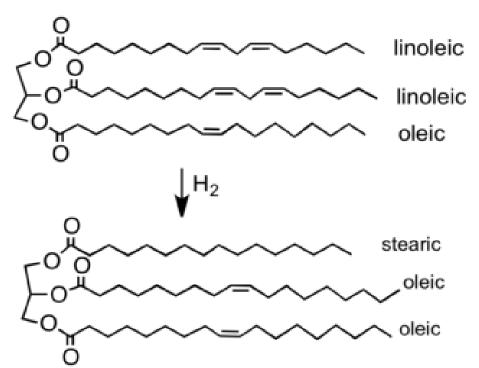

Hydrogenation

Hydrogenation of organic substrates

$$C=X \qquad \xrightarrow{[cat]} \qquad C-X \\ H_2 \qquad H H$$

Hydrogenation of organic substrates

Reduction by hydrogen transfer (transfer hydrogenation)


$$R^{1}$$
 $X + 2 RCHOH \xrightarrow{\text{[cat]}} R^{2} \xrightarrow{\text{K}^{1}} X$
 $H H$

Catalytic hydrogenation: an example of daily application

Food industry:

- Processing of vegetable oils and fats:

Partial hydrogenation of a typical vegetable oil to a typical component of margarine. Most of the C=C double bonds are removed in this process, which elevates the melting point of the product.

Table of contents

- Heterogeneous hydrogenation
- Homogeneous hydrogenation
- Mechanism of Wilkinson's catalyst
- Improvement of Wilkinson's catalyst
- Asymmetic hydrogenation
- Cationic catalysts for asymmetric hydrogenation
- Ru catalysts for asymmetric hydrogenation

I. Heterogeneous hydrogenation

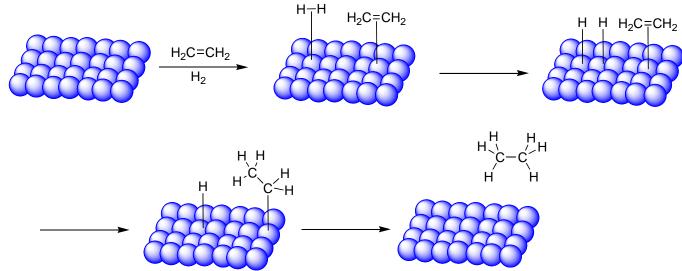
Heterogenous Hydrogenation of Alkenes – addition of H-H (H_2) to the π -bond of alkenes to afford an alkane. The reaction must be catalyzed by metals such as Pd, Pt, Rh, and Ni.

- The catalysts is not soluble in the reaction media, thus this process is referred to as a *heterogenous* catalysis.
- The catalyst assists in breaking the π -bond of the alkene and the H-H σ -bond.
- The reaction takes places on the surface of the catalyst. Thus, the rate of the reaction is proportional to the surface area of the catalyst.

<u>Heterogeneous catalysis</u>: Stereochemistry of Alkene Hydrogenation Mechanism:

The addition of H_2 across the π -bond is *syn*, *i.e.*, from the same face of the double bond

Heterogeneous catalysis: Stereochemistry of Alkene Hydrogenation Mechanism:


What happens if you have more than one alkene moiety? Why?

$$CH_2=CH-CH=CH_2 + H_2 ==> CH_2=CH-CH_2-CH_3$$
 Pd catalyst

$$CH_2=CH-CH=CH_2 + 2H_2 ==> CH_3-CH_2-CH_3$$
 Pt catalyst

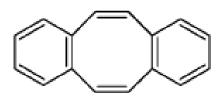
The selectivities of hydrogenation reactions depend primarily on the relative probability of adsorption of the unsaturated functional groups located either in different molecules or in the same molecule. Theoretical calculations of the chemisorption energies of unsaturated molecules on model metal surfaces can account for selectivity data. Thus, in butadiene hydrogenation, the higher selectivity to 1-butene on palladium than on platinum can be interpreted from calculated adsorption energies. On Pd(111), the chemisorption energy of the di- adsorbed form of **butadiene** was found **twice** as large as that of 1-butene, so that butadiene displace butene from the metal surface once it is formed. In contrast, on Pt(111), butadiene and 1-butene have similar chemisorption energies, so that 1-butene remains adsorbed and is further hydrogenated into butane.

Heterogeneous catalysis: Stereochemistry of Alkene Hydrogenation Mechanism:

What happens if you have a triple bond (alkyne)? Can you selectively reduce to alkene?

Heterogeneous catalysis:

Lindlar Hydrogenation of Alkynes


- The poison is required to deactivate the catalyst , reducing the propensity for overreduction and bond migration.
- The best reagent for selective reduction of alkynes to the **cis** alkene is the Lindlar catalyst. Palladium chloride (PdCl₂) was precipitated on calcium carbonate (CaCO₃) in acidic media and deactivated with lead tetraacetate [Pb(OAc)₄] to give the named Pd-CaCO₃-PbO catalyst.

AcO
OH
CH
Lindlar's catalyst
$$H_2$$
, 10% quinoline
EtOH, 23°C

Cis

Tests for homogeneous catalysis:

- Addition of metallic mercury to a catalyst solution which removes colloidal (nanoparticle) metal particles by forming an alloy and eliminates their contribution to the catalysis. If catalytic activity decreases in the presence of mercury then catalysis is by colloids.
- Full kinetic analysis sigmoidal kinetics indicates nanoparticle formation.
- The rigid substrate dibenzocyclooctatetraene coordinates irreversibly to homogeneous catalysts, therefore preventing catalysis from taking place if the catalyst is homogeneous.
- Crosslinked polymers functionalised with alkene can only be hydrogenated by homogeneous catalysts.

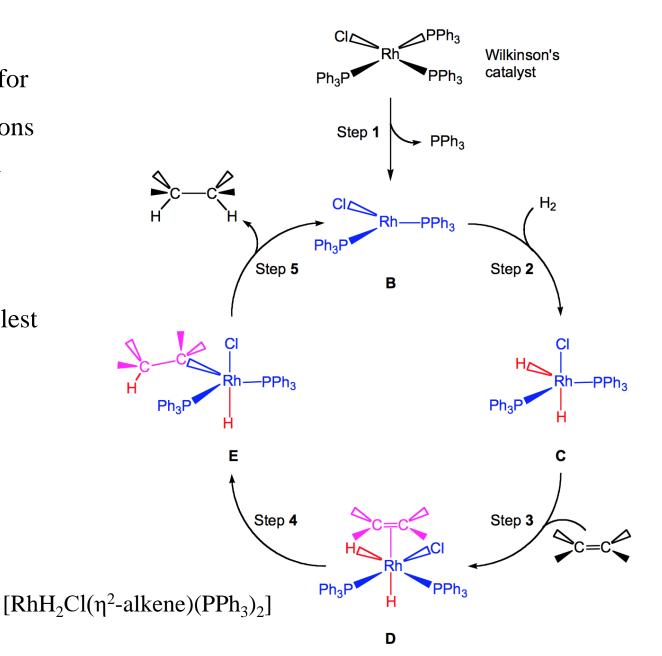
II. Homogeneous hydrogenation

Hydrogen activation

Homolytic:

$$[RhCl(PPh_3)_3] + H_2 \rightarrow [Rh(H)_2Cl(PPh_3)_3]$$

$$2 [Co(CN)_5]^{3-} + H_2 \rightarrow 2 [CoH(CN)_5]^{3-}$$


Heterolytic:

