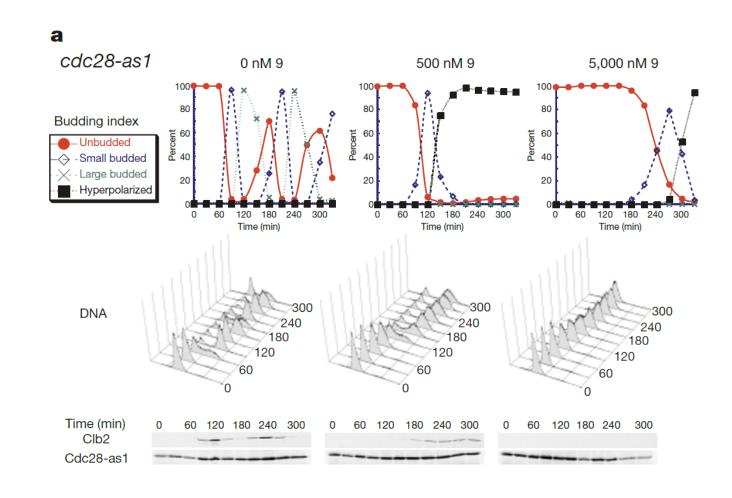

• What do these experimental data show?

Figure 3c

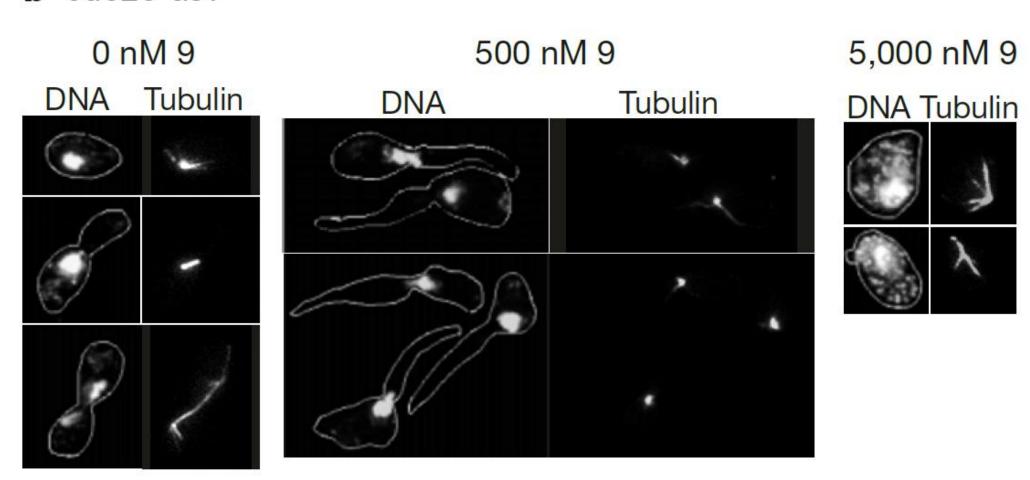

- What do these experimental data show?
- Is the «knob and hole» strategy working here?

Figure 4a

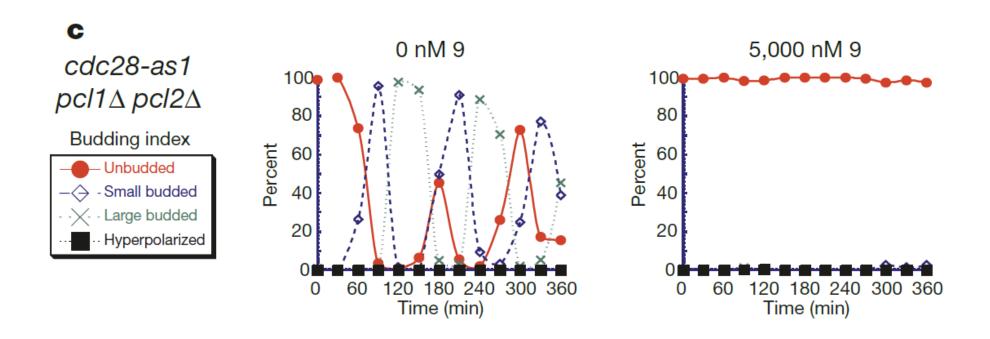


Figure 4b

b cdc28-as1

Figure 4c

