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With global energy consumption growing at an unprecedented rate and
environmental concerns becoming increasingly acute, the need for clean,
sustainable energy conversion and storage systems such as fuel cells, dye-sensitized
solar cells, metal-air batteries and Li-CO2 batteries is of utmost significance. The
main reactions involved in these renewable energy technologies are oxygen
reduction reaction (ORR), oxygen evolution reaction (OER), hydrogen evolution
reaction (HER), and CO2 reduction reaction (CO2RR), which all require
catalysts. An electrocatalyst is a surface where chemical energy is electrochemically
converted into electrical energy in fuel cells. For the selection of an electrocatalyst
and tailoring its characteristics, both stability and selectivity must be assessed.
Overall fuel cell performance is mainly determined by the efficiency of the
electrocatalyst. Catalysts based on metals are currently widely used, but they suffer
from multiple competitive disadvantages, including their low selectivity, poor
durability, and negative environmental impact. Hence, it is highly desirable to
develop earth-abundant, low-cost, stable, and catalytically active metal-free
alternatives for application in renewable energy. Catalysts made from carbon-
based metal-free materials possess advantages such as high earth abundance, low
cost, high electrical conductivity, structural tunability, good selectivity, and solid
stability in acid/alkaline conditions. These characteristics explain why these
catalysts are receiving increasing attention in applications related to energy and the
environment. Through electrocatalysis without the use of noble metals, numerous
carbon-based electrocatalysts have been developed for the storage of clean energy
and the protection of the environment. This chapter aims to introduce
electrocatalysts and electrocatalysis to the reader. By understanding
electrocatalysis and electrocatalysts, the readers will gain a deeper understanding
of the concepts. Firstly, the authors will discuss the basics of electrocatalysts,
electrocatalysis, types of electrocatalysts, and electrocatalysis, and then they will
review some fundamental concepts. Lastly, a brief overview of recent research and
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advancements in non-noble metal free electrocatalysts will be presented by using
carbon-based nanomaterials in the context of energy storage and concluded with a
remark.

Introduction

With global energy consumption growing at an unprecedented rate and environmental concerns
becoming increasingly acute, the need for clean, sustainable energy conversion and storage systems
such as fuel cells, dye-sensitized solar cells, metal-air batteries and Li-CO2 batteries is of utmost
significance. The main reactions involved in these renewable energy technologies are oxygen
reduction reaction (ORR), oxygen evolution reaction (OER), hydrogen evolution reaction (HER),
and CO2 reduction reaction (CO2RR), which all require catalysts. An electrocatalyst is a surface
where chemical energy is converted into electrical energy in fuel cells. Both stability and selectivity
must be assessed for selecting an electrocatalyst and tailoring its characteristics. Overall, fuel cell
performance is mainly determined by the efficiency of the electrocatalyst. Catalysts based on metals
are widely used, but they suffer from multiple competitive disadvantages, including low selectivity,
poor durability, and negative environmental impact. Hence, it is highly desirable to develop earth-
abundant, low-cost, stable, and catalytically active metal-free alternatives for application in
renewable energy. Catalysts made from carbon-based metal-free materials possess advantages such
as high earth abundance, low cost, high electrical conductivity, structural tunability, good selectivity,
and solid stability in acid/alkaline conditions. These characteristics explain why these catalysts are
receiving increasing attention in energy and environment applications. Through electrocatalysis
without the use of noble metals, numerous carbon-based electrocatalysts have been developed to
store clean energy and protect the environment. This chapter aims to introduce electrocatalysts and
electrocatalysis to the reader. By understanding electrocatalysis and electrocatalysts, the readers will
understand the concepts more deeply. Firstly, the authors will discuss the basics of electrocatalysts,
electrocatalysis, types of electrocatalysts, and electrocatalysis, and then they will review some
fundamental concepts. Lastly, a brief overview of recent research and advancements in non-noble
metal-free electrocatalysts will be presented using carbon-based nanomaterials in the context of
energy storage and concluded with a remark.

In this chapter, we will introduce the electro catalyst’s role in the fascinating electrochemistry
field. We will also briefly go over the fundamental idea to introduce the reader to the underlying ideas
governing electrocatalysis and pique their interest in learning more about the enormous variety of
electrocatalysts and their uses. In contrast to other books on electrocatalysis’s introduction (1–6),
our chapter provides an in-depth analysis of electrocatalysis’s fundamental principles. It also
discusses a few instances of the most effective electrocatalysts used in electrochemistry for energy
storage application.

Basic Concepts in Electrochemistry

What Is Electrochemistry

The field of chemistry known as “electrochemistry” studies phenomena brought on by the
interaction of chemical and electrical forces.
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Types of Processes

Two different processes are described below;

1. Electrolytic processes: chemical changes brought on by the movement of an electric
current.

2. Galvanic or voltaic processes: produce electric energy through chemical processes. Table 1
lists the main distinctions between galvanic and electrolytic cells.

3. What is an electrochemical cell: Two electronic conductors (electrodes) and an ionic
conductor are the typical components of an electrochemical cell (Figure 1). (electrolyte).
A cathode and an anode are the typical components of electrochemical cells. While ions
move when carrying charges in the electrolyte, electrons or holes, move when carrying
charges in the electrodes (both positive and negative). The anode, which represents an
electrochemical cell, must always be displayed on the left, and the cathode must always be
displayed on the right.

Figure 1. Electrochemical cell. Reproduced with permission from reference (6). Copyright 2009 Elsevier.

Reactions Types

Half-cell reactions: At each electrode, an electrochemical reaction occurs. This reaction is called
a half-cell reaction.

Overall reactions: The overall chemical reaction of the cell is given by combining the two
individual half-cell reactions.
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Half-Cell Reaction Types

• Oxidation reactions: Oxidation (loss of an electron) is an energetic process and occurs
when the electrode’s energy dips below the compound’s highest occupied molecular
orbital.

• Reduction reactions: Reduction is also (gain of an electron) an energetic process and
occurs when the energy of the electrode increases above the lowest vacant molecular
orbital of the compound.

Half-Cells and Cell Potential

There are two fundamental types of half-cell reactions

• An electrode is dipped in an electrolyte in the two half-cells that make up an
electrochemical cell. For both half cells, the same electrolyte may be utilized.

• These two half cells are joined by a salt bridge, which gives rise to ionic contact but prevents
them from mixing when filter paper is dipped in a potassium nitrate or sodium chloride
solution.

• A salt bridge is created. Electrons are lost in one of the electrochemical cell’s half cells
through oxidation, while electrons are gained in the other half cell through reduction. It
should be noted that both half cells undergo an equilibrium reaction; when equilibrium
is reached, the net voltage equals zero, and the cell ceases to function as a generator of
electricity.

• An electrode’s electrode potential describes the propensity of an electrode in contact with
an electrolyte to lose or gain electrons. It is possible to forecast the overall cell potential
using the values of these potentials. The standard hydrogen electrode is typically used
as a reference electrode when measuring electrode potentials (an electrode of known
potential).

Primary and Secondary Cells

• Galvanic cells used in primary cells are essentially disposable. In these cells,
electrochemical processes occur that are inherently irreversible. As a result, the reactants
are used to create electrical energy, and the cell stops producing current once all of the
reactants have been used up.

• Secondary cells also referred to as rechargeable batteries, are electrochemical cells with a
reversible reaction or the ability to operate as electrolytic and galvanic cells. The difference
between the Galvanic and electrolytic cells are given below in Table 1.