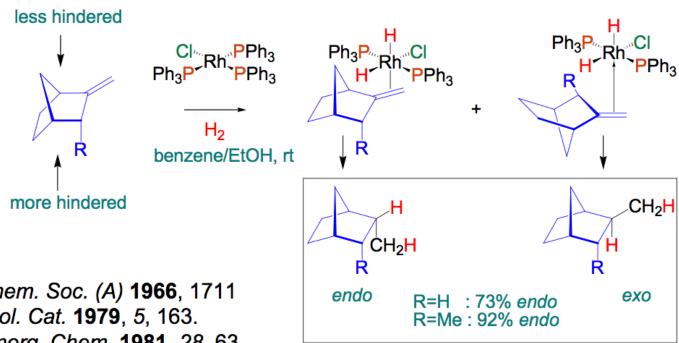
$$MY + H_2 \rightarrow MH + H^+ + Y^-$$

Examples:
$$[RuCl_2(PPh_3)_3] + H_2 + NEt_3 \rightarrow [RuHCl(PPh_3)_3] + Et_3NHCl$$

 $[PtCl(SnCl_3)(PPh_3)_2] + H_2 \rightarrow [PtH(SnCl_3)(PPh_3)_2] + HCl$

The classic catalyst for hydrogenation reactions was developed by Wilkinson, Rh(PPh₃)₃Cl.

Catalytic cycle (simplest scheme):


Synthesis of catalyst:

Homogeneous catalytic, selective hydrogenation: alkenes and alkynes without affecting the functional groups (C=O, CN, NO₂, Aryl, CO₂R)

rates of hydrogenations decrease with increase in the alkyl group substitution on double bond - steric factors

Selectivity of the hydrogenation (Wilkinson)

Rh preferentially binds to the least sterically hindered face of the olefin:

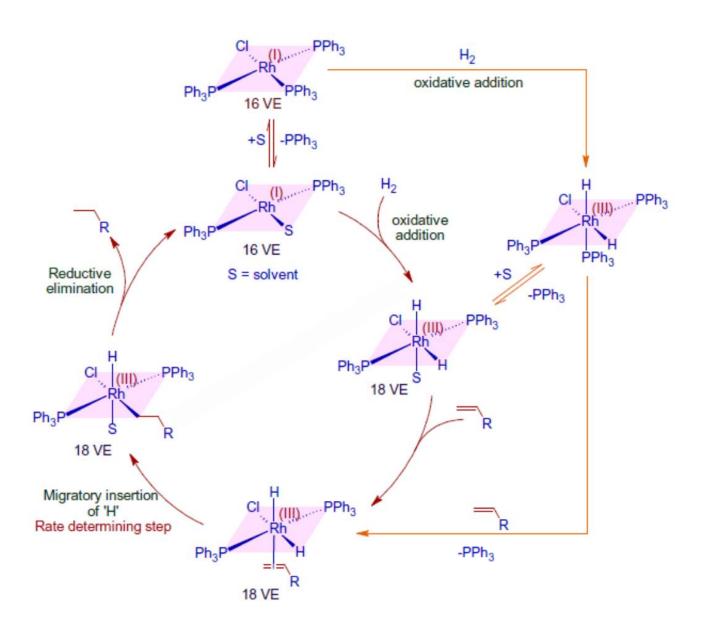
Wilkinson, J. Chem. Soc. (A) 1966, 1711 Rousseau, J. Mol. Cat. 1979, 5, 163. Jardine, Prog. Inorg. Chem. 1981, 28, 63.

III. Mechanism of Wilkinson's catalyst

Detailed reaction mechanism of the hydrogenation (Wilkinson)

Mechanistic studies:

- the rate of reaction decreases when excess of PPh₃ is added; indicating the initial dissociation of one of the PPh₃ ligand before dihydrogen activation.
- H₂ activation at first before alkene coordination
- Rate determining step is the migratory insertion

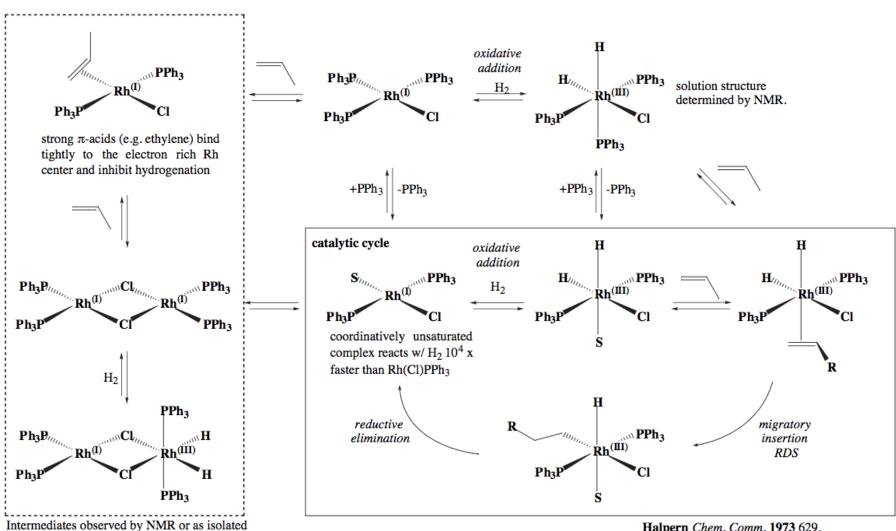

Detailed reaction mechanism of the hydrogenation (Wilkinson)

Mechanistic studies:

- no H/D exchange is observed:

- formation of dihydrido complex that transfers both of its hydrido ligands to the olefin
- The reverse of migratory insertion is not significant (why?)

Detailed reaction mechanism of the hydrogenation (Wilkinson)


Detailed reaction mechanism of the hydrogenation

solids in the reaction system. Formation of

these "side-products" results in a reduction in

the rate of hydrogenation.

Wilkinson hydrogenation: classic dihydride mechanism

Halpern Chem. Comm. 1973 629. Halpern J. Mol. Catal. 1976 (2) 65. Halpern Inorg. Chim. Acta. 1981 (50) 11. Other intermediates have also been identified – notably dimers at higher temperatures:

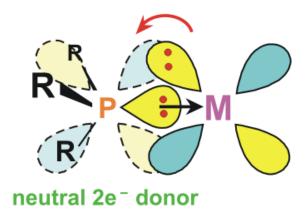
(Figure taken from *J. Am. Chem. Soc.*, **1994**, *116*, 10548)

The dimers are less active than the monomers and their presence leads to reduce activity.

Increasing the steric bulk of the phosphine in Wilkinson's catalyst should lead to increased activity, since the rate determining step (RDS) can be the first phosphine ligand dissociation, however, as the size of the phosphine increases the formation of dimers increase, hence activity decreases.

