Optical methods in chemistry
or
Photon tools for chemical sciences

Session 2:



Course layout — contents overview and general structure

e Introduction and ray optics

e \Wave optics

® Beams

e From cavities to lasers

e More lasers and optical tweezers

e From diffraction and Fourier optics
e Microscopy

e Spectroscopy

e Electromagnetic optics

e Absorption, dispersion, and non-linear optics
e Ultrafast lasers

e Introduction to x-rays

e X-ray diffraction and spectroscopy
e Summary

Todays learning goal:

Repeat fundamentals of wave optics




Much exciting science — but you need to know some basics

Main source for next topics

FUNDAMENTALS OF

PHOTONICS

Second Edition

B.E. A. Saleh
M. C. Teich




Wave optics

Last week: Ray optics which is limit of wave optics for infinitesimally short wavelength.

Christiaan Huygens (1629-1695) advanced Thomas Young (1773-1829) championed the
several new concepts concerning the propaga- wave theory of light and discovered the princi-
tion of light waves. ple of optical interference.



Postulate of wave optics

> Light propagates in the form of waves, in vacuum light travels with c,.

» An homogenous transparent medium is characterized by a single constant, the refractive index
n>=1. In the medium light travels with reduced speed c = c,/n.

» An optical wave is described by a wave function u(r,t) at position r and time t.



Wave function

The wave function satisfies the (partial) differential equation

Laplace operator in cartesian coordinates

The principle of superposition applies, i.e., if ul and u2 are optical waves then

Also represents an optical wave



Optical frequencies and wavelengths
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Optical intensity, power, energy

* The optical intensity I(r,t) is the optical power per unit area.
* The unit is Watts/cm?
* average of the squared wave function.

* The optical power (in units of Watts) flowing into an area A normal to the direction of
propagation is the integrated intensity

* The optical energy (in units of Joules) in a given time interval is the integral of the optical power
over the time interval



Simple example: Monochromatic wave

* For a monochromatic wave the, the wave function reduces to

With:
 The amplitude and phase are generally position dependent

* Representation of a monochromatic wave
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Simple example: Monochromativ wave but as complex wave function

* A monochromatic wave can be explained by complex wave function

* This general description satisfies the

Helmholtz equation:

With wavenumber k =
* Note intensity:

* Monochromatic wave intensity is (complex amplitude)?
* Intensity does not vary in time

* Note: Wavefronts are surfaces of equal phase

10



Simple example: Monochromatic wave

* For a monochromatic wave the, the wave function reduces to

With:

 The amplitude and phase are generally position dependent

* Representation of a monochromatic wave
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Special case: plane wave
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Plane waves: wavefronts are parallel planes perpendicular to k and separated by A

For graphical animations visit https://en.wikipedia.org/wiki/Sinusoidal plane wave
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https://en.wikipedia.org/wiki/Sinusoidal_plane_wave

Special case: spherical wave

Spherical waves: wavefronts are concentric spheres separated by A=2m/k

For graphical animations visit https://en.wikipedia.org/wiki/Wave equation#Spherical waves 13



https://en.wikipedia.org/wiki/Wave_equation

Special case: Fresnel approximation
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e Spherical wave close to z-axis but far away from origin
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Special case: Fresnel approximation
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Comment: Taylor series
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From ray to wave optics

What happens after focal point?
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Wave optics and simple optical components




Interference of two waves

When two monochromatic waves with complex amplitudes U, and U, are superimposed, the result
ia @ monochromatic wave of the same frequency that has a complex amplitude

U(r) = Uy(r) + Uy(r)

The intensity of the resulting wave is:

Resulting in the interference equation:
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Interference: Some examples
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Interferometer, example Michelson

Nice demonstration: https://www.youtube.com/watch?v=j-u3lEgcTiQ
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https://www.youtube.com/watch?v=j-u3IEgcTiQ

Guess what this is? Or: How precise can interferometers be?
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An ultrafast example: transient grating spectroscopy

Interfering pulse 1,

Interfering pulse 2 /

Source: Fermi FEL at Elletra
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Optical beating

e Optical wave composed of two monochromatic waves

* Intensity of this wave is
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* Note: known as light beating, optical mixing, heterodyning, and others

24



10
9
8
7

© o} < (9p) Al

(‘n°e) pjey oLyo8|e

Now do this with many frequencies — short pulse
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Pulsed light

* Formal description: Add time varying complex envelope A(t) to wave function
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Excursion: High-intensity lasers
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The end.
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