Most primary batteries, consisting of multiple cells connected in series, parallel, or a
combination of the two, are viewed as wasteful and damaging to the environment. This is because
they use 50 times more energy during production than during production. They are regarded as
hazardous waste and contain a lot of toxic metals.
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Table 1. The Critical Differences between Galvanic Cells and Electrolytic Cells
Voltaic Cell /Galvanic Cell Electrolytic Cell

These electrochemical cells convert chemical energy
into electrical energy.

In these cells, electrical energy is converted to
chemical energy.

These cells undergo entirely spontaneous redox
reactions.

The redox reactions in these cells are not
spontaneous; instead, energy input is necessary for
them to occur.

The anode and cathode in these electrochemical cells
are both negatively charged.

These cells have a cathode that is negatively charged
and an anode that is positively charged.

The source of the electrons is the species that is
oxidized.

Electrons come from an outside source (such as a
battery).

Applications of Electrochemical Cells

• Many non-ferrous metals are electro-refined using electrolytic cells. To electro wine these
metals, they are also utilized.

• Electrolytic cells produce lead, zinc, aluminum, and copper that are highly pure.
• Melted sodium chloride can be used to produce metallic sodium by putting it in an

electrolytic cell and running an electric current through it.
• Galvanic cells are a common component of many widely used commercial batteries,

including lead-acid batteries.

In many remote locations, fuel cells, a significant class of electrochemical cells, provide clean
energy.

Electrocatalyst and Electrocatalysis

Because traditional fuels are still used, mainly in transportation and electricity generation,
greenhouse gas emissions are causing dangerous climate change. To solve scientific problems, energy
sources with high capacity like metal-air batteries and fuel cells have been developed to address clean
energy requirements in transportation applications as well as the usage of renewable energies (7,
8). Redox reactions in electrochemistry like OER, ORR, HER, and others take place in the energy
storage devices’ electrodes. An electrochemical redox reaction processes have several roadblocks.
HER, ORR and OER, and all play a role in clean and sustainable energy technologies like water
splitting devices, transition metal-air batteries, and fuel cells. To improve the reaction of Oxygen
reduction in fuel cell technology for conversion of energy, the Oxygen evolution in transition metal-
air batteries for storing energy, as well as HER in solar water splitting for hydrogen fuel production,
catalysts are necessary. In these processes, noble metals like Ir (iridium), Pd (palladium), Pt
(platinum), and oxides of metals are commonly utilized as catalysts.

On the other hand, catalysts based on noble metals have several drawbacks, including Gas
poisoning sensitivity, poor stability, expensive demand, limited selectivity, restricted availability,
and so on, all of which have hampered the commercialization of those energy solutions. To keep
costs down of precious metals and their oxides, scientists have worked hard to build electrodes with
metal-free and Pt-free catalysts that are effectively for Oxygen reduction reaction (9–12), Oxygen
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evolution reaction (13, 14), Hydrogen evolution reaction (15, 16), and other processes. Moreover,
a variety of metal-free electrocatalysts are outstanding two functional electrocatalysts for OER/ORR
in recyclable transition metal-based-air batteries (17, 18), as well as OER/HER in water electrolysis
reaction (19) as well regeneration fuel cells (20). Electrocatalysts with Three functional and
multifunctional (OER, ORR and HER) have recently been identified (21, 22).

What Is Catalyst in Chemistry

Catalysts are chemicals that modify the reaction pathway to change the rate of a reaction. Any
catalyst is utilized to accelerate the reaction rates. On the other hand, they are utilized to rebuild
or destroy bonds between the atoms in particular compounds’ molecules or elements. Catalysts, in
essence, promote atoms to react, making the entire chemical reaction process more accessible and
practical. The following are a few of the essential characteristics of catalysts:

• A catalyst isn’t the one that starts a chemical reaction.
• There is no consumption of a catalyst in the reaction. This means that it is not used up in

the reaction. It must, however, take part in the reaction.
• Catalysts have a propensity for reacting with reactants to develop intermediates while

assisting in forming a final byproduct. After the complete procedure, a catalyst can
reproduce.

Catalysts come in three forms in nature: solid, liquid, and gaseous. Solid catalysts include metals
or metal oxides, like halides and sulphides. Catalysts include semi-metallic elements such as B
(boron), Al (aluminum), and Si (silicon). The Catalysts can also be completely pure liquid or gaseous
materials. These components can sometimes be mixed with suitable solvents or carriers. A catalytic
reaction arises when a catalyst is present in the system. In other words, catalytic activity is a chemical
reaction combining a reactant and a catalyst. As a result, intermediates in chemical reactions are
developed, which can interact easily with one another or another reactant to produce a product.
The catalyst, however, is regenerated when the intermediates in chemical reactions and the reactants
react. The reaction modes between the reactants and catalysts are typically different and even more
complicated with solid catalysts. Processes of oxidation and reduction, acid-base reactions, free
radical production and the development of complex coordination are some examples of reactions.
Surface properties and electrical crystal structures strongly influence the reaction pathway of solid
catalysts. Some solid catalysts, such as polyfunctional catalysts, have several reactions with the
reactants.

Types of Catalysts

Depending on the necessity or demand of the chemical reaction, many types of catalysts might
be utilized. The following are the details:

Positive Catalysts

Positive catalysts increase the rate at which a chemical reaction occurs. It increases the product
yield percentage by lowering the activation energy barriers, permitting many reactive molecules to be
transformed into products.
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Negative Catalysts

Negative catalysts are those that slow the rate of a chemical reaction. It slows the reaction rate by
increasing the activation energy barrier, which lowers the number of reactant molecules that can be
converted to products and hence delays the reaction.

Promoter or Accelerators

A promoter or accelerator is a chemical that boosts the catalytic activity.

Catalyst Poisons or Inhibitors

Catalyst poisons or inhibitors are substances that reduce the action of the catalyst.

What Is Electrocatalyst

An electrocatalyst is a catalyst that engages in electrochemical processes. Electrocatalysts are a
kind of catalyst that operates on electrode surfaces or is the electrode surface itself in some situations.
Heterogeneous electrocatalysts include platinized electrodes. A homogeneous electrocatalyst
enables the transfer of electrons between an electrode and the reactants and produces a chemical
reaction characterized by a half-reaction (23).

Background and Theory

A catalyst is a material that accelerates a chemical reaction without even being consumed in the
process. Thermodynamically, a catalyst lowers the activation energy needed for a chemical reaction.
When an electrochemical process is initiated, an electrocatalyst will impact the activation energy of
the reaction. Figure 2 depicts the activation energy of chemical processes as a function of the energies
of products and reactants. The activation energy of electrochemical reactions is proportional to the
potential or voltage at which the reaction occurs.

Consequently, electrocatalysts typically modify the voltage where reduction and oxidation
occur. In contrast, an electrocatalyst promotes a chemical reaction on the surface of an electrode
(24). Because electrons are transferred from one chemical species to another during electrochemical
reactions, suitable electrode surface contacts allow electrochemical transformations to occur,
lowering the voltage needed to carry out these transformations (24). Stability, selectivity and activity
are three factors that can be utilized to evaluate electrocatalysts. For a particular applied voltage,
it is possible to quantify the electrocatalyst’s activity by calculating the quantity of current density
generated and, consequently, the reaction rate. The Tafel equation characterizes this relationship.
Crucial to assessing the stability of electrocatalysts is their capacity to withstand the conversion
potentials. Electrocatalyst selectivity is the interaction of electrocatalysts with particular substrates
and the formation of a specific product (25). The selectivity coefficient, which compares the
material’s reaction to the target substrate to the response to certain other interferents, can be utilized
to evaluate selectivity (23).