Solvent effects: solvent influences Wilkinson's catalyst.

For example, the hydrogenation of the functional alkene varies considerably with the solvent.


Polar solvents probably reduce the formation of dimers which are less active. Therefore, careful choice of solvent can be used to improve catalytic activity, but is limited by the solubility of the catalyst and substrates in the solvent.

IV. Improvement of Wilkinson's catalyst

LIGAND DESIGN – how to improve a catalyst.

Phosphines PR_3 , Phosphites $P(OR)_3$

empty d orbitals on phosphine can act as π -acceptor orbitals not very important unless R-groups are electron-withdrawing

Phosphine ligands

excellent soft-donor ligands with a wide variety of easily adjusted steric and electronic factors

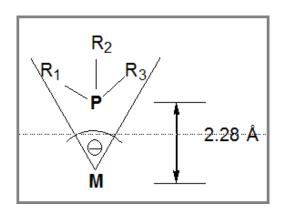
R = OR groups \longrightarrow phosphite

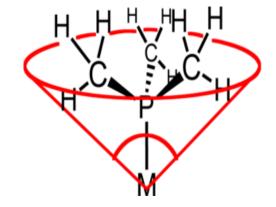
Changing substituents on the phosphorus(III) centre alters the electronic and steric effects of the P-atom and changes catalytic activity.

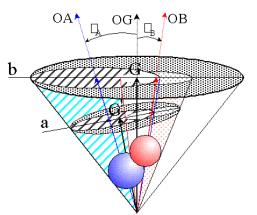
Electronic effects – transmitted along bonds, e.g. the difference in basicity of phosphines such as $P(p-C_6H_4OMe)_3$ and $P(p-C_6H_4CI)_3$.

$$\begin{array}{c|c} & & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & &$$

Steric effects correspond to forces (usually non-bonding) between parts of the molecule, e.g. the difference in changing the position of a substituent such as $P(p-C_6H_4Me)_3$ and $P(o-C_6H_4Me)_3$.

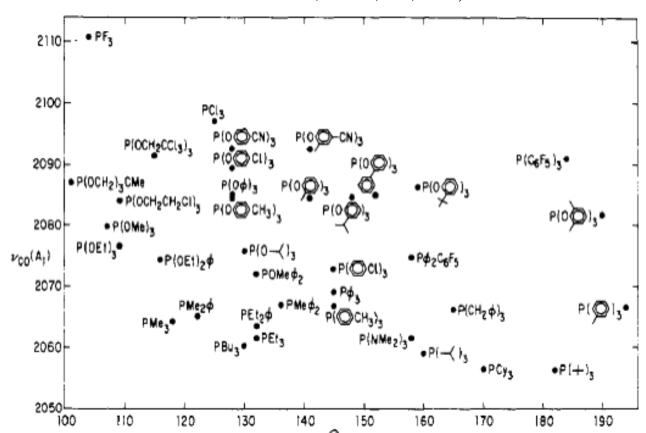

Tertiary phosphine ligands


In 1977 Chad Tolman published a review covering methods that he developed for ordering a wide variety of phosphine ligands in terms of their steric bulk and electron-donating ability (*Chemical Reviews*, **1977**, *77*, 313-348).

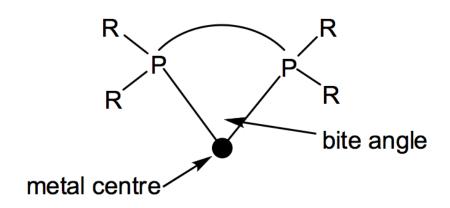

Quantification of steric bulk – Tolman (or ligand) cone angle, Θ, is a measure of the size of a ligand. It is defined as the solid angle formed with the metal at the vertex and the hydrogen atoms at the perimeter of the cone. Tertiary phosphine ligands are commonly classified using this parameter, but the method can be applied to any ligand.

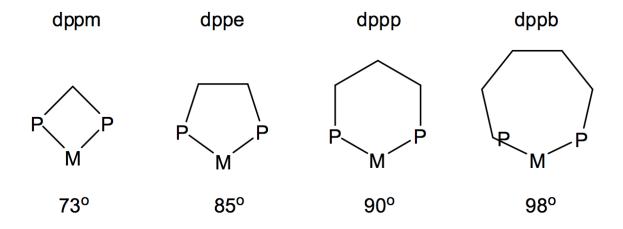
Cone angles of common phosphine ligands, PR_3 (°): H 87 F 104 OCH₃ 107; CH₃ 118; CH₂CH₃ 132; C₆H₅ 145; cyclo-C₆H₁₁ 170; t-Bu 182; C₆F₅ 184; 2,4,6-Me₃C₆H₂ 212.

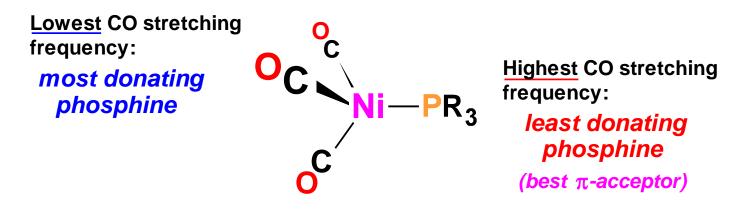
Cone angles are determined from crystallographically determined structures or computed by algorithms.



(Figure by B. Craig Taverner, Structural Chemistry Group, Department of Chemistry, University of the Witwatersrand, Private Bag 3, WITS 2050, Johannesburg, South Africa.)


Steric and electronic map


If an experimental parameter is dominated by steric effects, the dependence can be readily shown by plotting it against Θ . If an experimental parameter is dominated by electronic effects, a plot against n is appropriate. In general, many experimental parameters depend on both steric and electronic effects, e.g. catalytic activity. It is possible to describe the dependence graphically in terms of its percentages of steric and electronic character. This can be done with the Steric and Electronic Map of phosphorus ligands. The position of any ligand on the map can be determined by its values of n and Θ and examples where this is important in catalysis will be given later. (Figure taken from *Chemical Reviews*, **1977**, *77*, 313)


Chelating phosphines

The angle formed between a metal atom and the two P-atoms of a bidentate chelating ligand is known as the *bite* angle of the ligand. The size of the bite angle has a strong effect on catalysis.

The electronic parameter, \mathbf{v} , or the electron-donating ability of a phosphine ligand was determined by reacting one equivalent of the phosphine with Ni(CO)₄ to make a Ni(CO)₃(phosphine) complex. The carbonyl \mathbf{v}_{CO} IR stretching frequency (the very sharp \mathbf{a}_1 high energy mode) of the Ni(CO)₃(phosphine) complex was measured. The **more electron density** the phosphine ligand donates to the metal, the greater the π -backbonding to the carbonyl ligands, weakening the C=O triple bond, thus lowering the \mathbf{v}_{CO} IR stretching frequency.

