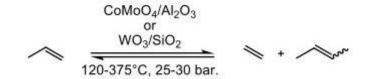

Olefin metathesis

Olefin metathesis

Olefin metathesis (or transalkylidenation) is an organic reaction that entails redistribution of alkylene fragments by the scission of carbon - carbon double bonds in alkenes.


Table of contents

- History
- Electronic structures of catalysts
- Synthetic applications ROMP and RCM
- Mechanism of a Typical Reaction
- Rational improvement of catalysts based on mechanistic understanding

I. History

Industry: The Origin of Metathesis

Phillips' Triolefin Process (1964)

• First plant in Montreal from 1966-1972

Nobel Prize in Chemistry 2005

Yves Chauvin

Richard R. Schrock

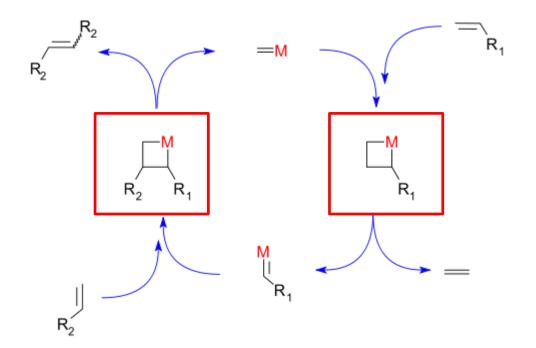
Robert H. Grubbs

[&]quot;for the development of the metathesis method in organic synthesis"

The contribution of Yves Chauvin

Yves Chauvin

....the mechanism....


The contribution of Yves Chauvin

Yves Chauvin

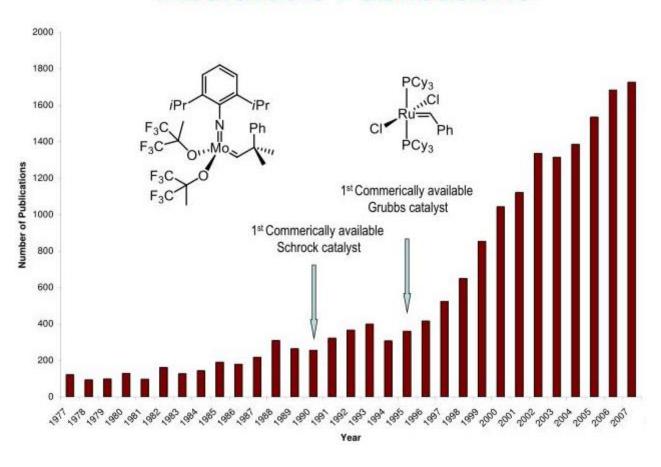
....the mechanism....

The contribution of Richard Schrock

Richard R. Schrock

....Molybdenum metathesis catalysts (very active but air sensitive)....

The contribution of Robert Grubbs

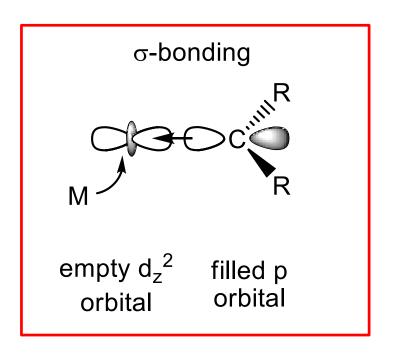


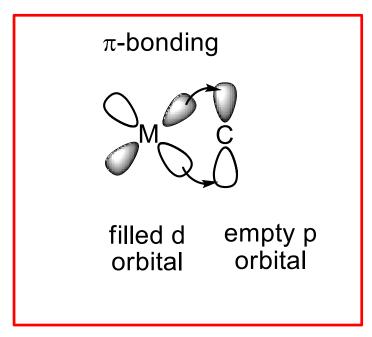
Robert H. Grubbs

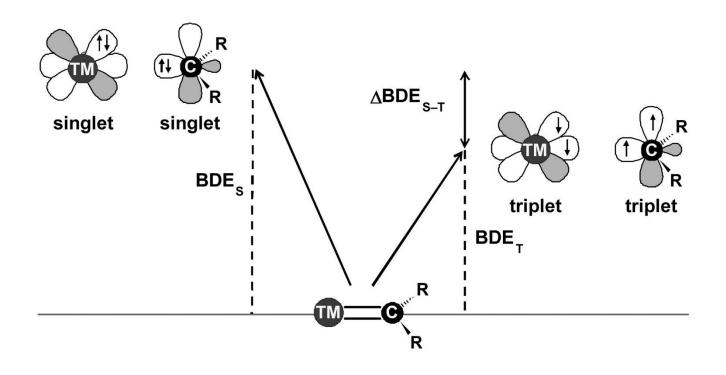
....Ruthenium metathesis catalysts (stable)....