High activation barriers could be negative in several electrochemical systems, such as galvanic
cells, fuel cells, and many types of electrochemical cells. The energy used to overcome such activation
barriers is converted to heat. In most exothermic combustion processes, this heat catalyzes the
reaction’s progression. In an electrochemical redox reaction, this heat is a waste product that is
wasted by the system. High overpotentials and low faradaic efficiency are commonly used to
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characterize the additional energy needed to overcome kinetic barriers. Each of the two electrodes
and their corresponding half-cells would necessitate its unique electrocatalyst in all of these systems.
In their total chemical transformations, multiple electron transfers, half-reactions comprising many
stages, and the production or consumption of greenhouse gases will typically have significant kinetic
barriers. Furthermore, at the surface of an electrode, there are frequently many potential reactions.
During water electrolysis, the anode, for example, can oxidize water using a two-electron process
to produce hydrogen peroxide or a four-electron process to produce oxygen. An electrocatalyst can
make either reaction path easier.

Figure 2. Diagram of the potential energy of a chemical reaction in the presence and absence of a catalyst.
Catalysts can accelerate chemical reactions by reducing their activation energies since they remain unaffected
by the reaction. An electrocatalyst reduces electrochemical activation energy by reducing an electric voltage

where it takes place. Reproduced with permission from reference (25). Copyright 2020 MDPI.

Features of Electrocatalysts

The features of electrocatalysts include:
High activity
High surface area
Good electrical conductivity
Long term stability

High Activity

Strongly depends on the physicochemical properties of the electrocatalyst surface and the
electrode-electrolyte interaction. It must effectively lower the energy barriers of the electrocatalytic
reaction and increase the electron transfer rate.

High Surface Area and Good Electrical Conductivity

These can be achieved by structuring conductive supports/substrates at the nanoscale.
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Long-Term Stability

It is significant for practical applications. For example, in the ORR process, Pt-based catalysts
have a low tolerance to byproducts such as Methanol/CO, resulting in a limited operating life of the
devices.

What Is Catalysis

One of the core technologies in our current world is catalysis. It is widely used in industries for
manufacturing and in the cleanup of waste to remove pollutants. Even internal biological mechanisms
in our body frequently use catalysis. There must be enzymatic catalysis for all living things.
Photosynthesis, considered the most crucial catalytic process, is in most of the most basic and
primitive forms of life. The general definition of catalysis is the action of a catalyst, an agent that
speeds up a chemical reaction while remaining unaffected by it. Catalysis can be divided into two
main groups:

Catalysis Types: What Are They

A catalyst can be divided into three types depending on the material and its physical state.

• Homogeneous
• Heterogeneous
• Autocatalysis

Homogeneous Catalysis

It is referred to as homogeneous catalysis when a catalyst and a reactant occur in the same
form of matter. Homogeneous catalysts operate in almost the same step as the reactants. Typically,
homogeneous catalysts or substrates are dissolved in an appropriate solvent. The formation of methyl
acetate (C3H6O2) from acetic acid (CH3COOH) and methanol with the influence of H+ is an
example of homogeneous catalysis.

Oxidation of Sulfur Dioxide (SO2) in Lead Chambers

Sulphuric acid can be produced using the lead chamber process. The catalyst used in this
procedure is nitric oxide (gas).

It is homogeneous catalysis because SO2 and O2, as well as the catalyst NO, are all gases in the
above reaction.

Photocatalysts (Homogeneous Catalysis)

This is known as photocatalysis, when a catalyst accepts light and is then elevated to an excited
state.
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Autocatalysis

In this catalytic reaction, no special catalyst is utilized. However, one of the products acts as a
catalyst, accelerating the production process. In autocatalysis, one of the outcomes of the reaction is
what speeds up the reaction. One of the easiest ways to see this is when a solution of ethane dioic
acid (oxalic acid) is oxidized by a solution of potassium manganate (VII) that has been made acidic
(potassium permanganate).

At ambient temperature, the process moves very slowly. It serves as titration to discover how
much potassium manganate (VII) solution there is, usually done at around 60°C. Even though it
starts pretty slowly. Manganese (II) ions help speed up the reaction. Since none of these things is
there before the reaction begins, it begins very slowly at ambient temperature. But if you look at the
equation, you’ll see that one of the products is manganese (II) ions. When the reaction goes on, a
more significant amount of catalyst is made, which makes the reaction go faster.

Heterogeneous Catalysis

In this type of catalysis, the reacting molecules and the catalyst utilized in the reaction are not in
the same state of matter. Since surface catalysis primarily occurs between a solid surface and a gas, it
is frequently referred to as surface catalysis. Generally, this process is comprised of three stages:

• adsorption of reactants on the catalyst surface
• chemical reaction on the surface
• desorption of products from the catalyst surface.

The following considerations regarding catalyst action must be made. The thermodynamics of
the reactions are not changed by catalysts first. Any catalyst does not support a thermodynamically
impossible reaction. Therefore, even without the catalyst, the reaction would still occur, albeit
perhaps too slowly, to be noticed or valuable in a particular situation. Additionally, because a catalyst
increases both the forward and reverse reaction rates equally, it does not affect the equilibrium
composition. This raises the question of why it is claimed that a catalyst’s selectivity is its most
important quality from a practical standpoint since a catalyst cannot alter the state of equilibrium.
It is essential to remember that if there is a complex reaction network, which is frequently the case,
the catalyst may have a different impact on each reaction, changing the overall reaction selectivity.
Adsorption of reactants occurs on the catalyst surface in heterogeneous catalysis. In the catalytic
reaction, chemical bonds between reactants weaken, forming new compounds. Compounds
(products) with weaker bonds to the catalyst are released. Heterogeneous catalysis is shown by
the industrial production of ammonia (shown below), which needs solid catalysts to speed up the
reaction between nitrogen and hydrogen at such a significant rate:
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It should be observed that reactant adsorption is frequently not uniform across the catalyst
surface. Active sites are specific favourable regions on a surface where adsorption and consequently
catalysis primarily occurs. In environmental chemistry, catalysts are crucial for degrading pollutants
like industrial and automobile exhausts.

Electrocatalysts (Heterogeneous Catalysis)

Several forms of metal-containing catalysts are employed in electrochemistry, mainly when
dealing with fuel cell engineering. The primary purpose of these catalysts is to speed up the half-
reactions rate in a fuel cell. Most of the time, a popular electrocatalyst employed in a fuel cell is based
on platinum nanoparticles. Slightly larger carbon particles now support these. Platinum accelerates
the oxygen reduction rates to hydroxide or water when it interacts with one of the fuel electrodes of
the cell (also hydrogen peroxide).

Types of 2D Nanomaterials-Based Electrocatalyst for an
Energy Conversion Application

There are different types of catalysts used for energy conversion, and some of those are listed
below in Table 2.

