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Course layout – contents overview and general structure
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• Introduction and ray optics

• Wave optics

• Beams

• From cavities to lasers

• More lasers and optical tweezers

• From diffraction and Fourier optics

• Microscopy

• Spectroscopy

• Electromagnetic optics

• Absorption, dispersion, and non-linear optics

• Ultrafast lasers

• Introduction to x-rays

• Summary



Ray optics and basic optical components
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Postulate of ray optics

➢ Light travels in form of rays

➢ Rays are emitted by a light source and can be observed when they reach an optical detector

➢An optical medium is characterized by a quantity n>=1 called refractive index with

➢ n = c0/c  and c = speed of light

➢ Time for traveling a distance d takes: 

➢ nd is called the optical path length

➢ In an inhomogeneous medium the refractive indes n(r) depends on r(x,y,z)

➢ Optical path length expressed as integral:

➢ Time to travel from A to B is proportional to othe optical path length  
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Fermat’s principle

Optical rays traveling between two points A and B follow a path such that the time of travel (that is 
optical path length) between the two points is at an extremum (usually minimum)

In other words: Light travels along the path of least time
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In homogenous media this results in Hero’s principle

Hero’s principle: The path of minimal time is also the path of minimal distance.

Or in other words: Light travels in straight lines. Lets try it, draw an image of 
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Shadow Projection Pinhole



Reflection from a mirror

The reflection lays in the plane of incidence.

The angle of the reflection                     the angle of incidence
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Snell’s law – reflection and refraction at the boundary of two media

At the boundary of two media with n1 and n2 the incident ray is split in two beams:

 a reflected and a refracted beam

 

                          𝑛1 sin𝜃1 = 𝑛2 sin𝜃2 Snell’s law

or                         
𝑛1

𝑛2
=

sin 𝜃2

sin 𝜃1

Important note: the proportion of the reflected and refracted light beams are not described by Ray optics
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Snell’s law based on what we have learned so far

• Same time means same distance travelled, t= const

• From geometry: sin

• Relation: 

• Results in Snell’s law
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➢External refraction n1<n2 – refracted ray bends away

➢ Internal refraction n1>n2 – refracted light bends towards boundary

Optical boundaries
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A

➢Total internal reflection

➢Use for optical fibers

n1 < n2

A

n1 > n2



Some optical components

• Ellipse – elliptical mirror reflects all light emitted in one focal point into another focal point

• Parabola – a parabolic mirror focuses parallel light into one point
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Recall: Focusing properties of a lens (ray optics)
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Reminder: Our eye as an optical system
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This makes laser radiation so 
dangerous to eye: parallel 
beams give perfect focus

When designing optical systems (microscopes) 
need to consider eye as optical element.

Nowadays eye is typically replaced by camera 
which is also an imaging system.



Magnifying glas: a simple optical element
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The microscope – a classical view
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Principle:
Objective forms intermediate image
Eyepiece looks at and magnifies intermediate image

Magnification:



More extensive and more realistic schematic:
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Microscope variations: Confocal microscope

Source: Olympus 17



Light going through a lens:

• Ray optics
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• Momentum vectors



Now: Not a lens but a small particle in a (homogenous) light field
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Some boundary conditions:
• Optically thicker sample in optically 

thinner medium
• Transparent sample, i.e., negligible 

scattering and reflection compared 
to transmission

Process: 
• Rays are refracted, leading to 

momentum change
• Action equals reaction, sphere is 

pushed …………wards 
• With equal illumination there is……



But we learned: Laser beam has a Gaussian beam profile. More intense in center!
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Now before and after focus
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Particle before to focus Particle behind to focus



Waves, wavefronts, interference and diffraction
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Postulate of wave optics

➢Light propagates in the form of waves, in vacuum light travels with co. 

➢An homogenous transparent medium is characterized by a single constant, the refractive index 
n>=1. In the medium light travels with reduced speed c = c0/n.

➢An optical wave is described by a wave function u(r,t) at position r and time t.
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Wave function

The wave function satisfies the (partial) differential equation

___________ Laplace operator in cartesian coordinates

The principle of superposition applies, i.e., if u1 and u2 are optical waves then

Also represents an optical wave
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Optical frequencies and wavelengths
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Source: wikipedia



Optical intensity, power, energy

• The optical intensity I(r,t) is the optical power per unit area.
• The unit is Watts/cm2

• average of the squared wave function. 

• The optical power (in units of Watts) flowing into an area A normal to the direction of 
propagation is the integrated intensity

• The optical energy (in units of Joules) in a given time interval is the integral of the optical power 
over the time interval
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Simple example: Monochromatic wave

• For a monochromatic wave the, the wave function reduces to

With:

• The amplitude and phase are generally position dependent

• Representation of a monochromatic wave
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Simple example: Monochromativ wave but as complex wave function

• A monochromatic wave can be explained by complex wave function

• This general description satisfies the

Helmholtz equation:

With wavenumber k =

• Note intensity: 

• Monochromatic wave intensity is (complex amplitude)2

• Intensity does not vary in time

• Note: Wavefronts are surfaces of equal phase
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Special case: plane wave
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Plane waves: wavefronts are parallel planes perpendicular to k and separated by  

For graphical animations visit https://en.wikipedia.org/wiki/Sinusoidal_plane_wave

https://en.wikipedia.org/wiki/Sinusoidal_plane_wave


Special case: spherical wave
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Spherical waves: wavefronts are concentric spheres separated by =k 

For graphical animations visit https://en.wikipedia.org/wiki/Wave_equation#Spherical_waves

https://en.wikipedia.org/wiki/Wave_equation


Special case: Fresnel approximation

• Spherical wave close to z-axis but far away from origin
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From ray to wave optics
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What happens after focal point?