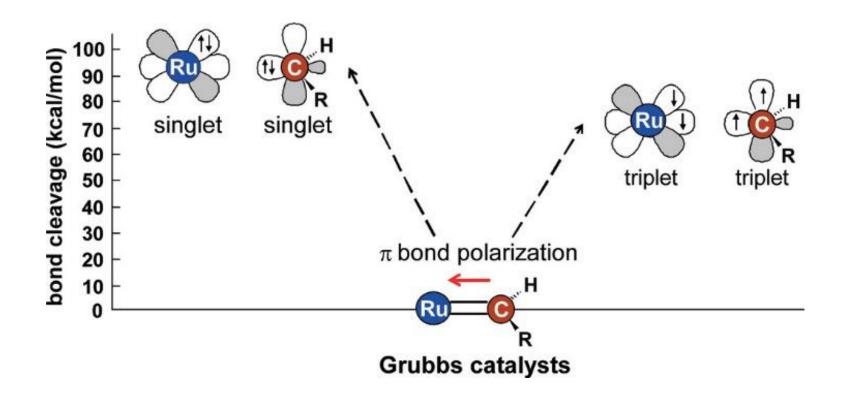
Metathesis Publications

Metathesis in Synthesis


Hirama, M.; Oishi, T.; Uehara, H.; Inoue, M.; Maruyama, M.; Oguri, H.; Satake, M. Science 2001, 294, 1904.
Martin, S. F.; Humphrey, J. M.; Ali, A.; Hillier, M. C. J. Am. Chem. Soc. 1999,121, 866.
Faucher, A.-M. Org. Lett. 2004, 6, 2901.


II. Electronic structure of catalysts

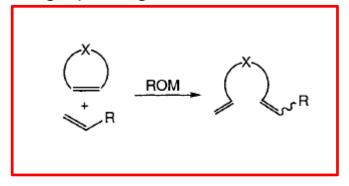

Carbenes


Both the Schrock and Grubbs cataylsts contain metal-carbene (M=C) bonds.

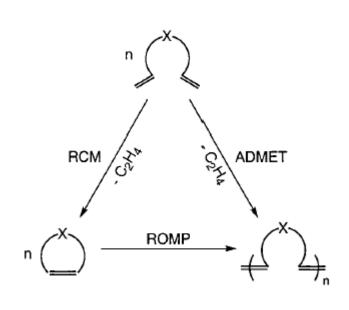
Bonding in carbenes:

Here Ru is more π -electronegative than C, making C electrophilic If it is Mo, then Mo is less π -electronegative than C, making C nucleophilic

Synthesis of carbene complexes


3,3-diphenylcyclopropene is a useful reagent for the synthesis of metalcarbene complexes.

Exercise: Draw a mechanism for this reaction

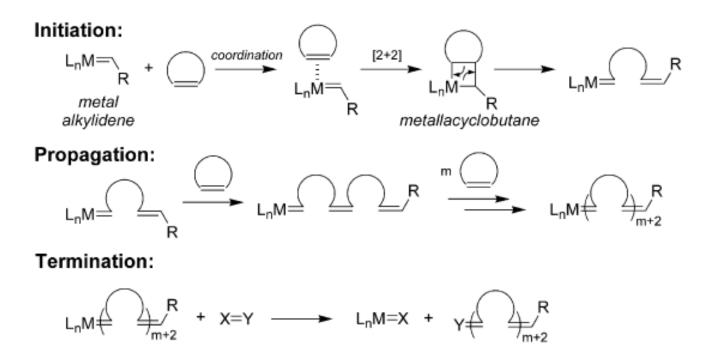

III. Synthetic applications – ROMP and RCM

A Versatile Method for Synthetic Chemistry

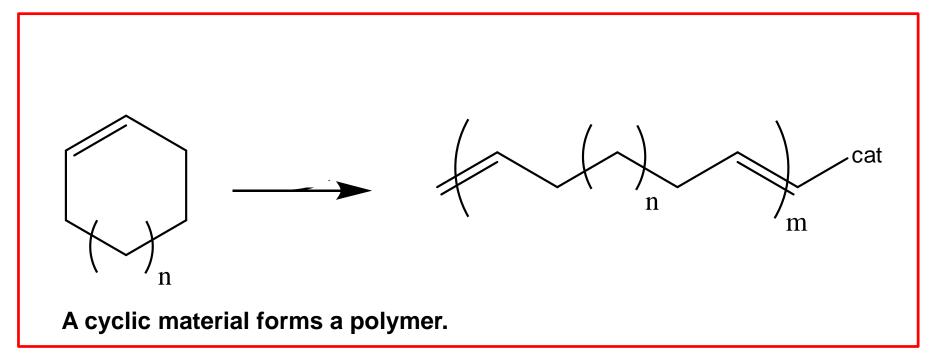
Ring opening metathesis

Ring closing metathesis

Also ring opening polymerisation methathesis (ROMP) and acyclic diene metathesis polymerisation (ADMET)


Ring Opening Metathesis Polymerization (ROMP)