Substituent	Substituent contribution [†]
^t Bu	0.0
Et	1.8
p-C ₆ H ₄ OMe	3.4
p-C ₆ H ₄ OMe p-C ₆ H ₄ Me m-C ₆ H ₄ Me	3.5
<i>m</i> -C ₆ H₄Me	3.7
Ph	4.3
C_6F_5	11.2
CF ₃	19.6

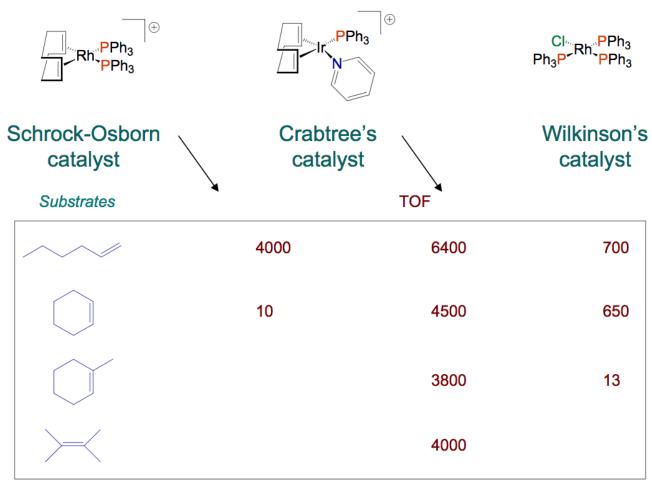
† Substituent contribution: more electron donating substituent gives lower $\upsilon_{\ CO}$

Note: Alkyl groups are more electron donating than aryl groups.

Substituents on the aryl groups are important.

So how to improve Wilkinson's catalyst?

 $Rh(PPh_3)_3Cl$

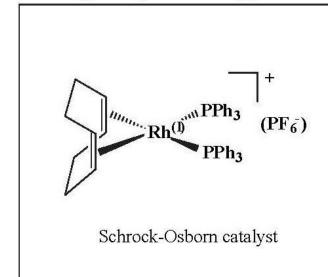

So how to improve Wilkinson's catalyst?

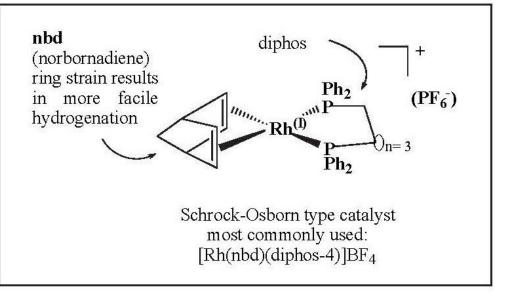
Rh(PPh₃)₃Cl

Something a bit more radical?

Cationic catalysts

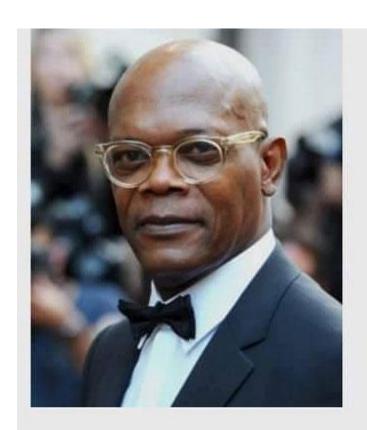
Cationic catalysts are the most active homogeneous hydrogenation catalysts developed so far:

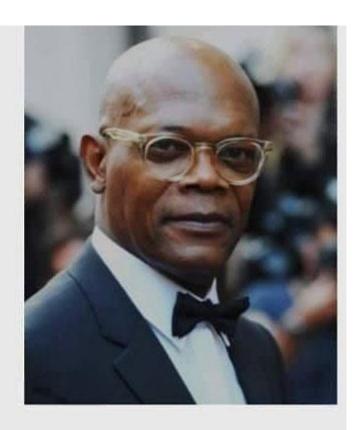

Mechanism changes from neutral to cationic catalysts !!!


Olefin binding is before H₂ activation

Schrock- Osborn / Crabtree: Cationic catalysts

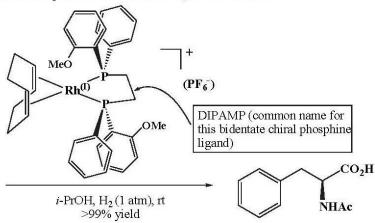
Diene ligated cationic catalysts mode of activation: Indian PCy3 MPCy3 (PF_6) (PF_6) H_2 cis-oxidative cis-migratory addition insertion m_{m, Ir}(III) MPCy3 diene ligated (PF_6) catalyst precursor Ir(I) PCy3 E(I) " PCy3 (PF_6) $(PF_{\bar{6}})$ repeat cis-reductive elimination solvated active catalyst


Diene ligand is removed under H₂ to give a di(solvato) complex



V. Asymmetric hydrogenation

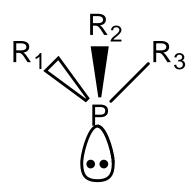
Life is chiral


Samuel-L-Jackson

Samuel-D-Jackson

$A \textit{symmetric Hydrogenation} \\ \text{A bidentate, C_2 symmetric version of the cationic Schrock-Osborn catalyst affords extraordinarily high levels of }$

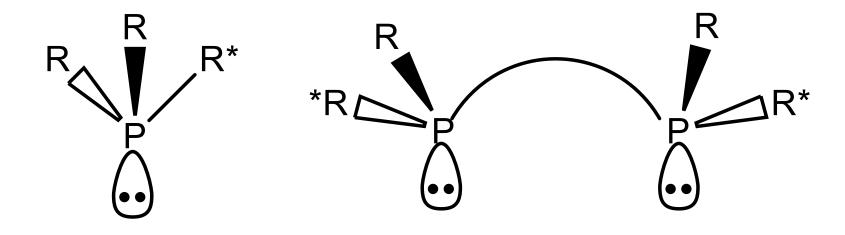
A bidentate, C_2 symmetric version of the cationic Schrock-Osborn catalyst affords extraordinarily high levels of enantioselectivity in the hydrogenation of achiral enamides. This was the first demonstration that a chiral transition metal complex could effectively transfer chirality to a non-chiral substrate with selectivities that rival those observed in enzymes. Recall that this led to the 1st commercialized asymmetric process using a chiral transition metal complex: Monsanto Process for the industrial production of L-DOPA (see Structure and Bonding, pg. 4)

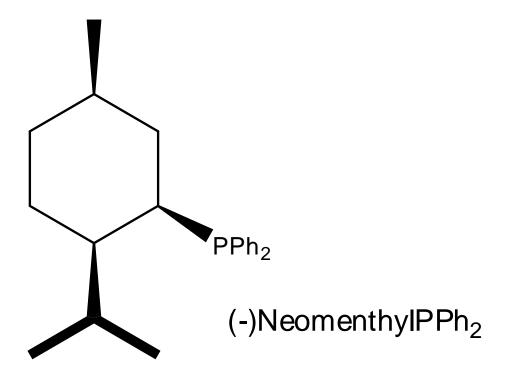

Knowles JACS 1975 (97) 2567.

93% ee

Chirality can be introduced into phosphines in several ways.

