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1 Project 1: Non-adiabatic dynamics using tra-
jectories: Tully Surface Hopping and the Mul-
tiple Spawning approach

1.1 Introduction

The exact solution of the coupled channel equation for highly dimensional sys-
tems is currently out of reach due to the exponential scaling of available al-
gorithms with the number of degrees of freedom. In contrast, algorithms for
classical dynamics scale essentially linearly with the number of degrees of free-
dom. This motivates several attempts to derive, or intuit, approximate schemes
for non-adiabatic dynamics based on the propagation of ensembles of classical
(or classical-like) trajectories.

1.2 Tasks

This project entails studying the most popular non-adiabatic scheme, Tully
surface hopping, and a more recent idea called multiple spawning. In particular:

1. Frame the discussion by deriving the coupled-channel equation in the so-
called Born-Huang expansion.

2. Consider the Born-Oppenheimer limit of this equation.

3. Describe the Tully surface hopping scheme, and identify the key assump-
tions in it.

4. Describe the multiple spawning scheme, and identify the key assumptions
in it.

5. Compare the properties of the two schemes: What can spawning do that
surface hopping can’t? What are the computational bottlenecks of the
two methods?

6. Write a code implementing Tully surface hopping and use it to compute
the populations on the two-level system included in the M-SOFT code
provided in class.

1



1.3 References

1. Non-adiabatic dynamics based on trajectories. F. de Carvhalo, M. Bouduban,
B. Courchod, and I. Tavernelli, Entropy, sections 1 to 2.1.3.

2. Molecular dynamics with electronic transitions. Tully, J.C., Journal of
Chemical Physics, 93, 1061-1071 (1990).

3. Multi-electronic-state molecular dynamics: A wave function approach with
applications. Martinez, T.J.; Ben-Nun, M.; Levine, R.D. J. Phys. Chem.,
100, 7884-7895 (1996).
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2 Project 2: Non-adiabatic dynamics using tra-
jectories: Ehrenfest dynamics and the Exact
Factorization method

2.1 Introduction

The exact solution of the coupled channel equation for highly dimensional sys-
tems is currently out of reach due to the exponential scaling of available al-
gorithms with the number of degrees of freedom. In contrast, algorithms for
classical dynamics scale essentially linearly with the number of degrees of free-
dom. This motivates several attempts to derive, or intuit, approximate schemes
for non-adiabatic dynamics based on the propagation of ensembles of classical
(or classical-like) trajectories.

2.2 Tasks

This project entails studying a common mean-field method to do so, Ehrenfest,
and a recent promising development based on a similar starting idea, the exact
factorization scheme. In particular:

1. Frame the discussion by deriving the coupled-channel equation in the so-
called Born-Huang expansion.

2. Consider the Born-Oppenheimer limit of this equation.

3. Describe Ehrenfest dynamics, and identify the key assumptions in it.

4. Describe the exact factorization method, and identify the key assumptions
in it.

5. Compare the properties of the two schemes.

6. Write a code implementing Ehrenfest dynamics and use it to compute
the populations on the two-level system included in the M-SOFT code
provided in class.

2.3 References

1. Non-adiabatic dynamics based on trajectories. F. de Carvhalo, M. Bouduban,
B. Courchod, and I. Tavernelli, Entropy, sections 1, 2, 2.1, 2.2, 2.2.1, 2.2.2.

2. Exact Factorization of the Time-Dependent Electron-Nuclear Wave Func-
tion. Abedi, A.; Maitra, N.; Gross, E. Phys. Rev. Lett., 2010, 105,
123002.
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3 Project 3: Quantum dynamics using Wigner’s
formulation

3.1 Introduction

In 1932, E. Wigner introduced a formulation of quantum mechanics that high-
lighted interesting formal analogies with classical mechanics, both in the expres-
sion of expectation values of operators on quantum states and in the form of
the time evolution equation for the state. This formalism is today at the root
of many approximate methods to solve quantum dynamics.

3.2 Tasks

This project entails:

1. Understanding the definition of the Wigner transform of a state and of
simple operators (position, momentum, Hamiltonian).

2. Exploring the properties of the Wigner formalism, in particular with re-
spect to quantum expectation values.

3. Using the formalism to study the quantum harmonic oscillator.

4. Deriving the time-evolution for the Wigner transform of the state (this is
the counterpart of the time-dependent Schrödinger equation in this for-
mulation of quantum mechanics).

5. Analyzing the classical limit of the evolution.

6. Outlining an algorithm to solve the evolution and obtain the propagated
state in the classical limit. How can we go beyond this approximation?

7. (Optional) Writing a code to compute the Wigner representation of a pure
and a mixed state for a harmonic oscillator.

3.3 References

1. Wigner functions and Weyl transforms for pedestrians. W. B. Case, Amer-
ican Journal of Physics, vol. 76, 937-946 (2008).
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4 Project 4: Semi-classical Born-Oppenheimer
dynamics

4.1 Introduction

The exact solution of the time-dependent Schrödinger equation for highly di-
mensional systems is currently out of reach due to the exponential scaling of
available algorithms with the number of degrees of freedom. In contrast, algo-
rithms for classical dynamics scale essentially linearly with the number of degrees
of freedom. This motivates several attempts to derive approximate dynamics
schemes based on the propagation of ensembles of classical (or classical-like)
trajectories.