• Metal-free 2D nanomaterials

o Graphene (e.g., N-doped Graphene)
o Graphene
o Graphitic carbon nitride (g-C3N4)
o Hexagonal boron nitrite (h-BN)
o Black phosphorus

• 2D Transition-metal oxides and hydroxides

o Transition metal oxides
o Layered transition metal hydroxides

• 2D metals chalcogenides

o Transition metal dichalcogenides (MoS2)
o Non-layered metal chalcogenides

• MXenes and non-layered transition metal carbides and nitrides
• Transition metal catalyst
• Metal-organic frameworks (MOFs)
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Engineering Protocols for Efficient Catalysts Design

Protocols include the following:

• Heteroatom doping
• Defect engineering
• Lateral size and thickness regulation
• Strain and phase engineering
• Interface engineering

Table 2. OER Electrochemical Data of Carbon, Cobalt, Iron, Nickel, Manganese, Zinc, and
Copper-Based Compounds

S. No Catalyst used Electrolyte Electrode Ref

1 N, P co-doped Mesoporous carbon
(NPMC-1000)

6 M KOH GCE (26)

2 g-C3N4 NS–CNT 0.1M KOH GCE (27)

3 S-doped CNT 1 M KOH Pyrolytic graphite
electrode

(28)

4 N doped graphite 0.1 M KOH GCE (29)

5 echo-MWCNTs 1MKOH GCE (30)

6 Cobalt oxide nano rods 1 M KOH CFP (31)

7 Amorphous Co3O4 Film 1 M KOH Au substrate (32)

8 Co3O4/N-m rGO 1 M KOH Ni foam (33)

9 Co3O4/N-CNTs grafted carbon
polyhedron

1 M KOH GCE (34)

10 Co2–Fe–B 1 M KOH Cu substrate (35)

11 FeNi LDH/ graphene 1 M KOH Nickel foam (36)

12 Fe doped NiO 0.5 M KOH Gold electrode (37)

13 Fe-Ni3S2/NF 1 M KOH Nickel foam (38)

14 ZnCo2O4/ NCNTs 0.1 M KOH RDE (39)

15 IrO2-ZnO 1 M KOH GCE (40)

16 NiO/TiO2 1 M KOH GCE (41)

17 NiO/Fe saturated 0.1 M KOH FTO (42)

18 C-NiOx/polypyrole 1 M KOH Carbon electrode (43)

19 Ni–Bi/RGO 1M KOH GCE (44)

20 Ni-Fe-P 1 M KOH Ni foam (45)
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Table 2. (Continued). OER Electrochemical Data of Carbon, Cobalt, Iron, Nickel,
Manganese, Zinc, and Copper-Based Compounds

S. No Catalyst used Electrolyte Electrode Ref

21 Mn2O3 0.1 M KOH GCE (46)

22 α-MnO2 0.1 M KOH Pyrolytic graphite
carbon

(47)

23 Mn-CoO/NCNTs 0.1 M KOH RDE (48)

24 Mn-Ni nanoplates/rGO 1 M KOH GCE (49)

25 MnFe2O4 NFs 0.1 M KOH GCE (50)

What Is Electrocatalysis

Electrocatalysis is a critical process in fuel cells and electrolysis devices. In electrocatalysis, bonds
are broken and formed by electron (e-) and ion transport at electrode surfaces. The availability
of renewable electricity increases electrochemical devices’ ability to convert chemical to electrical
forms, enabling electrical energy to be stored in electricity-driven conversions or manufactured as
chemical molecules. The Carnot limit is a term that refers to a limit that applies to thermal processes
and is avoided when chemical and electrical energy are converted directly. Electrocatalytic processes
that promote chemical or electrical interconversions are necessary to facilitate ecologically acceptable
and renewable energy technologies, which contribute to the long-term infrastructure for energy.
Electrocatalytic activities occur in electrolysis devices and fuel cells at both cathode and anode.
Fuel cells use an exergonic reaction to transform chemical energy directly into electricity. Fuel cells
typically consist of an anode that oxidizes the fuel and a cathode that reduces oxygen, producing
electrical energy. Anode electrocatalytic processes can oxidize various fuels, including methane,
ammonia, alcohols, hydrogen and sugars. Other oxidants, such as hydrogen peroxide (H2O2), can
also be used on the cathode side. However, oxygen reduction from the air offers the most practical
alternative for large-scale fuel cell applications. Within a proton exchange membrane fuel cell system
(Figure 3A), hydrogen is oxidized at the anode to generate electrons and protons, while oxygen is
reduced to H2O at the cathode (51).

Electrolysis technologies use electrical work to drive endergonic reactions. Water electrolysis
in a hydrogen fuel cell (Figure 3B) flips the chemistry by oxidizing water to oxygen at the anode
and reducing protons at the cathode to produce hydrogen gas. Additional electrocatalysts of interest
in electrolysis applications include the conversion of carbon dioxide to hydrocarbons or carbon
monoxide (52), the exchange of oxygen from biomass (25), nitrate to nitrogen and ammonia, and
nitrate to nitrite. Water oxidation might be the anodic reaction for all these reduction processes,
allowing the overall process to input electrical energy and water to aid chemical reduction. The
complete electrochemical reaction successfully achieves hydrogenation in the case of hydrogen
oxidation as an anodic reaction. Electrochemical devices operating at ambient temperatures to 1300
K can perform the electrocatalytic actions outlined above. Solid ion conductors are used in high-
temperature equipment/devices.
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Figure 3. Diagrams of a fuel cell system that converts exergonic H2 and O2 to water (A) and a Hydrogen
derived from endergonic water electrolysis (B). Reproduced with permission from reference (51). Copyright

2018 Elsevier.

In contrast, hydrated polymeric membrane components are used in low-temperature
equipment/devices to allow the transport of ions between anode and cathode. Hydroxide or Proton
conducting polymeric membranes can be used in hydrogen fuel cells to operate at low temperatures.
In high-temperature fuel cells, solid oxygen ions or proton conductors can be utilized, with the
high temperatures facilitating the conduction of ions in solid. In addition, hydrogen fuel cells can
operate between 400 and 1300 K by using liquid H3PO4 as an electrolyte. The performance of
an electrochemical device is affected by its reaction kinetics, product transport, reactant and ion
transport, and electron conduction (Figure 4). Materials’ composition, interfacial structures, and
single-phase behavior affect these processes. Electrochemical reactions accelerate exponentially as
the cell moves away from its equilibrium potential. Electrochemical devices are often limited by the
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reaction rate at the electrode surface, as they are intended to perform with a slight deviation from
the reaction equilibrium potential. Electrocatalyst materials need to be designed to facilitate efficient
operation near equilibrium potential. Electrocatalysis occurs at the electrode-electrolyte interface,
where reactants, ions, and products move between these components. Electrocatalysis is a chemical
reaction in a “homogeneous” system when the electrolyte breaks and forms bonds, with electrons
transferred to or from an inert electrode to complete the process.

Figure 4. The mobility of species and ions, electrochemical reactions, and electron conduction near the
electrode surface are significant factors in an electrochemical reaction. Reproduced with permission from

reference (51). Copyright 2018 Elsevier.

Brief History of Electrocatalysis

The history of electrocatalysis begins with the history of electrochemistry. Faraday discovered
the rules of electrocatalysis between 1833 and 1836 (53). Gardner Cottrell established the Cottrell
equation (54, 55), which governs the relationship between the kinetics of electrodes and mass
transfer. Bowden and Rideal pioneered electrocatalysis in the 1920s when they developed a variety
of metals for measuring the (HER) (56). Pt-group metals exhibit the highest HER activity, including
Pt, Ir, Pd, Rh, and others. The overpotential will be significantly reduced by minimizing the Set off
potential and Tafel slope of the Pt electrocatalyst (0.2–0.4V). In 1923, the electrochemical basis
hypothesis for how acids and bases act was published (57). The term electrocatalysis was invented
by N. Kobosev and W. Monblanowa in 1931 (58). Electrocatalytic water splitting is the method of
hydrogen synthesis via electrocatalysis that has generated the most interest. The catalyst is essential to
the reaction, and depending on the semiconductor type, it can behave as an anode or a cathode (n or
p-type). The electrocatalytic CO2 reduction reaction (CO2RR) has been studied for over a century.
In 1870, formic acid was the only product of the CO2RR reaction. The H atom–metal interaction
and proton discharge activation energy relationship were published in 1935 by J. Horiuti and M.
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Polanyi (59) released another critical study in 1981. CO2RR, HM (CO)5 where M = Mo, Cr, or W
has been shown to have carbonyl anionic metal hydrides. The behaviours of RuO2-doped Ni/Co3O4
electrodes were examined by Krstajic et al. (60). It is shown that RuO2 in a Co3O4 matrix with less
than 10 mol% RuO2 has the same electrocatalytic response as pure RuO2. At 65 degrees Celsius,
propane was electrochemically destroyed in fuel cells, releasing CO2 as the main carbonaceous
product. The rate of electro-oxidation would, of course, increase with higher temperatures.