1. Chirality and the P-atom –

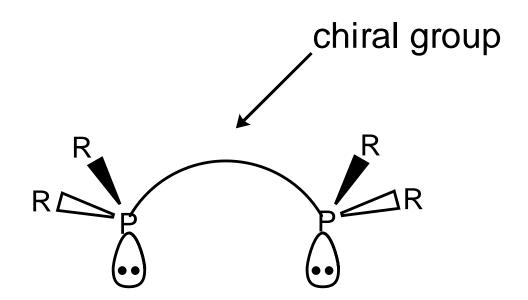

three different substituents at the P-atom:



- Do not racemise (high barrier to inversion).
- Several step synthesis and resolution required.

Chirality can be introduced into phosphines in several ways.

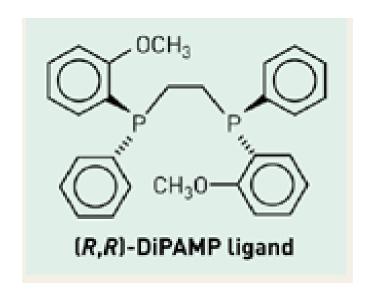
2. Chirality not at P using a chiral substituent:



- Easily prepared from a chiral starting material

Chirality can be introduced into phosphines in several ways.

3. A chiral group in a bis-phosphine backbone:

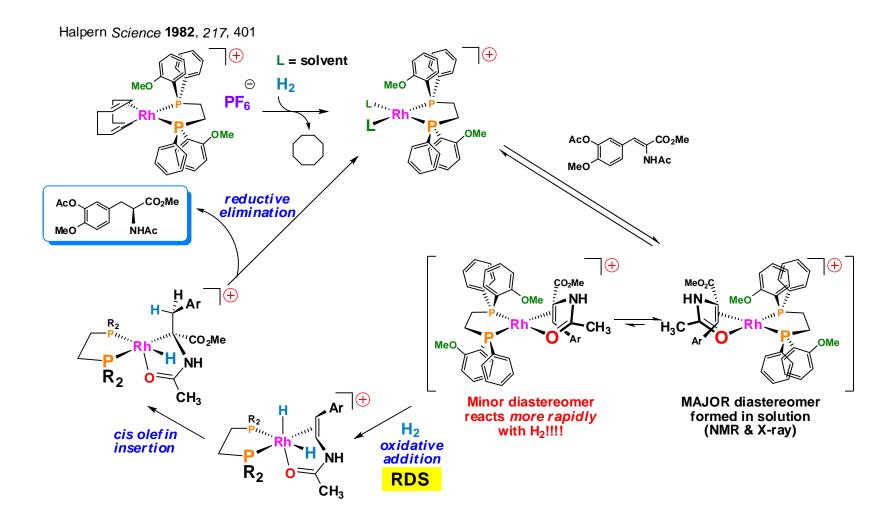


A classic example of the application of a chiral bisphosphine is in the synthesis of L-Dopa – an intermediate in dopamine biosynthesis. L-dopa is used in the treatment of Parkinson's disease.

The key step in L-dopa synthesis is the catalytic hydrogenation of the prochiral olefin.

$$H_3COCO$$
 H_3COCO
 H_3C

The catalyst is prepared in situ from [Rh(COD)₂]⁺ and (R,R)-DIPAMP:


(R,R)-DIPAMP was developed by Knowles in 1970s with Monsanto, received nobel prize in 2001.

Halpern's mechanism of hydrogenation for cationic Rh catalysts with bidentate phosphines

Steps: (1) alkene addition, (2) H₂ addition, (3) migratory insertion, (4) reductive elimination of the alkane, regeneration of the catalyst.

Halpern, Science 1982, 217, 401.

Mechanism for asymmetric hydrogenation

Olefin association occurs before oxidative addition of H₂ and this oxidative addition is the rate-limiting step. What is even more amazing is that the major olefin complex diastereomer, which was isolated and characterized by NMR and X-ray techniques, gives the WRONG product. In elegant mechanistic studies, Halpern showed that the *minor diastereomer (olefin complex)* REACTS 580x FASTER to give the final hydrogenated chiral product in a 60:1 ratio!

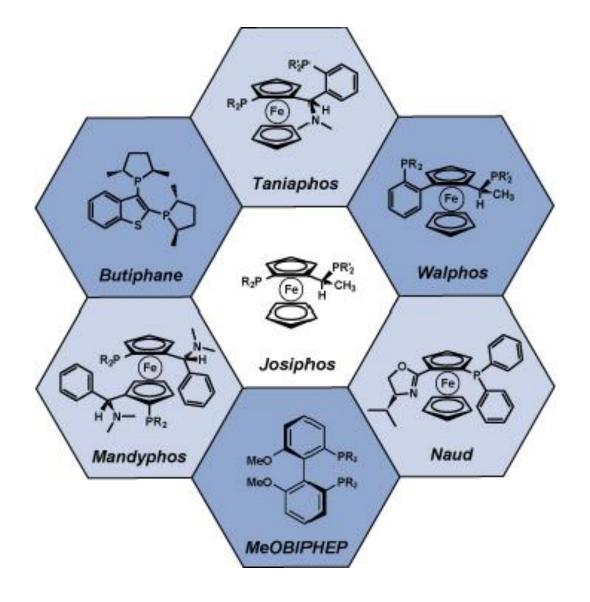
 $A symmetric \ Hydrogenation$ A bidentate, C_2 symmetric version of the cationic Schrock-Osborn catalyst affords extraordinarily high levels of

A bidentate, C₂ symmetric version of the cationic Schrock-Osborn catalyst affords extraordinarily high levels of enantioselectivity in the hydrogenation of achiral enamides. This was the first demonstration that a chiral transition metal complex could effectively transfer chirality to a non-chiral substrate with selectivities that rival those observed in enzymes. Recall that this led to the 1st commercialized asymmetric process using a chiral transition metal complex: Monsanto Process for the industrial production of L-DOPA (see Structure and Bonding, pg. 4)

Knowles JACS 1975 (97) 2567.

93% ee

A variety of bidentate chiral phosphines have since been synthesized and used to effect the hydrogenation of aromatic enamides (important substrates for the efficient generation of amino acids):

