Constrained minimization using
Lagrange multipliers

Function
A={{3, 2}, {2, 6}};
d[x_, y_1:=0.5{x, y}.A. {x, y}-{x, y}.{3, -1}

¢[x, yl // Expand
—3x+l.5x2+y+2. Xy+3. y2

gl = Plot3D[¢[Xx, y], {X, -5, 5}, {y, -5, 5}1]
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ContourPlot[¢[x, ¥, {X, -5, 5}, {y, -5, 5}]

Global minimum

Minimize[¢[Xx, y], {X, ¥}]
{-2.464285714, (x —» 1.428571429, y » - 0.6428571429}}

xmin = Minimize[¢[x, y1, {x, y}]1[[2]]
{x > 1.428571429, y > -0.6428571429}

g2 = ListPointPlot3D[{{x, ¥, ¢[X, Y]}} /. xmin]
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Show[gl, g2]

Constraint

hl = ParametricPlot3D[{Cos[6], Sin[6], O}, {6, -Pi, Pi}]
1.0
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g3 = ParametricPlot3D[{Cos[®6], Sin[6], ¢[Cos[6], Sin[6]]1}, {6, -Pi, Pi}]
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Show[gl, g3, g2]

Contrained minimization (without Lagrage multipliers)

Minimize[¢[Cos[6], Sin[e]], €]
{-2.142790959, {6 > -0.408647471}}

emin = Minimize[¢[Cos[6], Sin[e]], 6]1[[2]]
{6 > -0.408647471}

pmin = ListPointPlot3D]
{{Cos[e], Sin[e], ¢[Cos[6], Sin[6]]}} /. 6Min, PlotStyle -» {Red, Thick}]
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Show([gl, g3, g2, pmin]

Contrained minimization (with Lagrage multipliers)

D[x"2+y"2, {{x, y}}]
{(2x, 2y}

glx_,y_] :=x"r2+yh2

D[o[x, Y] +Ag[X, Y], {{X, Y}}]
{-3+0.5(6Xx+4y)+2xX,1+0.5(4x+12y)+2y A}

Solve[{D[¢[X, Y]l +Ag[X, Y], {{X, Y}}] ==0, g[X, y] == 1}, {X, ¥, A}]

-+=/ Solve : Solve was unable to solve the system with inexact coefficients. The answer was obtained by solving a

corresponding exact system and numericizing the result.

{{X > -0.8742676594, y - - 0.485444188, A > -3.770979793},
(X > -0.7518019885, y - 0.6593889369, A > -2.618128278},
(X > -0.3315894685, y > 0.9434237777, A > -3.17850995} ,
(X > 0.9176591165, y - - 0.3973685266, 1 - 0.5676180212}}

{Cos[6], Sin[6]} /. 6Min

{0.9176591144, -0.3973685313}

We found the minimum (together with the other critical points) using the
Lagrange multipliers method!

Homework

1. Reproduce the intuitive explanation (better if you can explain it to
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someone)

2. Try to find another characterization of the constrained minimum (with
parametrization ?)

3. Ideas o Quantum Chemistry, Piela, Appendix on Variational Principle

4, Can you come up with an intuitive explanation, on R3 as the domain (e.g.,
temperature function), of a constrained minimization?

5. Can you extend your intuitive explanation to two constraints?(Why the
gradient of the function is a linear combination of the gradient of the two
constraints!?)
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