As propane temperature rises above 65°C, however, the cracking process on platinum catalysts
and other transition metal catalysts accelerates noticeably, producing enormous methane volumes.
Methane is inert in fuel cells, unlike other hydrocarbons. Due to the breaking reaction producing so
much inert methane, it appears the propane fuel cell is stuck: the higher temperatures required for
faster oxidation of electrochemical reaction may cause halting of propane electrochemical oxidation.
According to current research, propane electrochemical oxidation at platinum catalyzed fuel cell
anode now interacts with propane gas-surface cracking. Cracking is prevented when the fuel cell is
under demand for electrical power. In an open circuit, cracking happens the same way in standard
gas surface exams. Combining a fuel cell and a chromatographic gas analyzer led to these unexpected
results.

Electrocatalysis in Fuel Cell

An electrochemical fuel cell is a device in which electrons arrive at the cathode from the anode
via an external circuit, generating electrical work. Positive and negative ions are displaced through the
conducting media to the cathodic and anodic regions resulting from this process. Electrochemistry
and catalysis expertise are combined to study the kinetics and mechanisms of anodic and cathodic
reactions in homogeneous and heterogeneous systems. N. Nakamura created the phrase
“electrocatalysis.” W. and Kobosev In 1934, Monblanowa (58) W. T. Grubb produced the first
link between HER kinetic data on numerous metals and their related characteristics, such as
metal–hydrogen bond energy and metal sublimation enthalpy (61).

“Electrocatalysis” refers to electrochemical reactions that begin with dissociative chemisorption
or include the electrode surface. The electronic structure of the substrate (electrode) is essential;
(ii) Interactions between the substrate and the adsorbate as a result of reactants or products are
significant; (iii) Both the aspect ratio of catalyst particles and the mean coordination number of
surface atoms affect rate processes; and (iv) The lifetime of an electrocatalyst is determined by
poisoning effects caused by byproduct accumulation, as well as particle surface sintering and ripening
events. At low temperatures, the electrode potential, on the other hand, is a significant variable
that can dramatically change the rate of electrocatalytic reactions. This allows for precision potential
control at the electrochemical interface when dealing with electrocatalytic processes’ selectivity.

Review of Fundamental Concepts

A catalyst’s geometric/electronic structure and catalytic activity are highly correlated. This
knowledge of the structure-activity relationship will aid in the creation of new electrocatalytic
materials that are highly efficient.

Free Energy Diagram for an Electrochemical Reaction

A diagram showing the free energy of an electrochemical process is the plot showing Gibb’s
free energy of a chemical reaction as the reaction proceeds at various potentials. It is crucial to
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determine if it’s thermodynamically spontaneous. A similar method can even be applied to predict
the performance of engineered materials, as it can be used to determine the viability of chemical
reactions and processes that utilize specific materials as electrode surfaces.

Several critical electrocatalytic chemical reactions involve the transfer of protons and electrons,
including the CO2RR, HER, OER, and oxygen reduction reactions.

Indicates which substance is adsorbing on the electrode. To draw the free energy plots, we
have to calculate the free energies of each product and intermediates as they are formed during the
reaction. Under these conditions, the free energy change would be as follows:

The Computational Hydrogen Electrode (CHE) model is used for the calculation of proton
and electron free energies for processes involving transfers of electron and proton. The CHE model
considers the standard hydrogen electrode (SHE) as a reference when dealing with protons and
electrons’ free energy. For the SHE to work, the following reaction must be in equilibrium:

Under standard or equilibrium conditions, both the and reaction terms have the same chemical
potential, i.e., the H+ concentration is 1M, and 0 V potential, 1bar for the H2 gas at room
temperature. Let μ (X) be the chemical potentials of X, then,

Therefore, the free energy of H2 (g) can be utilized instead of the free energy of electrons and
protons. The following is free energy change in the chemical process.

It should be noted that while the equation above applies to standard conditions (at 0 V potential
and pH = 0), it must be modified to account for the effects of applied voltage and pH:

To include the applied voltage bias: +eU, is added; here, e indicates the charge of the electron, U
represents an applied potential concerning standard hydrogen electrode

To include variations in the pH: +kBT log(10)pH, T indicates the temperature, where kB
indicates the Boltzmann constant.

To fully understand the CHE model, it is imperative to note that it considers the following:

• In the presence of an electrostatic field, the adsorption energy of intermediates on an
electrode surface does not depend on it

• There is equilibrium among the electrolytes
• There is equilibrium between the electrodes and the electrolyte bulk at the surface where

the reactions occur.
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Therefore, it ignores how electrostatic potential may influence adsorption energies at double
layers - an effect that can be very significant to molecules with strong dipoles. Furthermore, it
disregards activation barriers, so the results obtained by using CHE are solely thermodynamic.

Theory of Density Functionality

The Schrodinger equation provides all the information about the energy state of every chemical
system, hence defining its properties. Because solving the Schrodinger equation is difficult for all but
the most elementary systems, like the hydrogen atom, several approaches can be used to solve it.
One of these approximations is Density Functional Theory (DFT). According to the Hohenberg-
Kohn theorem, any system’s ground-state properties are controlled by its electron density, and the
total system energy may be estimated using electron density functionals. Due to the low computing
cost and accuracy balance, DFT computational methods are popularly employed in research for
investigating molecules, solids, heterogeneous reactions, and so on (62).

DFT Analysis

To demonstrate DFT analysis, DFT calculations to get the OER’s free energy diagram on a
simple metallic surface are discussed below. OER involves the following steps:

In terms of Gibbs free energy, these stages can be described

where , are the potentials of electron and OH at standard conditions.
The free energies of O*, OH* and OOH* on the catalyst, the surface is corrected by TΔS and

ZPE (zero-point energy) and the sum of ΔG1, ΔG2, ΔG3, and ΔG4 can be calculated to be 1.608eV.
The rate-determining step is the simplest reaction with the lowest reaction free energy, whereas

the overpotential is the potential that corresponds to it (63).
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The free energy at 0 V is expressed as follows: It can be used to determine the overpotential.

The free energy relations of any chemical reaction can also be explained using above mentioned
method.

We use the famous thermodynamic equation to compute the free energy of these terms:

The following equation shows the adsorption free energy (ΔG) of products and reactants
adsorbing on catalyst surfaces.

The following equation can obtain the reactant’s adsorption free energy (ΔG) and product
molecules adsorbed on the catalyst surface. Accordingly, the enthalpy term depends on the
adsorption energies of the adsorbate on electrode surface E and the change in zero-point energy (i.e.,
the lowest possible energy that a quantum mechanical system may have (ZPE)).

where

• ΔEi indicates the adsorption binding energy,
• ΔZPEi, The ZPE of each species of adsorbate or free molecule, is calculated based on its

vibrational frequency,
• T represents the temperature,
• ΔSi denotes the change of entropy.

Because the contribution of an adsorbed species is negligible, as ΔSi for ∗, OH*, O*, OOH* is
0eV, entropic terms can be found in thermodynamic tables. DFT calculations employing vibrational
characteristics can yield zero-point energies.

The energy of the entire system is calculated using DFT calculations. Surface OH adsorption on
water (H2O and H2) results in an energy change that may be measured using E (OH)* and a gas-
phase reference system’s total energy (E). The free energy change for each intermediate of the OER
reaction is then calculated similarly, and the free energy plots can be generated from that data.