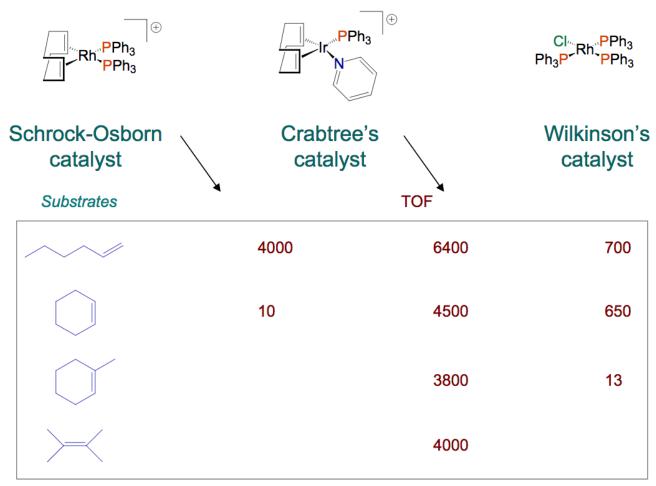

PPh₂

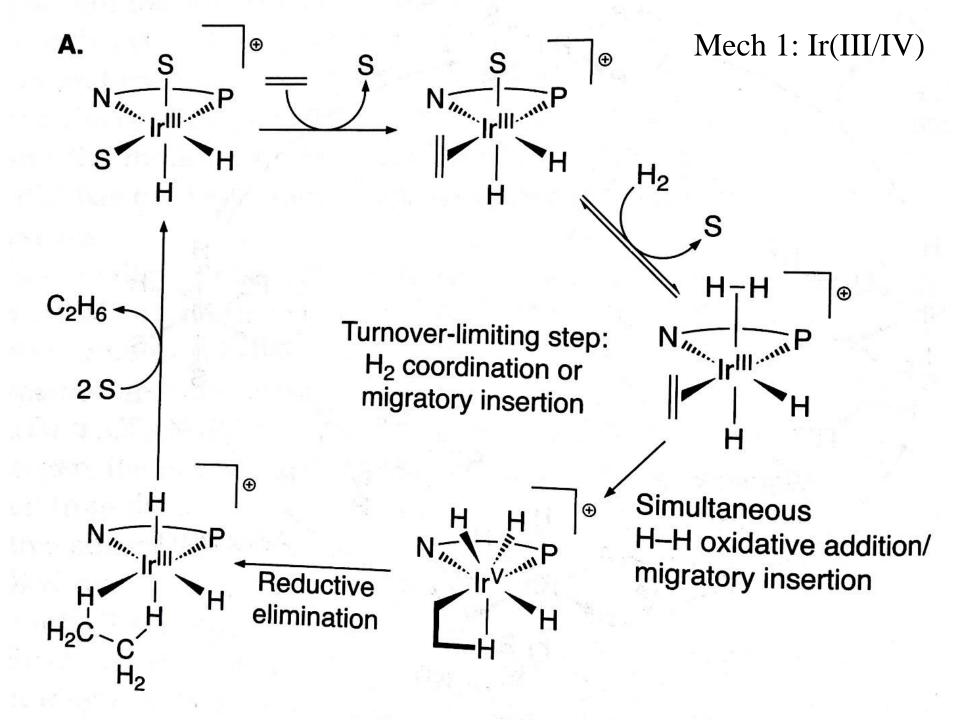
BPPFA (93% ee)

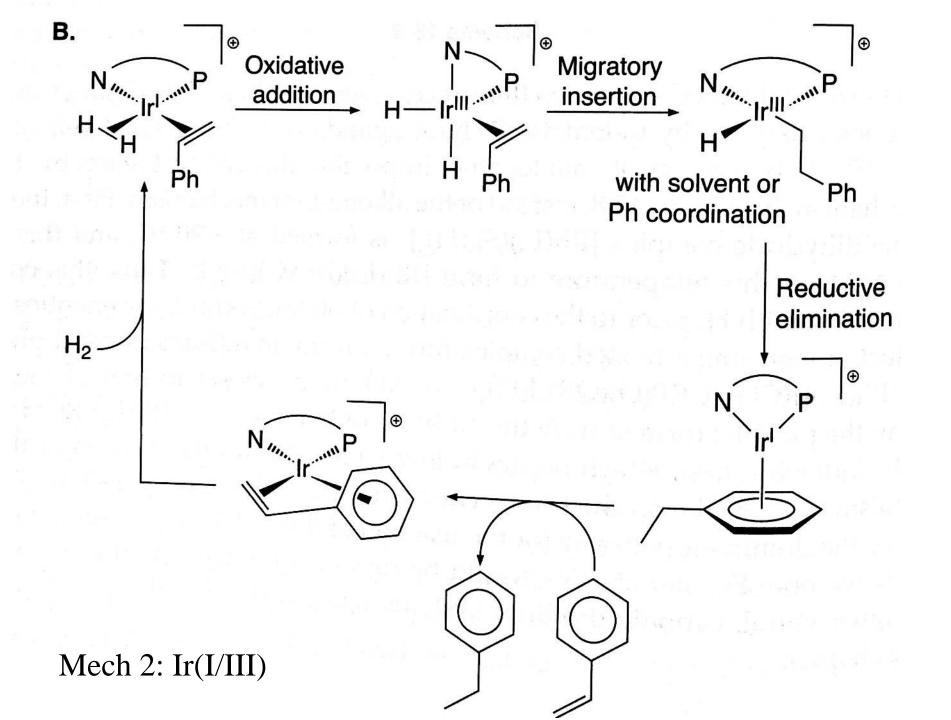
We'll see these ligands again effecting asymmetry in a wide assortment of mechanistically unrelated metal catalyzed reactions with prochiral substrates. "Privileged ligand class": ligands that communicate asymmetry effectively with a transition state localized at the metal center, irrespective of the nature of the transition state.

E.N. Jacobsen; personal communication

E. N. Jacobsen. Chem 153 notes. Spring 2001. For review on DuPhos: Burk Acc. Chem. Res. 2000 (33) 363.



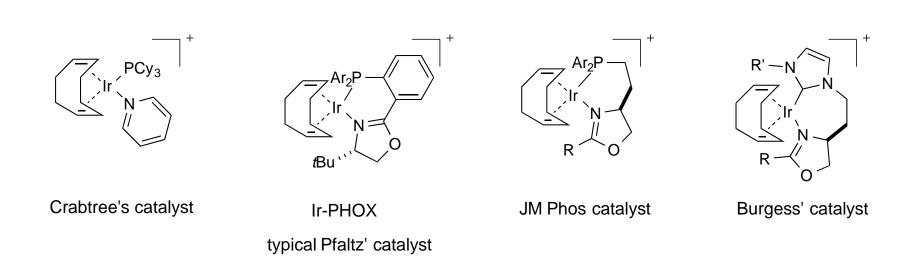

Chiral Ligands Kit – sold by Solvias/Sigma-Aldrich For rapid screening


VI. Cationic catalysts for asymmetric hydrogenation

Cationic catalysts

Cationic catalysts are the most active homogeneous hydrogenation catalysts developed so far:

Crabtree-type catalyst:


The high reactivity of Crabtree's catalyst can be explained by the fact that the alkene does not have to compete with dissociated phosphine or coordinating solvent molecules for a free site on the metal

Requires non-coordinating solvents; activity improved by using bulky, non-coordinating anions, such as BArF

Crabtree's catalyst is highly active towards highly-substituted alkenes, for which other catalysts are inactive.

Olefins with no coordinating functionalities, especially tri- and tetrasubstituted, have been identified as the most difficult substrates for asymmetric hydrogenation. These olefins are particularly difficult to hydrogenate due to the absence of the polar group which is required for Rh or Ru catalysts to obtain high catalytic activity and enantioselectivity.

Several groups in 1990's and 2000's have developed Ir based catalyst systems with chiral P-N ligands based on Crabtree's catalyst, which has been reported as an efficient catalyst for the reduction of unfunctionalized alkenes.