4.2 Tasks

This project entails studying one of the most popular approaches, semi-classical
dynamics, which is based on the path integral representation of the quantum
propagator. In particular:

1. Frame the discussion by writing the path integral expression for the quan-
tum propagator and the time-evolved wave-function.

2. Consider a stationary phase approximation of the time-evolved wave-
function. Show that the stationary paths are classical trajectories speci-
fied in terms of boundary conditions. Show that the integral involving the
second order variations of the phase can be done analytically.

3. Clarify the relation between the stationary phase interpretation and the
classical limit, and interpret the result of the integral on the second order
variations.

4. Determine the evolution equation of the function resulting from the inte-
gral on the second order variations.

5. Define an algorithm, based on the propagation of classical (or classical-
like) trajectories, to propagate the wave-function.

6. What are the main limitations of this algorithm?

7. Show that, when computing averages over the state (consider for simplicity
the average of the position operator), it is possible to change variables and
identify the stationary paths as classical trajectories identified by initial
(not boundary) conditions, and discuss the corresponding algorithm.

4.3 References

1. Introduction to quantum mechanics: A time-dependent perspective. D.
J. Tannor, University Science Books , Chap. 10.
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5 Project 5: Methods for adiabatic dynamics

5.1 Introduction

The fundamental assumption underlying most first-principle (ab initio) calcu-
lations performed today is the Born-Oppenheimer approximation. Within this
approximation, the difference in mass between nuclei and electrons is such that
complete time-scale separation of the motions occurs. The energy of the in-
teracting system depends on both sets of degrees of freedom but, due to their
much faster motion, for every nuclear configuration, the electrons ”have time”
to relax to an energy minimum. The Born-Oppenheimer evolution then cou-
ples a nuclear time-step, typically performed via classical mechanics, with the
minimization of the energy for the electronic degrees of freedom.

Methods for first-principle dynamics then differ in two main ingredients: the
electronic structure method employed to compute the electronic energy func-
tional and the minimization method to enforce the Born-Oppenheimer minimum
condition.

5.2 Tasks

In this project, we assume that the electronic structure method (e.g., density
functional theory) is given and focus on understanding and comparing different
methods for the energy minimization with respect to the electronic degrees of
freedom. In particular:

1. Identify the approximations to move from the general coupled-channel
dynamics to first-principle molecular dynamics with classical evolution of
the nuclear degrees of freedom.

2. Describe the algorithm for a single time-step in the MD, detailing the
conceptual steps for the calculation of the force acting on the nuclear
degrees of freedom.

3. Understand and describe the conjugate gradient method for minimization
of the energy with respect to the electronic degrees of freedom.

4. Understand and describe the Car-Parrinello approach for the dynamics.

5. Compare conjugate gradient and Car-Parrinello dynamics.

6. Recently, a new approach – called Mass-Zero constraint dynamics (MaZe)
– has been proposed to propagate adiabatically separated systems. Derive
the evolution equations in MaZe.

7. Compare the properties of MaZe with Car-Parrinello and conjugate gra-
dient dynamics.

8. Could it be possible to go beyond classical evolution for the nuclear degrees
of freedom? Consider a one-dimensional nuclear system and describe how
to adapt the SOFT algorithm to first-principle molecular dynamics.
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5.3 References

1. Ab initio molecular dynamics: Basic theory and advanced methods. D.
Marx, J. Hutter, Cambridge University Press, Chap. 2.3, 2.4, 2.5, 2.6.

2. Adiabatic motion and statistical mechanics via mass-zero constrained dy-
namics. S. Bonella, A. Coretti, R. Vuilleumier, G. Ciccotti, Physical
Chemistry Chemical Physics, 2020, 22, 10775.
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6 Project 6. Path integral simulation of H2O-
H2O interaction

Programs used: CP2K 3.0
VMD Theoretical topic: Path-Integral

6.1 Introduction

In molecular dynamic, the forces of the system are computed by using quantum
calculations (Born-Oppenheimer or generally Ab Initio MD) or a parametrized
force field (classical MD). In both cases however the hydrogen’s nucleus is
treated as a classical particle and this is a question- able assumption. Path
integral theory allows to model the quantum behaviour of the nucleus as mul-
tiple replicas of the same atom connected by an harmonic potential (“Ring
Polymer”) with a value quantified by the theory. This model applied to water
molecules is able to improve the simulation and the understanding of experi-
mental observations.

6.2 Tasks

The scope of the project is to model two interacting molecules of water using
the standard method and the path integral method and compare the different
statistical characteristics of the H bond formed. CP2K is a versatile program
able to perform both AIMD and MD: a reactive force field (no harmonic bonds
between atoms) is suggested to start the study (because of the speed of analyti-
cally computed forces), then a DFT method can be chose to compute the forces
Ab Initio. Average properties can be computed using VMD or writing simple
programs.

6.3 References

1. CP2K tutorial on AIMD

2. CP2K manual on Path Integral

3. Reactive force field: Pinilla et al., Ab initio parameterization of an all-
atom polarizable and dissociable force field for water, J. Ch. Ph., 2012

4. Tuckerman Statistical Mechanics: Theory and Molecular Simulations,
Chapter 12
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https://www.cp2k.org/exercises:2015_pitt:aimd
https://manual.cp2k.org/cp2k-2_5-branch/CP2K_INPUT/MOTION/PINT.html
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