Calculating the Free Energy Diagram at Various Potentials

An eU term for each reaction step can be used to calculate the diagram at various potentials from
CHE model’s free energy plots at 0 V.

Thus, free energy diagrams at various applied potentials can be calculated. DFT is used to predict
new catalysts based on this.

Sabatier Principle

According to the Sabatier principle, heterogeneous catalysis uses quality concepts developed by
chemist Paul Sabatier. A catalyst should interact with a substrate that is “just right”; that is, it should
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not be too weak or too strong. When interactions are weak, molecules do not attach to catalysts,
and the reaction does not occur. In contrast, a strong interaction will prevent a product from being
dissociated.

Visualizing a chemical reaction versus a property such as the heat of adsorption of a chemical
reactant onto the catalyst can illustrate this principle. Since of their shape, such plots are dubbed
volcano plots because they go through a maximum and resemble an inverted parabola or a triangle.
Similar three-dimensional graphs against two separate properties, like the reacting species’
adsorption temperatures in 2 different reactions, can also be constructed. In that situation, the plot
is known as a volcano surface and is typically displayed as a contour plot. Balandin is the creator of
volcano plans (62, 64).

The volcano map in Figure 5 depicts the breakdown of formic acid using several transition
metal catalysts. The heat of synthesis (Hf) of the metal format salt was employed as the x-axis in
this example because tests confirmed that the intermediate chemical reaction was a surface format.
To maintain the traditional “volcano” shape, the y axis is plotted reverse to represent the specific
temperature at which the chemical reaction reaches the specified rate. Due to the slow rate of
adsorption when ΔHf is low (To put it another way, higher temperatures are needed), the chemical
reaction is slow (To put it another way, higher temperatures are needed). The desorption process
becomes rate-limiting at high values of ΔHf. ΔHf is an intermediate value for the maximum rate in
the platinum group metals in this case, with the rate a result of the combination of absorption and
desorption rates.

Figure 5. Formic acid volcano plot in the presence of transition metals. Reproduced with permission from
reference (62). Copyright 2015 Elsevier.

Volcano Curves in Electrochemistry

The plot between the exchange current density and hydrogen’s binding energy is known as
Sabatier or volcano curves for the HER. Sabatier (65) pointed out that while some bonding is
required for catalysis, significant bonding with the catalyst would block the surface and impede the
reaction. When developing novel catalysts, the Sabatier principle is crucial. According to the Sabatier
principle, the best HER catalysts have an ideal hydrogen binding energy (reactivity), as shown by
the Volcano curve. The reaction rate as a function of the strength of the intermediate-catalyst bond
generates a curve with a maximum, known as the volcano plot.
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Tafel Equation

In electrochemical kinetics, the Tafel equation is a relationship between the overpotential and
electrochemical reaction rates (Figure 6). An example of a simple, unimolecular redox process is
that the voltage differential between an electrode and a bulk electrolyte affects the electrical current
flowing through that electrode. The Tafel equation is applied to each electrode individually if an
electrochemical reaction takes place over two electrodes in half reactions. The Tafel equation for a
single electrode is as follows:

• An anodic reaction is denoted by a plus sign under the exponent, while a minus sign
denotes a cathodic reaction.

• η is the overpotential, (V)
• A is the Tafel slope, (V)
• I is the current density (A/m2)

• i0 is the current exchange density (A/m2).

Figure 6. Tafel diagram for an anodic reaction (oxidation). Reproduced with permission from reference
(66). Copyright 2019 Elsevier.

This equation’s proof and more explanation can also be found here (66, 67). The Tafel equation
approximates the Butler–Volmer equation in the scenario of |η| > 0.1
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Using the Tafel equation, the current can be expressed solely as a function of potential since the
concentrations inside the bulk electrolyte and just at the electrode are almost the same. As another
way of stating this, the electrode mass transfer rate is expected to be much higher than the reaction
rate, and the slower rates will dominate the reaction. Furthermore, the Tafel equation implies that for
a given electrode, the reverse half rate of the chemical reaction is small compared to the forward rate
of the chemical reaction.

Overview of the Terms

Exchange current describes the movement of electrons from reduced and oxidized species to the
electrode. To put it another way, the reaction rate at reversible potential is represented by current
exchange density (by definition, A zero overpotential is one where there is no overpotential by the).
Forward and reverse reactions are performed at equal rates at reversible potential, meaning there is
equilibrium in the reaction. The density of the exchange current is measured at this rate.

Experimentation is used to determine the slope of the Tafel. A single transfer of electrons is
theoretically possible when the dominating reaction mechanism is just a one-electron transfer.

Where A can be expressed as below:

Where

• λ= 2.302585= ln (10)
• kB represents the Boltzmann’s constant,
• T represents an absolute temperature,
• e represents the electron’s electric elementary charge,
• VT = kB T/e is the thermal voltage, and
• Coefficient of charge transfer (α): this value of the charge transfer coefficient must fall

within the range of zero to one.

Mass Transfer Equation in the Case of Non-Negligible Electrode Mass

To put it another way, in a broader sense
The expanded Butler–Volmer equation is deduced in the following way, based on the work of

Faulkner and Bard, Thomas-Alyea and Newman, A function of concentration and potential is used
to calculate the current (as in simple form). Although the mass-transfer rate is minimal, it has only
one consequence on the chemical process: it changes the concentrations (provided). Concentrations
depend on potential.

In another way, the Tafel formula could be written as:

Here

• ·n denotes the number of exchanged electrons, as in Nernst’s equation,
• k represents the electrode reaction rate in s−1,
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• F represents the Faraday constant,
• C represents the concentration of reactive species at the electrode surface in mol/m2,
• An anodic reaction is indicated by a plus sign under the exponent, whereas a negative sign

shows a cathodic reaction,
• R stands for the universal gas constant.

Equation in the Situation of Low Polarization Values

Another equation applies when the polarization values are low |η| ≈ V. In this scenario, the
relationship between polarization and current is usually linear (rather than logarithmic):

The linear region is known as polarization resistance because it resembles Ohm’s law formally.

Nernst Equation

The potential, as well as the redox process, are linked by the Nernst equation, which results in
zero current flow. It denotes the equilibrium potential (V) of redox reaction with zero DC flow in an
electrolytic cell solution:

Here,

• V0 stands for the standard electrode potential of redox systems,
• n represents the number of electrons involved in the unit reaction,
• R refers to the universal gas constant as opposed to resistance,
• F represents the Faraday constant.
• Activities are ared and aox and a = γc: here γ represents the activity coefficient, and c is the

concentration. When concentrations are low (when there are no interactions of an ion), γ
= 1, but at high concentrations, γ <1 is used. The half-cell potentials are also standardized
conditions, implying that another electrode is a standard hydrogen electrode.

Additionally, the Nernst concept can be applied to semipermeable membranes containing
different concentrations on the two sides.

The RT/nF factor of the Nernst equation can be substituted with a common logarithm at room
temperature instead of a natural logarithm for the Nernst equation. In this case, the Nernst equation
is:

Nernst equations assume that reactions are reversible: they should proceed reasonably quickly in
both directions. As a result, the surface’s concentration of products and reactants is maintained near
their equilibrium value. If the reaction rate of the electrode is weak in any direction, it is impossible
to reverse the reactions at the electrode surface. As a result, the Nernst equation is incorrect, and the
electrode concentration is not in equilibrium.

23
 Gupta; Noble Metal-Free Electrocatalysts: New Trends in Electrocatalysts for Energy Applications. Volume 2 

ACS Symposium Series; American Chemical Society: Washington, DC, 2022. 