Ir-PHOX (Phosphinooxazoline) catalyst developed by Andreas Pfaltz in 1990's. The versatile library of PHOX ligands can be prepared easily in 2 to 4 steps depending on the structural features of the ligand.

MeO

MeO

$$1 \text{ mol}\% \left[\begin{array}{c} P \text{ Ir}^{I}(\text{COD}) \end{array} \right]^{+} \text{BAr}_{F}$$

MeO

MeO

 $N \text{ mol}\% \left[\begin{array}{c} P \text{ Ir}^{I}(\text{COD}) \end{array} \right]^{+} \text{BAr}_{F}$

MeO

 $N \text{ mol}\% \left[\begin{array}{c} P \text{ mol}\% \end{array} \right]^{+} \text{BAr}_{F}$

MeO

 $N \text{ mol}\% \left[\begin{array}{c} P \text{ mol}\% \end{array} \right]^{+} \text{BAr}_{F}$

MeO

 $N \text{ mol}\% \left[\begin{array}{c} P \text{ mol}\% \end{array} \right]^{+} \text{BAr}_{F}$

MeO

 $N \text{ mol}\% \left[\begin{array}{c} P \text{ mol}\% \end{array} \right]^{+} \text{BAr}_{F}$

MeO

 $N \text{ mol}\% \left[\begin{array}{c} P \text{ mol}\% \end{array} \right]^{+} \text{BAr}_{F}$

MeO

 $N \text{ mol}\% \left[\begin{array}{c} P \text{ mol}\% \end{array} \right]^{+} \text{BAr}_{F}$

MeO

 $N \text{ mol}\% \left[\begin{array}{c} P \text{ mol}\% \end{array} \right]^{+} \text{BAr}_{F}$

MeO

 $N \text{ mol}\% \left[\begin{array}{c} P \text{ mol}\% \end{array} \right]^{+} \text{BAr}_{F}$

MeO

 $N \text{ mol}\% \left[\begin{array}{c} P \text{ mol}\% \end{array} \right]^{+} \text{BAr}_{F}$

MeO

 $N \text{ mol}\% \left[\begin{array}{c} P \text{ mol}\% \end{array} \right]^{+} \text{BAr}_{F}$

MeO

 $N \text{ mol}\% \left[\begin{array}{c} P \text{ mol}\% \end{array} \right]^{+} \text{BAr}_{F}$

MeO

 $N \text{ mol}\% \left[\begin{array}{c} P \text{ mol}\% \end{array} \right]^{+} \text{BAr}_{F}$

MeO

 $N \text{ mol}\% \left[\begin{array}{c} P \text{ mol}\% \end{array} \right]^{+} \text{BAr}_{F}$

MeO

 $N \text{ mol}\% \left[\begin{array}{c} P \text{ mol}\% \end{array} \right]^{+} \text{BAr}_{F}$

MeO

 $N \text{ mol}\% \left[\begin{array}{c} P \text{ mol}\% \end{array} \right]^{+} \text{Mol}_{F}$

MeO

 $N \text{ mol}\% \left[\begin{array}{c} P \text{ mol}\% \end{array} \right]^{+} \text{Mol}_{F}$

MeO

 $N \text{ mol}\% \left[\begin{array}{c} P \text{ mol}\% \end{array} \right]^{+} \text{Mol}_{F}$

MeO

 $N \text{ mol}\% \left[\begin{array}{c} P \text{ mol}\% \end{array} \right]^{+} \text{Mol}_{F}$

MeO

 $N \text{ mol}\% \left[\begin{array}{c} P \text{ mol}\% \end{array} \right]^{+} \text{Mol}_{F}$

MeO

 $N \text{ mol}\% \left[\begin{array}{c} P \text{ mol}\% \end{array} \right]^{+} \text{Mol}_{F}$

MeO

 $N \text{ mol}\% \left[\begin{array}{c} P \text{ mol}\% \end{array} \right]^{+} \text{Mol}_{F}$

MeO

 $N \text{ mol}\% \left[\begin{array}{c} P \text{ mol}\% \end{array} \right]^{+} \text{Mol}_{F}$

MeO

 $N \text{ mol}\% \left[\begin{array}{c} P \text{ mol}\% \end{array} \right]^{+} \text{Mol}_{F}$

MeO

 $N \text{ mol}\% \left[\begin{array}{c} P \text{ mol}\% \end{array} \right]^{+} \text{Mol}_{F}$

MeO

 $N \text{ mol}\% \left[\begin{array}{c} P \text{ mol}\% \end{array} \right]^{+} \text{Mol}_{F}$

MeO

 $N \text{ mol}\% \left[\begin{array}{c} P \text{ mol}\% \end{array} \right]^{+} \text{Mol}_{F}$

MeO

 $N \text{ mol}\% \left[\begin{array}{c} P \text{ mol}\% \end{array} \right]^{+} \text{Mol}_{F}$

MeO

 $N \text{ mol}\% \left[\begin{array}{c} P \text{ mol}\% \end{array} \right]^{+} \text{Mol}_{F}$

MeO

 $N \text{ mol}\% \left[\begin{array}{c} P \text{ mol}\% \end{array} \right]^{+} \text{Mol}_{F}$

MeO

 $N \text{ mol}\% \left[\begin{array}{c} P \text{ mol}\% \end{array} \right]^{+} \text{Mol}_{F}$

MeO

 $N \text{ mol}\% \left[\begin{array}{c} P \text{ mol}\% \end{array} \right]^{+} \text{Mol}_{F}$

MeO

 $N \text{ mol}\% \left[\begin{array}{c} P \text{ mol}\% \end{array} \right]^{+} \text{Mol}_{F}$

MeO

 $N \text{ mol}\% \left[\begin{array}{c} P \text{ mol}\% \end{array} \right]^{+$

Pfaltz Adv. Synth. Catal. 2003, 345, 33

For different substrates the reaction requires a screening for the ligands to obtain the best enantioselectivity. In the following case **L2** afforded product in 99% ee, while the **L1** provided only 81% ee.

By using the Ir-PHOX system, it is possible to hydrogenate tetrasubstituted olefins with excellent enantioselectivity (97%).

MeO Me
$$\frac{2 \text{ mol}\%}{\text{N}} \left[\begin{array}{c} P \\ N \end{array} \right]^{+} BAr_{F}$$
Me Me Me $\frac{1 \text{ bar H}_{2}}{\text{MeO}}$

MeO MeO $\frac{1 \text{ bar H}_{2}}{\text{MeO}}$

Pfaltz *Angew. Chem. Int. Ed.* **2007**, *46*, 8274

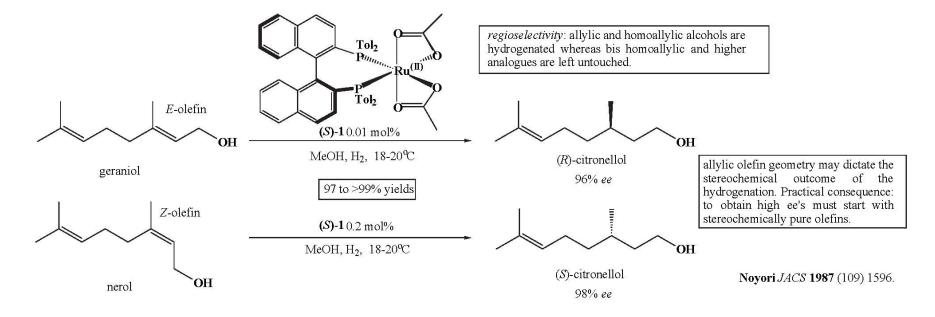
Hydrogenation of purely alkyl-substituted olefins was achieved with pyridine-phosphinite ligands. In the case below, the two C=C double bonds were hydrogenated in a highly stereoselective fashion to the vitamin E side chain.