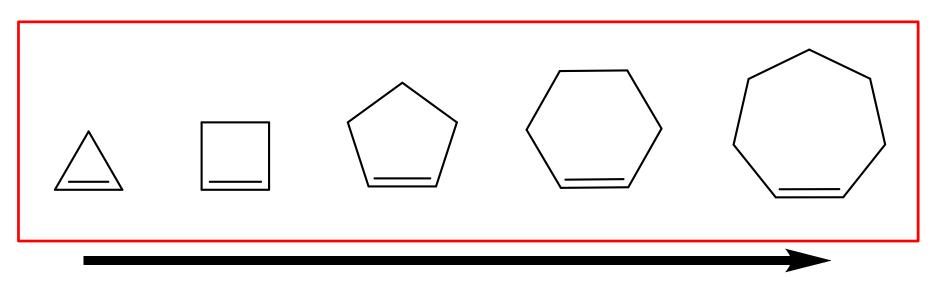
Mechanism:


Catalysts: titanium, tantalum, tungsten, molybdenum, ruthenium

Ring Opening Metathesis Polymerization (ROMP)

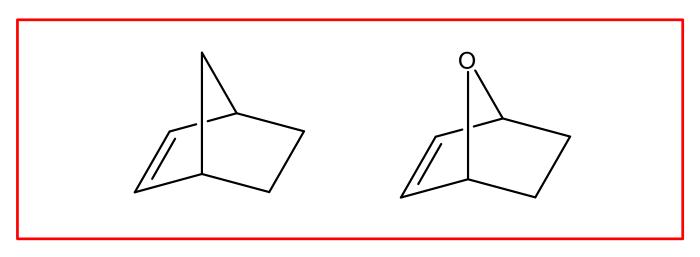
Mechanism:

Catalysts: titanium, tantalum, tungsten, molybdenum, ruthenium



ROMP is classified as a living polymerization – that is it cannot be terminated, because there is always a double bond at the end of the polymer - unless it is purposely capped. Even if the catalyst is destroyed, if more catalyst and substrate is added, the polymerization continues.

Affords near-monodispersed polymers, i.e. polymers are all same size. $_{16}$


ROMP gives high yielding products with low polydispersity index ranges.

Polymerisation is very rapid due to the large driving force of the reaction from releasing ring strain, (the smaller ring, the higher strain, the more rapid the reaction), i.e. cycloheptene is very difficult to polymerize.

Decreasing activity

Bicyclic molecules with a lot of built-in ring strain such as norbornadiene and oxo-norbornadiene are transformed into useful polymers with ROMP.

The W or Mo imido-complexes polymerize norbornadiene at low temperature. For example, the W-complex polymerizes norbornadiene in range of -20 C to -40 C, giving Mw of 400,000 with PDI ratio of 1.7.

With Mo-complexes, the polymerization of strained esters, imides and ketals are possible.

In comparison to Mo and W catalysts, Ru catalysis are much slower.

BUT THEY ARE MUCH MORE STABLE

Synthesis of crossed linked dicyclopentadiene.

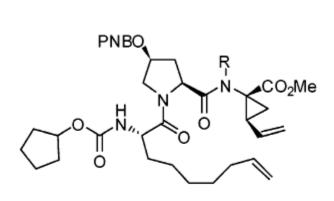
This additional cross-linking provides a "3rd dimension" polymeric networking. The result is a very strong thermo set material which can stop bullets!

Ring Closing Metathesis (RCM)

Early catalysts were based on heterogeneous mixtures of "un-defined" complexes.

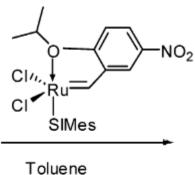
$$\frac{6}{3}$$

$$\frac{\text{WCl}_6 + \text{Me}_4\text{Sn}}{2}$$

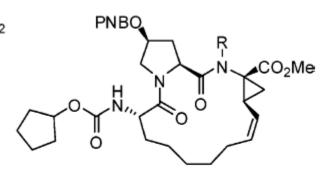

The cyclic ester is produced in 60% yield

Ring Closing Metathesis (RCM)

It is advantageous to use well-defined homogenous catalyses. The three most important ones are listed below:

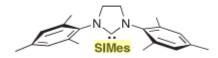

RCM on an industrial scale

An Efficient Synthesis of HCV Protease Inhibitor BILN 2061:

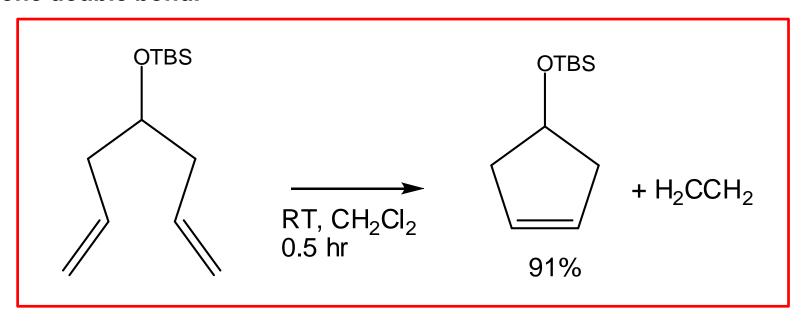


PNB = p-nitrobenzoyl

4a, R = H **4b**, R = Boc



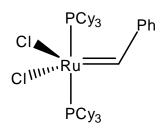
0.01 - 0.2 M


8a, 82% yield at 0.01 M

8b, 93% yield at 0.2 M

Ring Closing Metathesis (RCM)

The standard RCM reaction involves two double bonds joining to form one double bond.


