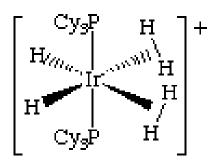
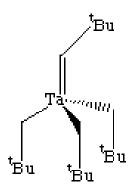
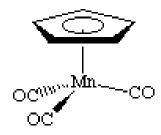
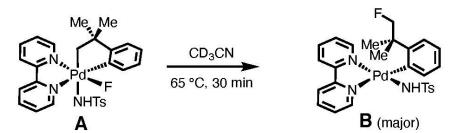

Problem set (exercise) 1


1. Which of the following mechanisms is ${\bf most}$ plausible for the following reaction? Why




- a) loss of phosphine, b) addition of CO, c) insertion of CO, d) addition of excess CO with reductive elimination of acetone.
- a) addition of CO, b) loss of phosphine, c) insertion of CO, d) addition of CO with reductive elimination of acetone.
- a) addition of CO, b) insertion of CO, c) reductive elimination of acetone, d) addition of CO, e) loss of phosphine.
- a) loss of phosphine, b) addition of CO, c) addition of CO, d) reductive elimination of acetone, d) addition of CO.
- 2. Which one of the following can NOT undergo oxidative addition of MeI? Why

- 3. Which of the following will be **more** reactive towards oxidative addition of dihydrogen? Why?
 - $^{\circ}$ Rh(PPh₃)₃Cl $^{\circ}$ Rh(PPh₃)₂(CO)Cl


4. Name the oxidation states, d electron count, and valence electrons of the following complexes.

Cyclometallated palladium species A rapidly undergoes reductive elimination to give B.

A. For both complexes, provide the (a) coordination number, (b) d-electron count, (c) geometry, (d) metal oxidation state, and (e) total electron count.

- 6. Metal alkoxides, like metal alkyls, can also β -eliminate. With this in mind:
- (a) explain why -OtBu is a common ligand in metal alkoxide chemistry.
- (b) what are the products of decomposition of primary and secondary alkoxide ligands?
- (c) why are alcohols, in the presence of a base, used as reducing agents in combination with metal complexes?

7. In the following reaction scheme, name the reaction(s) occurring at each step.

$$L_2Pt \longrightarrow LPt \longrightarrow L_2Pt \longrightarrow L_2Pt$$

8.

Complex **A** underdoes 1,2-migratory insertion with a rate that is ~40x faster than that of complex **B**. explain this observation.