Pfaltz <u>Science</u> **2006**, *311*, 642

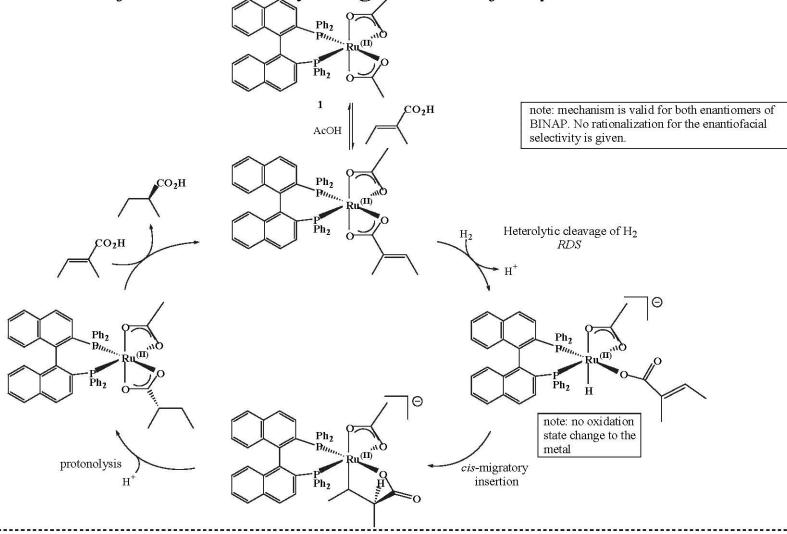
Burguss reported a new class of iridium catalysts with a NHC-ligand, which were able to hydrogenate trisubstituted aryl alkenes in good ee.

$$\begin{array}{c} 0.6 \text{ mol}\% \\ \hline \\ \text{Ph} \\ \hline \\ \text{Me} \\ \end{array} \begin{array}{c} 0.6 \text{ mol}\% \\ \hline \\ \text{Ph} \\ \hline \\ \text{S0 bar H}_2 \\ \end{array} \begin{array}{c} \text{Pr} \\ \text{Ph} \\ \hline \\ \text{Me} \\ \end{array} \begin{array}{c} \text{Pr} \\ \text{N} \\ \text{Ad} \\ \hline \\ \text{O} \\ \end{array}$$

Burgess J. Am. Chem. Soc. 2003, 125, 113


What is the rational of using NHC ligands?

VII. Ru catalysts for asymmetric hydrogenation


Changing now to Ru?

BINAP-Ru complexes: Noyori increases the substrate scope for asymmetric hydrogenations

Asymmetric hydrogenation of allylic and homoallylic alcohols:

Mechanism of BINAP-Ru hydrogenation of α , β -unsaturated acids

Transfer hydrogenation of alcohols

$$R^{1}$$
 $X + 2 RCHOH \xrightarrow{\text{[cat]}} R^{2} \xrightarrow{\text{K}^{1}} X$
 $H H$

Advantages: Avoids use of H_2 gas. Allows for molecular diversity in the reducing agent.

Disadvantages: Formation of a co-product from the dehydrogenation of the hydrogen donor. Reversibility.

Classic reaction

If uses a strong base such as aluminium isopropoxide, **Oppenauer oxidation**

Mechanism 1: direct H transfer

Mechanism 2: metal-hydride transfer

Noyori-Ikayira catalyst
$$X = NTs, O$$

$$R_1$$

$$R_2$$

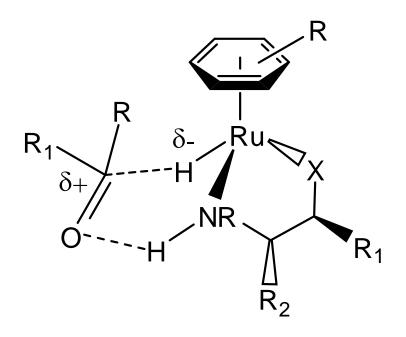
$$R_3$$

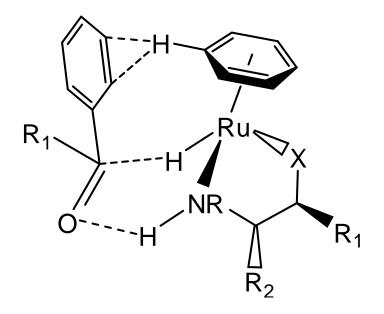
$$R_4$$

$$R_5$$

$$R_6$$

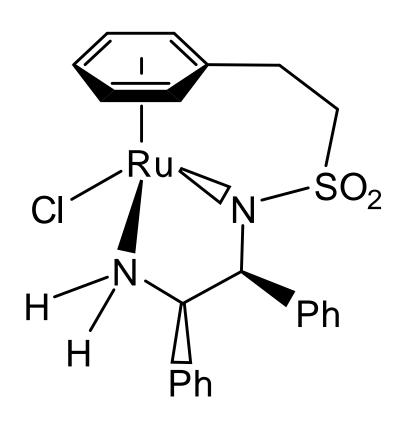
$$R_6$$

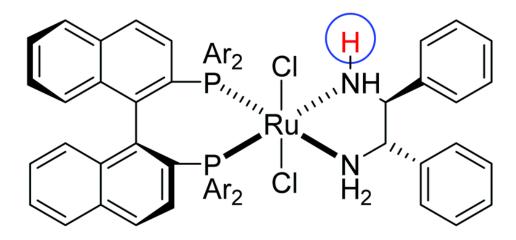

$$R_7$$


$$R_8$$

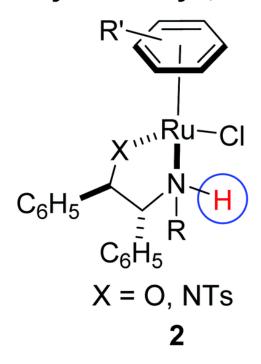
$$R_8$$

$$R_8$$


Mechanism 2: outer-sphere reaction; key intermediate


Although less important than the anionic ligand the arene contributes to the performance of the catalyst via a π -interaction:

The main problem with these catalysts is that high loadings are required as their stability is low - i.e. the catalysts decompose during reaction. Tethered systems have been developed that have increased stability:


Noyori catalysts: Efficient for simple ketones

Noyori, 1995

1

Noyori-Ikariya, 1995

Summary

- From heterogeneous to homogeneous
- Understanding and improving Wilkinson's catalysts
- Different class of catalysts for asymmetic hydrogenation