Comparison of Schrock and Grubbs I catalysts in RCM

$$F_3C$$
 F_3C
 F_3C

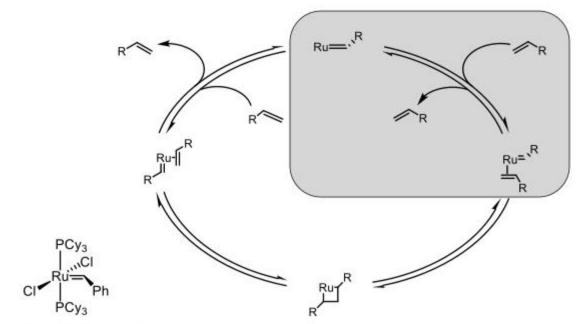
Schrock Catalyst

Metals: Mo and W

- + High activity
- Sensitive to air and H₂O
- Intolerant to polar functionalities

Grubbs I Catalyst

Metal: Ru


- + Functional group tolerant
- Lower activity and longevity

IV. Mechanism of a Typical Reaction

Relative Reactivity of Metals

Titanium	Tungsten	Molybdenum	Ruthenium	
Acids	Acids	Acids	Olefins	Increasing Reactivity
Alcohols, Water	Alcohols, Water	Alcohols, Water	Acids	
Aldehydes	Aldehydes	Aldehydes	Alcohols, Water	
Ketones	Ketones	Olefins	Aldehydes	
Esters, Amides	Olefins	Ketones	Ketones	
Olefins	Esters, Amides	Esters, Amides	Esters, Amides	1

The Catalytic Cycle

Grubbs 1st Generation

Mechanism of Olefin Coordination

Dias, E. L.; Nguyen, S. T.; Grubbs, R. H. J. Am. Chem. Soc. 1997, 119, 3887.

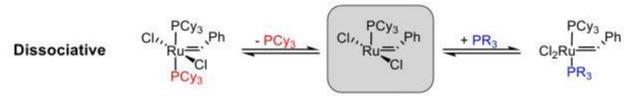
Phosphine Dissociation Experiments

How do we differentiate between the two pathways?

What do we expect

Dissociative
$$CI_{1}$$
, PCy_{3} , Ph PCy_{3} Ph PCy_{3} , PC

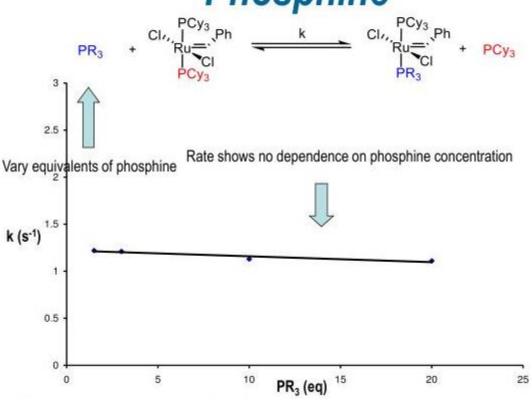
What do we expect


Sanford, M. S.; Ulman, M.; Grubbs, R. H. J. Am. Chem. Soc. 2001, 123, 749.

Phosphine Dissociation Experiments

How do we differentiate between the two pathways?

Associative CI_{1} , PCy_{3} , Ph PCy_{3} , Ph


More ordered system, decrease in entropy: ΔS[‡] should be negative in sign "S_N2 like": rate of dissociation is dependent on [PR₃]

Less ordered system, increase in entropy: ΔS^{\ddagger} should be positive in sign "S_N1 like": rate of dissociation is independent of [PR₃]

Sanford, M. S.; Ulman, M.; Grubbs, R. H. J. Am. Chem. Soc. 2001, 123, 749.

Determining Dependence on Phosphine

Determining Entropy of Activation

Experimental data gives rate of reaction, k

How do we find ΔS from k?

Use the Eyring equation

The Eyring Equation

$$k = \frac{k_{\rm B}T}{h}e^{-\frac{\Delta G}{RT}}$$

k = reaction rate constant

k_B = Boltzmann's constanth = Planck's constant

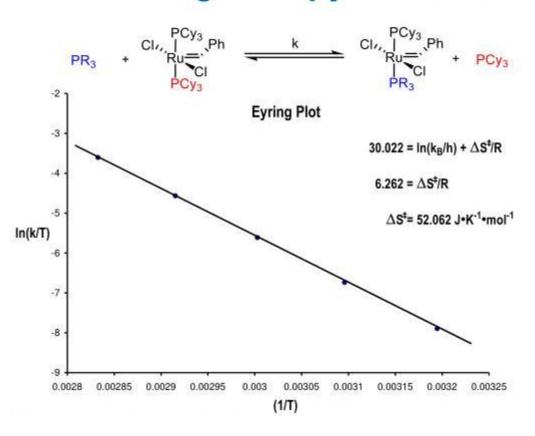
T = temperature

 ΔG = Gibbs energy of activation

R = Gas constant

The Eyring Equation

$$\ln \frac{k}{T} = \frac{-\Delta H}{R} \cdot \frac{1}{T} + \ln \frac{k_{\rm B}}{h} + \frac{\Delta S}{R}$$


