

Ligand dissociation – is the loss of a ligand from a transition metal centre which does not involve a change in the oxidation state.

Ligand association— is the addition of a ligand to a transition metal centre that does not involve a change in the oxidation state at the metal centre.

$$Ph_3P$$
 Ph_3P
 Rh
 CI
 PPh_3
 $Rh(), VE$

Oxidative addition – involves addition of a substrate to a complex with a **two** electron oxidation at the metal. The more reduced a metal centre, the greater its reactivity towards oxidative addition.

$$CI$$
 PPh_3
 H_2
 Ph_3P
 PPh_3
 H_2
 PPh_3
 PPh_3

Which of the following will be **more** reactive towards oxidative addition?

 $[Co(dppe)_2]^+$ $[Ir(dppe)_2]^+$

dppe = bis(diphenylphosphino)ethane

Reductive elimination – is the reverse of oxidative addition, combining ligand loss with a two electron reduction at the metal centre. The groups being eliminated must be in a *cis* orientation. Reductive elimination is more likely for compounds in high a oxidation state. Reductive elimination is the **Rate Determining Step** in many catalytic reactions, especially C-C coupling reactions.

R = alkyl, aryl etc

Which of the following is **least** likely to undergo reductive elimination?

$$Cp_2Ti(n-Bu)(H)$$
 [(CO)₂I₃Rh(COMe)]⁻

$$cis$$
-(P- i Pr₃)₂Pt(H)₂ Cp*₂Nb(H)(C₂H₄)

If a complex $L_nM(A)(B)$ undergoes facile reductive elimination to give AB and L_nM , then what can we say about the reverse reaction, oxidative addition of AB to L_nM ?

- i. L_nM must oxidatively add AB with the same ease.
- ii. L_nM cannot undergo oxidative addition of AB.
- iii. Whether L_nM can undergo oxidative addition depends on both L_nM and AB.
- iv. The oxidative addition will be slow compared to the reductive elimination reaction.

Migratory insertion – involves a coordinated nucleophile such as an alkyl, aryl, alkoxide or amide, *cis* to a ligand, insert into the M-ligand bond. The oxidation state of the metal does not change.

Rate of insertion depends on the strength of the metal-migratory group bond:

β-Hydride transfer: olefin insertion and β-elimination

The generic example of olefin insertion is into a metal-alkyl or metal-hydride bond:

The transition state involves an **agostic interaction** of the β -hydrogen of the new alkyl:

The formation of **metallacycles** is a very important step in many catalysed reactions.

For β -hydride elimination an open coordination site on the metal complex is required.

Nucleophilic attack on coordinated ligands

Metals withdraw electron density from a ligand making the ligand electropositive and susceptible to nucleophilic attack. Nucleophilic attack at CO is involved in many catalytic processes where carbon monoxide is present as a substrate.

When pushing arrows with carbonyls the M=C=O valence bond form should be used.

Summary of main organometallic reactions

Ligand association

$$L_nM + L' \longrightarrow L_nM-L' +2 0 +1 Pt(PPh_3)_3 + PPh_3 \longrightarrow Pt(PPh_3)_4$$

Ligand dissociation

$$L_nM$$
- L' \longrightarrow L_nM + L' -2 0 -1 $Cr(CO)_6$ \longrightarrow $Cr(CO)_5$ + CO

Oxidative addition

Reductive elimination

Migratory insertion

β-Elimination

Decomposition of alkyl complexes

Although β -hydride transfer is the most important process for the decomposition of alkyl complexes (see lecture notes), many other processes are also known, and they are shown below:

α-Hydrogen transfer (α-elimination)	$M \longrightarrow H$ H H CH_2 H
Cyclometallations:	H_2 H_2
γ-hydrogen transfer	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
δ-hydrogen transfer	$\begin{array}{c c} H_2 \\ M & C \\ H & C \\ H_2 & H_2 \end{array}$
intramolecular elimination of hydrocarbon (reductive elim)	R M H (R can be an alkyl or H)
Binnuclear (intermolecular elimination)	M—R + H—M — → M—M + R—H
Free radical (homolytic fission)	M—R → M• + R•