Butler–Volmer Equation

The Erdey–Grz–Volmer equation, commonly known as the Butler–Volmer equation, is one
of the most fundamental electrochemical kinetics equations/relationships. A simple, one-molecule
redox reaction demonstrates why and how the voltage difference between the electrode and the bulk
electrolyte affects the current that goes through the electrode. It also takes into account the fact that
anodic and cathodic reactions can happen within the same electrode (67):

The butler-Volmer equation can be expressed as follows:

Here:

• j is the current density at the electrode, dimension: A/m2 (where j = I/S)
• j0 stands for current density exchange, dimension: A/m2

• E potential of the electrode, dimension: V
• Eeq stands for an equilibrium potential, dimension: V
• T represents the temperature, K
• z denotes the number of electrons within electrode reaction
• F represents the Faraday constant
• R is the universal gas constant
• αc stands for the charge transfer coefficient at the cathode, and it has no dimensions.
• αa stands for the charge transfer coefficient at the anode, and it does not have any

dimensions
• η is the activation overpotential (where η = E - Eeq).

Limiting Circumstances

Butler–Volmer’s equation has two limiting cases, and they have written below:

• The simplified Butler–Volmer equation can be expressed as follows:

when E ≈ Eeq, the low overpotential zone is what it’s termed (also known as polarization
resistance).

• Butler–Volmer equations simplify Tafel equations in the area of high overpotential.
• (E − Eeq) >> 0, shows the first term as dominant, while (E − Eeq) >> 0, shows the second

term as dominant.
At the cathodic reaction, E -Eeq = ac – bc log j, for E << Eeq, or
At anodic reaction, E -Eeq = aa + ba log j, for E >> Eeq
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For the Tafel equation, b and a are constants related to the chemical reaction (for a given
temperature and reaction). There are differences between cathodic and anodic constants of the Tafel
equation. The slope b of the Tafel, on the other hand, can be described as follows:

IF is the faradaic current, with IF = Ic + Ia, Ic being the cathodic current, and Ia being the anodic
current.

Applications

Water Splitting

Hydrogen can be produced as a clean energy source by splitting water into H2 and O2 on a
semiconductor photocatalyst. Heterogeneous photocatalysts for water splitting have been developed
from various materials. As shown in Figure 7, there are three stages to the water splitting reaction:
(1) The photons are absorbed by a semiconductor photocatalyst, which then releases electron-hole
pairs. To transfer the generated carriers to the semiconductor surface, (2). Three, electrons and holes
can reduce and oxidize H2O. Cocatalysts made from deposited metal or metal oxide nanoparticles
on the surface of the semiconductor photocatalyst aid in the final step, which consists of the hydrogen
evolution reaction (HER) and the oxygen evolution reaction (OER) (68).

For instance, it is widely known that adding Pt nanoparticles to the surface of various
photocatalysts, such as TiO2 and SrTiO3, can improve the HER. Such surface properties can also
improve the OER. To increase the overall effectiveness of photocatalytic water splitting, it is essential
to create nanoparticle cocatalysts.

Figure 7. Pictorial representation chemical reaction of the water splitting. Reproduced with permission from
reference (68). Copyright 2020 Elsevier.

Water-splitting has recently developed as a novel method for producing H2 since it employs
renewable and abundant natural energy sources, such as water and sunlight, to reduce CO2 emissions
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and produce H2 in its pure form compared to industrial production using fossil fuels. Water splitting
is a chemical reaction that decomposes water into oxygen and hydrogen through natural breakdown
(Figure 8). The H-O-H bond cleavage energy is obtained from several power sources such as
electrical, thermal, and light. Water-splitting can be expressed in a chemical equation as follows

Figure 8. Pictorial representation chemical reaction of the water splitting.

Water splitting is accomplished by the oxygen evolution reaction (OER) at the anode and the
hydrogen evolution reaction (HER) at the cathode. The mechanics of these reactions are described
in the section below.

Oxygen Evolution Reaction

Oxygen evolution reaction (OER) is one of the essential processes. It involves the transfer of four
excitons and is why the PEC water splitting process moves more slowly. O*, HO*, and HOO* are
the primary intermediates found in the OER. In OER reaction, M-O bonding interaction stabilizes
reaction intermediates Hydrogen from photo electrocatalytic water splitting on the surface, which
affects water splitting efficiency (69). The mechanism of the OER reaction in an acidic medium
(Figure 9A) can be written as:
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In alkaline medium (Figure 9):
Cathodic reaction:

Anodic reaction:

Figure 9. Pictorial representation chemical reaction of the water splitting. Reproduced with permission from
reference (69). Copyright 2019 Elsevier.

Metal oxide catalysts such as perovskites, RuO2, IrO2, IrOx / SrIrO3, Ni-oxides, Co-oxides,
Mn-oxides, and others like tertiary oxyhydroxides are the well-known electrocatalysts for the OER.
Similar to HER, a volcano-type relationship (Figure 9B) can be arrived at for OER reaction using
(ΔGO* − ΔGHO*) as a descriptor. The fundamental overpotential of the reaction could circumvent
by stabilizing the HOO* concerning HO* intermediate on the catalyst surface.

Hydrogen Evolution Reaction

The process of producing hydrogen through water electrolysis is known as the hydrogen
evolution reaction. Two semi-reactions in electrochemical water splitting are the oxygen evolution
reaction (OER) at the anode and the hydrogen evolution reaction (HER) at the cathode. The
following equations represent HER on the cathode.
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One electron migrates to the electrode’s surface in acidic solutions and simultaneously decreases
one proton, resulting in adsorbed hydrogen atom Hads (H+ + e− → Hads). Because the proton
content in the electrolyte is so low in neutral/alkaline solutions, Hads can only be produced by

reducing water molecules with the transmitted electron. (H2O + e− → Hads + OH−). Tafel reaction
occurs when two adjacent Hads combine to form one molecule of H2 on the electrode’s surface.

Tafel reaction

HER moves more slowly in alkaline than in acidic media. This is because both the anode (OER)
for electrolysers operating under acidic conditions and the cathode (HER) for electrolysers operating
under alkaline conditions host the water dissociation half-cell reaction. Three key factors determine
HER activity: i) the type of proton donors, such as water or hydronium; (ii) the energetics of the
activated complex that produces H2; and (iii) the availability of active sites for the reaction as
expressed by (1 − Σ θi), θ where is the amount of surface that is covered by adsorbed intermediates.
A slow water dissociation process has been proposed to limit the HER kinetics in alkaline solutions.
In contrast, the rapid dissociation of the hydronium ion in acid does not restrict HER in acidic media.

HER reaction pathways are easier to understand than OER because they only involve two
electrons instead of OER’s four. The catalyst surface typically doesn’t experience significant changes,
such as oxidation or restructuring, as seen in the potential range of OER, because of the reducing
environment or low potential. Some catalysts under HER do experience changes brought on by H
insertion and hydride formation.

Electrochemical Fluorination or Electro Fluorination

In industrial, organ fluorine compounds are essential. The fluorinating agents are used to
determine the technique of preparation. The production of fluoro-organic chemicals by
electrochemical fluorination is a standard industrial process. Two Electrochemical fluorination
(EFC) synthesis methods have been commercialized and are widely used. They are Simon’s process
and the Phillips Petroleum process.

In Simon’s chemical reaction process, Organic molecules are fluorinated at the anode of an
electrochemical cell, commonly nickel, after being dissolved in anhydrous hydrogen fluoride (AHF).
Fluorine substituted for all hydrogen atoms and saturated all carbon-carbon multiple bonds.
Individual reactions can be described as follows

Here R3C–H is an Organic molecule, HF is hydrogen fluoride, R3C–F is an Organ fluorine
compound and H2is a hydrogen gas.