$$y = m_{\rm X} + b$$

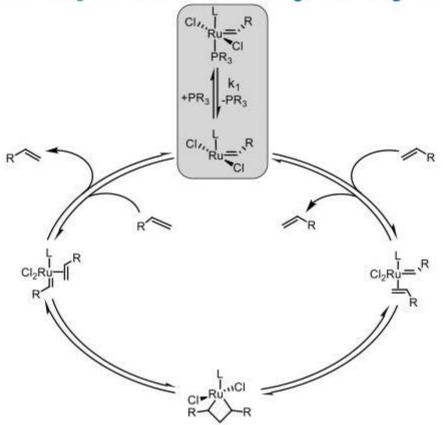
$$\ln(k/T)$$

$$\frac{1}{\sqrt{1 + \frac{k_{\rm B}}{h} + \frac{\Delta S}{R}}}{\sqrt{1 + \frac{k_{\rm B}}{h} + \frac{\Delta S}{R}}}$$

$$\ln(k/T)$$

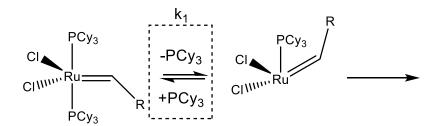
Determining Entropy of Activation

Determining Entropy of Activation

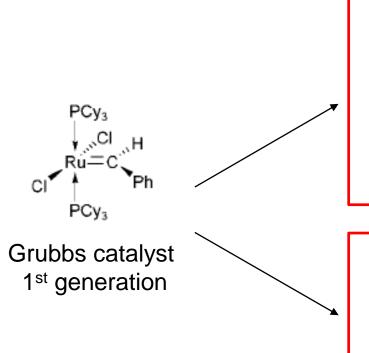

Associative
$$CI_{R_{1}}$$
 PCy_{3} Ph PR_{3} PCy_{3} Ph PCy_{3} Ph

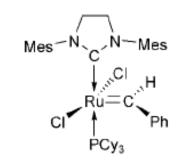
More ordered system, decrease in entropy: ΔS^{\ddagger} should be negative in sign "S_N2 like": rate of dissociation is dependent on [PR₃]

Dissociative
$$CI_{1}$$
, PCy_{3} , Ph PCy_{3} Ph PCy_{3} , Ph PCy_{3


Less ordered system, increase in entropy: ΔS[‡] should be positive in sign "S_N1 like": rate of dissociation is independent of [PR₃] What other simple experiments you can propose to probe if it is dissociative?

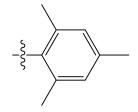
The Updated Catalytic Cycle


Ring Closing Metathesis (RCM)


Dissociative mechanism

14 electron complex

Rational catalyst improvements



Grubbs catalyst 2nd generation

Grubbs-Hoveyda catalyst

The *N*-heterocyclic carbene effect (see below)

Mes =

The chelating carbene allows a very weak ligand to be used which allows the active 14 VE catalyst to be easily generated.

N-Heterocycle carbenes

Grubbs used carbenes derived from imidazolium rings (originally developed by Arduengo).

NHC is a persistent carbene, which is a carbene demonstrating particular stability despite also being a reactive intermediate.

The *instability* in these carbenes involves reactivity with substrates, or dimerisation.

Dimerisation is prevented by using bulky substituent groups.

N-Heterocycle carbenes

The C-H proton at the 2-position of the ring is very acidic and easily extracted to yield the carbene, in a singlet form:

The lone pair residues in the hybrid px+s orbital. The formal empty pz orbital forms a π system, which forces the singlet configuration.

The lone pair is very basic because of this repulsion, hence they are highly reactive molecules.

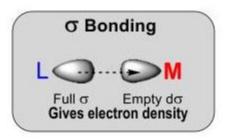
N-Heterocycle carbenes versus phosphines

R C N F

The substituents point towards the metal which could help transmit information to the metal (e.g. chirality).

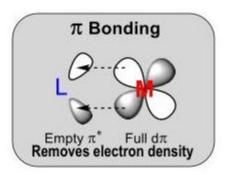
R R R R

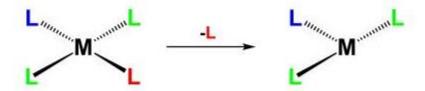
The substituents point away from the metal which reduces their influence at the metal.


