Constrained minimization using Lagrange multipliers

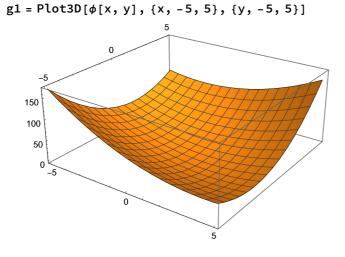
Function

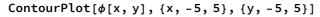
```
A = {{3, 2}, {2, 6}};

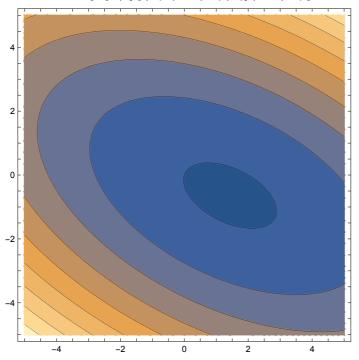
\phi[x_{-}, y_{-}] := 0.5 \{x, y\}.A.\{x, y\} - \{x, y\}.\{3, -1\}

\phi[x, y] // Expand

-3 x + 1.5 x^{2} + y + 2. x y + 3. y^{2}
```







Global minimum

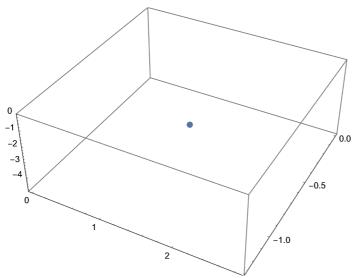
Minimize[$\phi[x, y], \{x, y\}$]

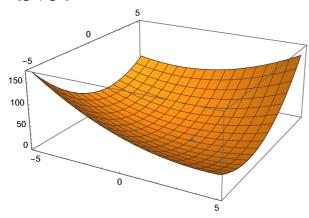
 $\{-2.464285714, \{x \rightarrow 1.428571429, y \rightarrow -0.6428571429\}\}$

 $xmin = Minimize[\phi[x, y], \{x, y\}][[2]]$

 $\{x \rightarrow \text{1.428571429}, y \rightarrow -\text{0.6428571429}\}$

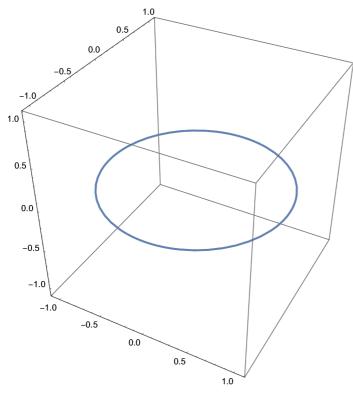
g2 = ListPointPlot3D[$\{\{x, y, \phi[x, y]\}\}$ /. xmin]

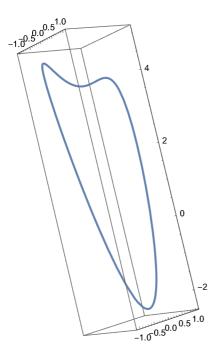




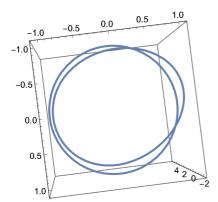
Constraint

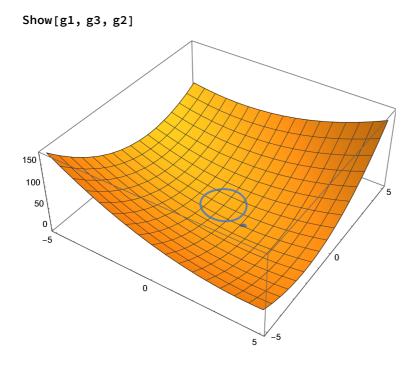
 $h1 = ParametricPlot3D[{Cos[\theta], Sin[\theta], 0}, {\theta, -Pi, Pi}]$





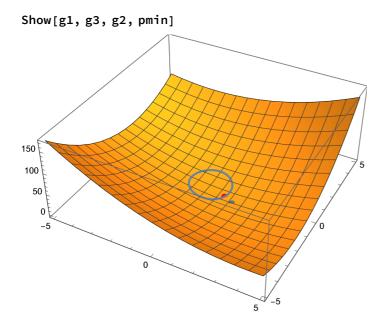
Show[g3, h1]





Contrained minimization (without Lagrage multipliers)

```
Minimize [\phi[Cos[\theta], Sin[\theta]], \theta]
\{-2.142790959, \{\Theta \rightarrow -0.408647471\}\}
\thetamin = Minimize[\phi[Cos[\theta], Sin[\theta]], \theta][[2]]
\{\theta \rightarrow -\text{0.408647471}\}
pmin = ListPointPlot3D[
    \{\{\cos[\theta], \sin[\theta], \phi[\cos[\theta], \sin[\theta]]\}\} /. \theta \min, PlotStyle \rightarrow \{Red, Thick\}\}
                                                                        -0.2
                                                                   -0.4
                                                              -0.6
                           1.0
```



Contrained minimization (with Lagrage multipliers)

```
D[x^2 + y^2, \{\{x, y\}\}]
\{2x, 2y\}
g[x_{-}, y_{-}] := x^2 + y^2
D[\phi[x, y] + \lambda g[x, y], \{\{x, y\}\}]
\{-3+0.5 (6x+4y) + 2x\lambda, 1+0.5 (4x+12y) + 2y\lambda\}
Solve[\{D[\phi[x, y] + \lambda g[x, y], \{\{x, y\}\}\} = 0, g[x, y] = 1\}, \{x, y, \lambda\}]
... Solve: Solve was unable to solve the system with inexact coefficients. The answer was obtained by solving a
      corresponding exact system and numericizing the result.
\{\{x \rightarrow -0.8742676594, y \rightarrow -0.485444188, \lambda \rightarrow -3.770979793\},
 \{x \rightarrow -0.7518019885, y \rightarrow 0.6593889369, \lambda \rightarrow -2.618128278\}
 \{x \rightarrow -0.3315894685, y \rightarrow 0.9434237777, \lambda \rightarrow -3.17850995\}
 \{x \rightarrow 0.9176591165, y \rightarrow -0.3973685266, \lambda \rightarrow 0.5676180212\}\}
\{Cos[\theta], Sin[\theta]\} /. \theta min
\{0.9176591144, -0.3973685313\}
```

We found the minimum (together with the other critical points) using the Lagrange multipliers method!

Homework

1. Reproduce the intuitive explanation (better if you can explain it to

someone)

- 2. Try to find another characterization of the constrained minimum (with parametrization?)
- 3. Ideas o Quantum Chemistry, Piela, Appendix on Variational Principle
- 4. Can you come up with an intuitive explanation, on R3 as the domain (e.g., temperature function), of a constrained minimization?
- 5. Can you extend your intuitive explanation to two constraints? (Why the gradient of the function is a linear combination of the gradient of the two constraints!?)