The Phillips Petroleum process is similar to the Simons Process but is used to prepare volatile
and chlorohydrocarbons. In the Phillips Petroleum chemical process, Electro fluorination is carried
out in molten potassium fluoride in hydrogen fluoride at porous graphite anodes.
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Hydro Dimerization of Acrylonitrile

Hydro dimerization is an organic reaction in which two alkenes combine to form a symmetrical
hydrocarbon. When the reaction is carried out electrochemically, it is called electro dimerization.
The organic compound acrylonitrile has the formula CH2 = CHCN Acrylonitrile (CH2=CHCN) is
a poisonous, colorless, pale-yellow liquid that is toxic to the eyes, skin, lungs, and nervous system.
It has been linked to cancer. Exposure to acrylonitrile may cause harm to workers. Acrylonitrile is
widely used in manufacturing rubber, resins, plastics, elastomers, synthetic fibers, and carbon for
aircraft, defense, and aerospace applications.

Chlor-Alkali Process

Sodium hydroxide is formed when electricity is passed through an aqueous sodium chloride
solution. The procedure is known as the chloralkaline alkali process. In this process, a sodium
chloride aqueous solution is called “brine.”

In the Chlor-alkali alkali process, the anode produces chlorine gas, whereas the cathode
produces hydrogen gas. The anode’s chlorine evolution reaction (CER), the cathode’s hydrogen
evolution reaction (HER), and the electrolyte’s NaOH production are all chlor-alkali processes.
Chlorine has been utilized in a variety of applications, including the production of building products
like polyvinyl chloride, organic synthesis, metallurgy, water treatment, and titanium dioxide
production: membrane electrolytic cell technology. Currently, approximately 81% of global Chlor-
alkali capacity.

Types of Metal-Based Electrocatalysts

Pt on a carbon support, Pt alloys, and transition metals are all examples of electrocatalysts
utilized in fuel cell technology.

Noble-metal-based compounds are the most practicable electrocatalysts at this time in
technology. The downsides of noble metal-based catalysts are the high cost, limited availability,
susceptibility to pollutants, inadequate selectivity, poor durability, negative environmental
consequences, and Pt dissolution. Effective, stable, and benchmark electrocatalysts are required to
increase the electrochemical reaction of HER, ORR, and OER for energy applications. Different
types of metal-based catalysts are shown in Figure 10.

Recent Advances in Electrocatalysts Based on Non-Noble Metals for
Energy Applications

Fuel cells and transition metal-air batteries, which convert inefficient fossil fuels into clean and
sustainable energy, are valuable technologies for storing and converting energy due to the depletion
of fossil fuels, increasing energy demand, and mounting environmental concerns (8). In rechargeable
metal-air batteries, both oxygen reduction reactions (ORR) and oxygen evolution reactions (OER)
require catalysts; thus, integrating these energy technologies into our daily lives is a challenge (19).
Historically, platinum-carbon catalysts (Pt/C) have been thought to be the best catalyst for ORR,
but the material is subject to several drawbacks, like CO poisoning, time-dependent drift, and fuel
crossover (12, 70). Metal oxides (such as RuO2, MnO2, and perovskite oxides) have, on the other
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hand, been extensively investigated as OER electrocatalysts. Due to higher costs and shorter lifespans
of noble metal and its oxide catalysts, fuel cells and transition metal-air batteries have not yet reached
commercial maturity. Because of this, large-scale practical deployments of transition metal-air
batteries and fuel cells will be impractical until expensive noble metal, and metal oxide
electrocatalysts for OER/ORR can be replaced with more low-cost, durable and efficient materials.

Figure 10. Flow chart of different types of metal-based electrocatalysts.

Electrocatalysts Based on Carbon for Energy Applications

Many research groups have developed a new class of low-cost, metal-free ORR/HER and OER
catalysts based on carbon nanomaterials (for example, 1D CNT, 0D fullerenes, 3D graphite as well
2D graphene) which have been shown to act as economically efficient HER/ORR as well OER
electrocatalysts in addition to the comprehensive research effort to develop non-noble metal catalysts
to replace noble metal catalysts for Carbon-based-nanomaterials doped and co-doped with a variety
of heteroatoms (e.g., I, B, N, S, P, Cl, and Br ) have also been found to have considerable catalytic
activity (71–74). Researchers have also shown that carbon-based nanomaterials can act as single
active or functional metal-free catalysts in OER, ORR, HER, and even triiodide to iodide reductions
that are important to transition metal-air batteries, fuel cells, water splitting to the generation of fuel,
and dye-sensitive solar cells.

For high-performance electrolysis, nanocarbon nanoarchitectures with well-defined porous
networks and large surface areas are particularly attractive. Research on metal-free carbon-based
catalysts represents breakthroughs in this emerging field, removing bottlenecks in developing cheap-
cost, carbon-based catalysts and adding new possibilities for generating and storing clean energy
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using cheap and long-lasting transition metal-air batteries and fuel cells (75). Utilization of metal-
free carbon-based catalysts will almost certainly result in better lower emissions, fuel economy,
and a reduction in dependence on petroleum. In the near future, this can significantly improve
our daily lives. Carbon-based catalysts have recently been the subject of numerous theoretical and
experimental studies resulting in this topic’s development to a point where a critical assessment of its
benefits and expectations for its future development is needed.

Recent Development in Carbon Nanomaterial-Based Electrocatalysts

The following are a few innovative ways that several research groups have devised to achieve a
high catalytic activity in carbon nanomaterial-based electrocatalysts. We won’t go into detail about
these tactics here; instead, read (76–82) to learn more about current developments in carbon
nanomaterial-based electrocatalysts for energy applications.

• Heteroatom-doped carbons (83)
• Heteroatom-doped CNTs (83, 84)
• Heteroatom-doped graphene (74)
• Heteroatom-doped 3D carbon nanostructures (85)

Conclusion

Since electrocatalysis for HER was reported in 1920, the subject has sparked curiosity and found
many forefronts applications, including industrial production, chemical sensors and green energy
generation, which has brought hydrogen fuel cell automobiles out of a lab and into reality. Fuel cells
have efficiently addressed clean energy requirements in transportation applications. Electrocatalysts
play a vital role in HER, ORR and OER, which are essential for various applications like water
splitting devices and fuel cells. An electrocatalyst is a catalyst that accelerates reaction kinetics by
reducing activation energy without being consumed in the electrochemical processes. It may operate
on electrode surfaces or is employed as an electrode surface in some situations. Selecting appropriate
electrocatalysts and tailoring their characteristics demands evaluating their stability, selectivity and
activity. Experiments have suggested that a catalyst’s geometric/electronic structure and catalytic
activity are highly correlated. This knowledge of the structure-activity relationship is essential in
synthesizing new electrocatalytic highly efficient materials. DFT computational methods are
employed in research to calculate the properties of atomic systems for the investigation of molecules,
solids, heterogeneous reactions and electrocatalytic activities. Noble metals like Ir (iridium), Pd
(palladium), Pt (platinum), and oxides of metals are used initially in electrocatalysis. However, to
keep costs down, researchers invested in developing electrodes with metal-free and Pt-free catalysts
to replace precious metals and their oxides while still retaining efficiency. This investigation has
led to a breakthrough with the advent of materials like nanostructured materials, graphene and its
composites and thin film-based electrocatalysts. However, the details of the reaction mechanism
and relation between structural and electrical properties to its catalytic activity are not yet well
understood and are the subject of active research. This chapter introduces the principles of catalysis
in electrochemistry and the historical developments in electrochemistry and electrocatalysis that
lead to the present-day understanding of the subject. It also briefly reviews fundamental ideas and
theories essential to understanding and further investigating the mechanism of the electrocatalyst. It
also explores various applications and discusses the present research trends in the field.
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