15

N-Heterocyclic Carbene Ligands

NHC ligand

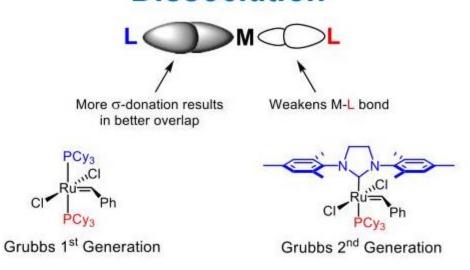

Very basic Excellent σ -donor Poor π -acceptor


Phosphine ligand

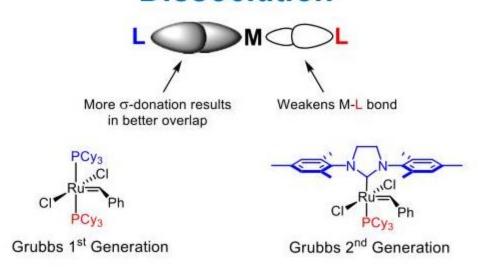
Less basic Good σ -donor Poor π -acceptor

NHC ligation should result in metal with more electron-density

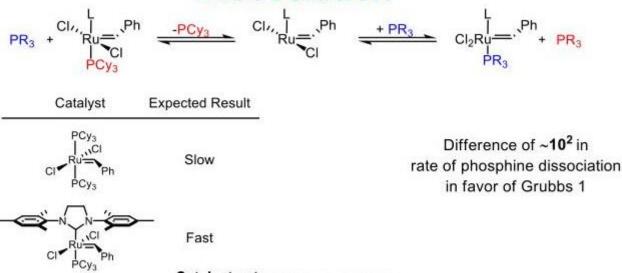
Diez-Gonzalez, S.; Nolan, S. P. Coord. Chem. Rev. 2006, 251, 874.Straub, B. F. Adv. Synth. Catal. 2007, 349, 204.


Change in electronics of L results in change rate of dissociation of L

Change in sterics of L has effect on dissociation of L


Electronics of ligand trans to L affects rate of dissociation

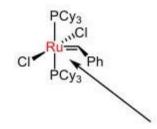
Atwood, J. D. Inorganic and Organometallic Reaction Mechanisms; VCH: New York, 1997, p 51.


PCy₃ ligand should have a weaker bond in Grubbs 2

PCy₃ ligand should have a weaker bond in Grubbs 2

Phosphine dissociation should be faster with Grubbs 2

Catalyst Activation by Phosphine Dissociation



Catalyst activity is NOT directly proportional to phosphine dissociation

Why? What does it mean?

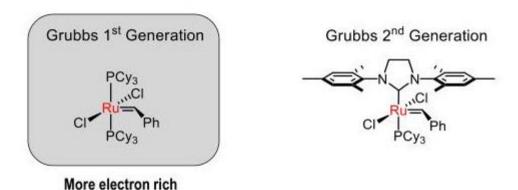
Ligand Effects on Catalytic Center

Grubbs 2nd Generation

Should have more electron rich ruthenium

Maybe electronics of metal center can also affect dissociation?

Phosphine ligand

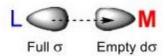

Less basic Good σ-donor Poor π-acceptor Very basic Excellent σ-donor Poor π-acceptor

NHC ligand

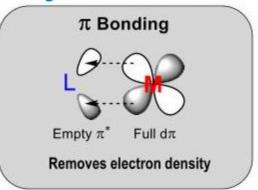
Getty, K.; Delgado-Jaime, M. U.; Kennepohl, P. J. Am. Chem. Soc. 2007, 129, 15774.

Ligand Effects on Catalytic Center

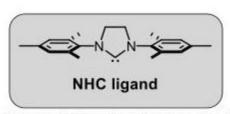
X-Ray Absorption Spectroscopy allows for determination of electronic state of ruthenium center



Why is Grubbs 2 electron-deficient?

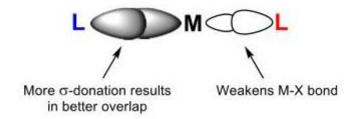

Getty, K.; Delgado-Jaime, M. U.; Kennepohl, P. J. Am. Chem. Soc. 2007, 129, 15774.

