Optical methods in chemistry
or
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Course layout — contents overview and general structure

e Introduction and ray optics

e \Wave optics Todays learning goal:

® Beams
Understanding cavities and the

* From cavities to lasers principles of lasers

e More lasers and optical tweezers

e From diffraction and Fourier optics

e Microscopy

e Spectroscopy

e Electromagnetic optics

e Absorption, dispersion, and non-linear optics
e Ultrafast lasers

e Introduction to x-rays

e X-ray diffraction and spectroscopy

e Summary



Optical resonantors (“cavities”)

Alfred Perot
(1863-1925)
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Fabry-Perot Resonator

Idea: Trap light between highly reflective mirrors




Properties of the Fabry Perot Resonator




Ideal vs real resonator — real is with losses




Spherical Resonator
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Gaussian Beam Resonator

Laguerre-Gaussian modes




Note: There are many other possible cavity configurations!




Application Note: Cavity Ring Down Spectroscopy

* Absorption spectroscopy guided by Beer-Lambert-Law

* What do to for samples with weak absorption / weak transitions?

e Solution: Use a
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Homework Reading: Cavity Ring Down Spectroscopy

* |dea: Instead of measuring absorption

View Article Online / Journal Homepage / Tab

measure decay time Cavity ring-down spectroscopy

Martyn D. Wheeler, Stuart M. Newman, Andrew J. Orr-Ewing{ and Michael N. R. Ashfold
School of Chemistry, University of Bristol, Cantock’s Close, Bristol, UK BS8 1TS
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Fig. 2 Schematic diagram of the CRD apparatus at Bristol. Abbre-
viations in the figure are: photomultiplier tube (PMT), voltage-to-fre-
quency converter (V-F) and irises (I) used to assist cavity alignment.
The iodine cell and etalon provide accurate calibration of the laser
wavelength.

PMT response

—

time -
Fig. 3 Schematic diagram of the expected response of the photomul-
tiplier tube to a train of laser pulses leaking through one cavity end
mirror after successive cavity round trips. Also shown is the exponen-
tial envelope arising from smoothing of the pulse train by the time
response of the experimental detection apparatus.

J. Chem. Soc., Faraday Trans., 1998, Vol. 94 339
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Example spectra
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Fig. 8 CRD spectrum (bottom) and simulation (top) of the A 2X*~X 2IT (1, 0) band of SH. The combs above the spectra indicate rotational line
assignments. The simulation includes a Lorentzian component to the rotational linewidths of 1 cm™ because of lifetime broadening.
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And now, towards lasers
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Spectral radiance (KW - sr=1- m=2. nm1)

Black body radiation: Energy is quantized
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Classical theory (5000 K)
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e Stefan Boltzmann Law

* Wiens displacement law

* Plancks law (Nobel prize 1918)
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Photoelectric effect

* Einstein Nobel prize 1921

 Light has particle nature

Photoelectric Effect

The Particle Nature of Light
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Bohr model and Rydberg atoms

Bohr model: semiclassical approach
Nobel pize 1922

Dense nucleus with surrounding
electrons

Discrete energy states

A lot of shortcomings but works

Rydberg atom:
excited states in Bohr model
Principle quantum numbers n

Transition under emission / absorption of
photon

Balmer series of hydrogen
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Fermis Golden Rule

* Full quantum mechanical description of the atom (not here)
* Fermi Golden Rule describes transition probability between levels

* Including selection rules
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Absorption, energy level diagram
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Absorption, emission, stimulated emission - overview

Spontaneous Stimulated
emission Emission

(Stimulated)
absorption
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Spontaneous emission

Spontaneous
emission

Energy difference is emitted as photon
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Stimulated emission

Spontaneous
emission

Stimulated
Emission

One photon with hv simulates another
transition

The second photon is identical in direction,
frequency, phase and polarization
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Absorption

(Stimulated)
Absorption

* The photon stimulates from lower to higher state
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Atoms (systems) in thermal balance

In thermal balance the lower population is always higher than that of the upper population
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Fundamental concept of laser
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Note: The gain must always be higher than the losses!
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2, 3, 4 level systems

2 level system

3 level system

4 level system
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Fundamental concept of laser oscillator:
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Note: The gain must always be higher than the losses!
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Lasers and laser cavities

Atomic lines vs cavity modes
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Atomic
transition

Cavity modes
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Mode selection

27



The Ruby laser
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https://www.youtube.com/watch?v=yV09p5LY7GA

The end.
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Fabry Perot Interferometer

Na D line:
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