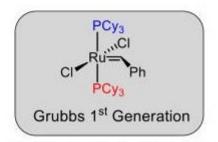
Ligand Effects on Catalytic Center

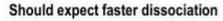

σ Bonding

Gives electron density

DFT calculations show NHC can participate in π -bonding for this system

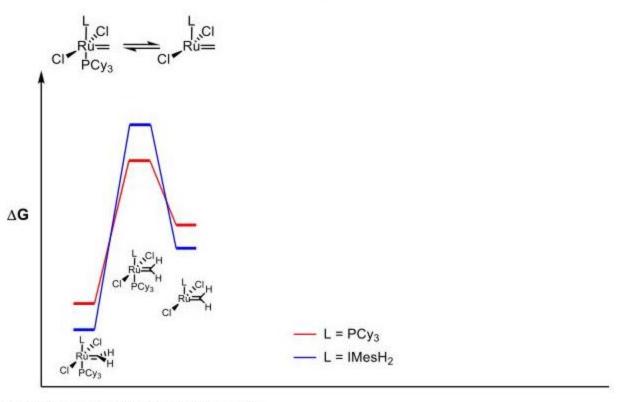


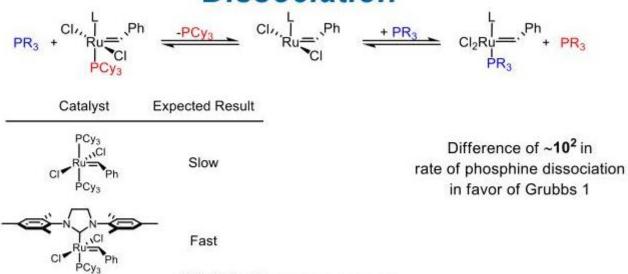

Less overall donation due to π -bonding



Phosphine ligand

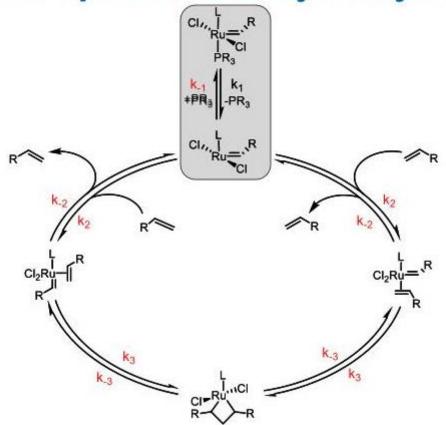
5

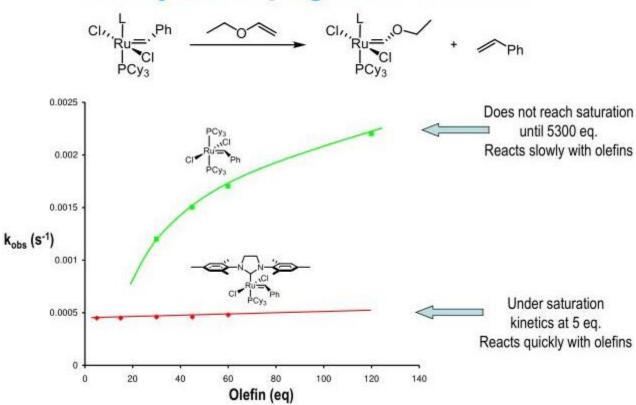



Grubbs 2nd Generation

Reaction Pathway of Grubbs 1 and 2

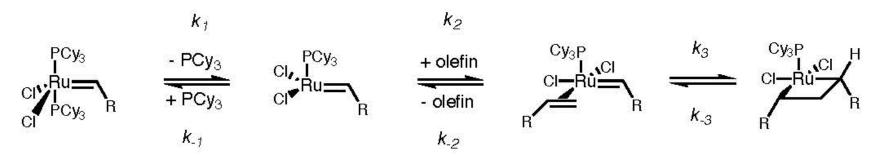
Straub, B. F. Angew. Chem. Int. Ed. 2005, 44, 5974.


Catalyst Activation by Phosphine Dissociation


Catalyst activity is NO1 directly proportional to phosphine dissociation

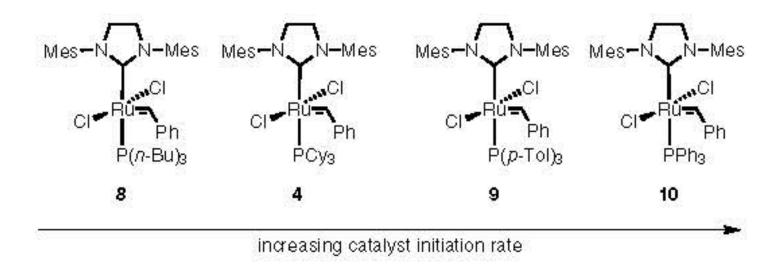
Grubbs 2 must be more reactive once in the catalytic cycle

The Updated Catalytic Cycle



Catalyst Propagation Studies

Higher activity of Grubbs II over Grubbs I is due to a larger k_2/k_{-1} . Olefin: π donor; Phosphine: σ -donor; Grubbs II prefers to bind olefin over phosphine.


Orgin of increased reactivity:

High activity of NHC complex is due to improved selectivity for binding π -acidic olefinic substrates in the presence of σ -donating free phosphine (decreasing k_{-1}/k_2).

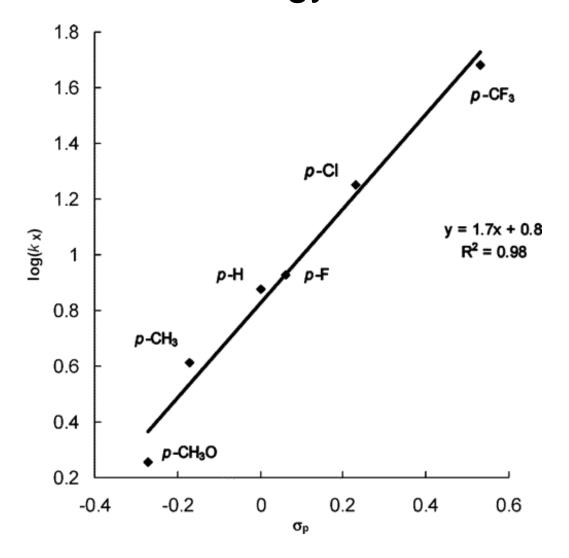
V. Rational improvements of catalysts based on mechanistic understanding

Depending on the application, it is dvantageous to employ catalysts that initiate more or less rapidly. For example, when performing ring-opening olefin metathesis polymerizations (ROMP) of strained cyclic olefinic monomers, slower-initiating catalysts are often desirable because they allow for longer handling of the monomer/catalyst resin before the polymerization starts. Conversely, fast-initiating catalysts, able to promote metathesis at reduced temperatures, are useful in applications where low reaction temperatures are required to prevent catalyst decomposition and formation of undesired byproducts. 71

Figure 3. Effect of the Nature of the Phosphine Ligand on the Initiation Rate of the Second-Generation Catalyst.

Two reasons to explain; one more obvious and the other one more delicate

What is the obvious explanation for some of the trend?


1. A less electron donating phosphine is generally expected to be more labile;

Aryl phosphine is less electron donating (basic) than alkyl phosphine

Increasing rate of initiation

 $P(n-Bu)_3$ PCy_3 $P(p-CH_3OC_6H_4)_3$ $P(p-CH_3C_6H_4)_3$ $P(C_6H_5)_3$ $P(p-FC_6H_4)_3$ $P(p-CIC_6H_4)_3$ $P(p-CF_3C_6H_4)_3$

Linear free energy correlation

 σ_p = Hammett constant, related to electronic property. The smaller the more electron rich

2. In some cases phosphine pK_a and k_1 (dissociation) not linear; For example, PBn₃ and PCy₃ initiate at similar rate, but conjugated acids have pKa of 6 and 9.7, respectively.

Complexities of the steric and electronic changes from phosphine variation.

Figure 4. Influence of the Nature of the Alkylidene and NHC Ligands on the Initiation Rate of the Second-Generation Catalyst.

Sterically bulky and electron-donating groups (e.g., alkyl) on alkylidene lead to higher initiation rates because ...

New approach: use a stable 14 VE catalyst

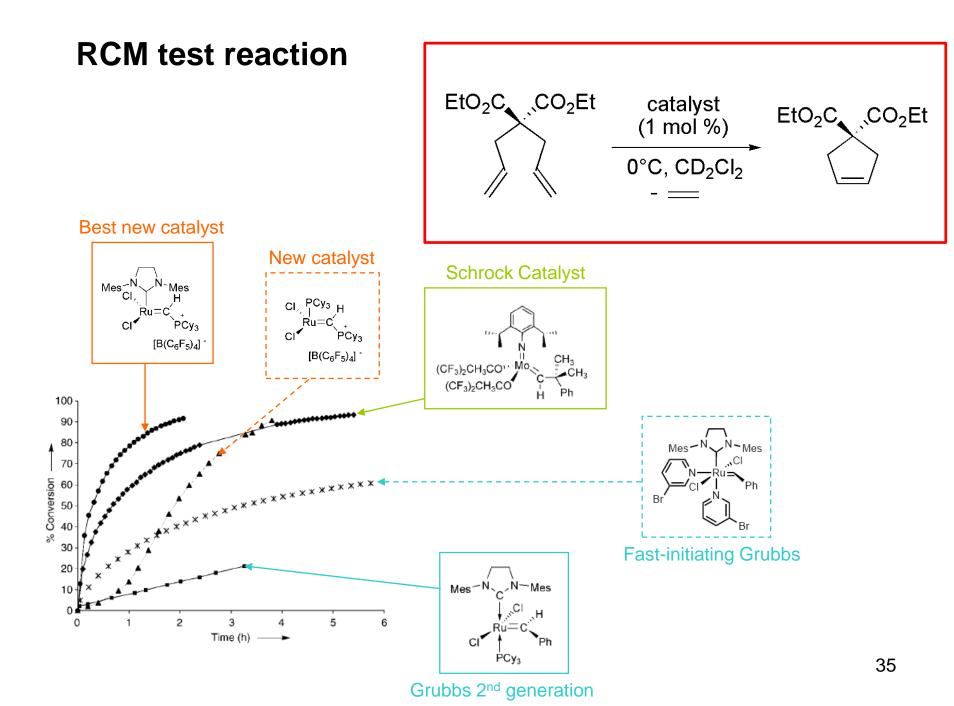
$$[Cl_2(L)(L')Ru=C(H)R] \longrightarrow [Cl_2(L)Ru=C(H)R] + L'$$

New Catalyst Precursor

Direct access to the active species

No free L' >>> no interference

The catalyst


4-coordinate, 14 e⁻ phosphonium alkylidene

Mes
$$N$$
 N Mes CI H Ru= C PCy₃ [B(C_6F_5)₄]

The bulky substituent on the carbene stabilizes the vacant coordination site.

Distorted trigonal pyramid
Stable to oxygen and moisture in solution
No evidence for a C-H agostic interaction

Piers et al.

Why is the catalyst so active?

Mes
$$\stackrel{N}{\subset}$$
N $\stackrel{N}{\sim}$ Mes $\stackrel{H}{\leftarrow}$ Ru $\stackrel{+}{\subset}$ CI $\stackrel{+}{\sim}$ PCy $_3$

No phosphine dissociation step

No free phosphine

All Ru present is active

Initiation: olefin-binding event