Wave optics and simple optical components
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Interference of two waves

When two monochromativ waves with complex amplitudes U1 and U2 are superimposed, the result 
ia a monochromatic wave of the same frequency that has a complex amplitude
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U(r) = U1(r) + U2(r) 

The intensity of the resulting wave is:

Resulting in the interference equation:



Interference: Some examples
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Interferometer, example Michelson
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Nice demonstration: https://www.youtube.com/watch?v=j-u3IEgcTiQ 

https://www.youtube.com/watch?v=j-u3IEgcTiQ


The Huygens-Fresnel Principle

• Hugens: every point a wave (a luminous disturbance) reaches becomes a source of a spherical 
wave; the sum of these secondary waves determines the form of the wave at any subsequent 
time.

• Huygens-Fresnel: every unobstructed point of a wavefront serves as a source of spherical 
secondary wavelets. The amplitude of the wave beyond is the superposition of all these wavelets. 
(includes amplitude and relative phase)

37Image credits: By Lookangmany thanks to Fu-Kwun Hwang and author of Easy Java Simulation = Francisco Esquembre - Own work, CC BY-SA 3.0, 
https://commons.wikimedia.org/w/index.php?curid=16981632



Wavefronts behind slit
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Small vs. real slit Fresnel and Fraunhofer regime



Different views on Fraunhofer Diffraction (R>>D) for single slit
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Different views on Fraunhofer Diffraction (R>>D) for single slit
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Now the double slit

41Image source: wikipedia



Diffraction pattern of 2D objects – 2 examples
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Square aperture
Round aperture



Note: Babinets principle
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The diffraction pattern of an opaque body is identical to the one of a hole of the same 
size and shape except in the forward direction.

Example:

Image: wikipedia



Resolution limit of a classical optical apparatus: Remember Huygens Fresnel principle, 
diffraction at a slit, Airy rings
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Diffraction at slit / aperture Fresnel and Fraunhofer regime Airy rings of circular aperture



Resolution limit of a classical optical apparatus
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Beam optics
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Gaussian beam III

• U(r) is called a Gaussian beam
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• With the following parameters



Parameter: Intensity as function of radial distance
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Once a Gaussian – always a Gaussian!



Parameter: Intensity on beam axis
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Parameter: Beam waist
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Parameter: Depth of focus
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Parameter: Phase
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Parameter: Curvature of wavefront 
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Comparison: plance wave, spherical wave, Gaussian beam
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Some statements to remember

• A Gaussian beam transmitted through a circularly symmetric optical component remains a 
Gaussian beam

• Such optical components reshape the beam, i.e., its waist and curvature

• Focusing a collimated Gaussian beam:
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Gaussian Beam Resonator
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Laguerre-Gaussian modes
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Fourier transforms and Fourier optics
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Principle idea
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Mathematical description

• The principle idea of the Fourier analysis / transformation is that any function can be represented 
by an (infinite) series of harmonic functions. 

• The Fourier transform decomposes a function into its constituent frequencies.

60Hecht chapter 11



Examples
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Squares and composite
Gauss function



Expansion 2D
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Principle of Fourier Optics: Any wavefront can be analyzed as superposition of plane waves
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Implications
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Fourier transform of round aperture and airy pattern

65

Experiment: Diffraction pattern of circular 
aperture, Airy pattern

Theory: Fourier transform of cylinder 
or “top-hat” function



Diffraction as Fourier transform:
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Lens as Fourier transformer
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Abe image formation
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4f imaging setup
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Phase contrast microscopy
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Phase contrast microscopy

71Source: Zeiss Campus



Note: Electron microscopy
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Note on optical tricks: How to make a Gaussian beam or “Spatial Filtering”

73
https://www.edmundoptics.com/resources/application-notes/lasers/understanding-spatial-filters/

https://www.edmundoptics.com/resources/application-notes/lasers/understanding-spatial-filters/


Light as electromagnetic waves
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Welcome to EM description of light!
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James Maxwell
1831 - 1879

Familiar wave equation:



Maxwell equation in medium
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Boundary conditions at interfaces

77

Two dielectric media Dielectric and conducting media



Electromagnetic waves in dielectric media
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General

But stick with linear, nondispersive, homogenous, and isotropic media right now:



This leads to the following Maxwell and wave equations wave equations
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Complex refractive index
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Weakly absorbing media:

General:



Resonances and refractive index
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A note on wavefronts
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Characteristic fingerprints of a molecule: rotational, virbrational, electronic transitions
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Spectroscopy – different approaches
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The “classic approach” to spectroscopy
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Version 1 Version 2



Grating spectrometer
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Common use in (far) infrared spectroscopy not restricted to this regime
Note strong absorption of water, work in “dry conditions”
Excitation source can be mercury discharge lamp



Spectrophotometer
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Depending on excitation source from IR to visible to near-uv



Basics of Michelson interferometer (mono)
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Measuring an interferogram
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Sample

Detector



Example: Interferogram and spectrum of air
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Fourier spectroscopy

• Advantages
• Higher overall transmission through interferometer compared to spectrometer

• Multiplexing through use of all frequencies

• Faster acquisition times and better signal to noise ratio

• Higher accuracy for measuring mirror travel

• Limitations
• Tyipcally restricted to IR measurements

• Accuracy determined by mirror travel distance

• Video by Brooker company for modern apparatus 

https://www.facebook.com/bruker.corp/videos/o.712956095479376/10152856330318129/?type=2
&theater
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https://www.facebook.com/bruker.corp/videos/o.712956095479376/10152856330318129/?type=2&theater
https://www.facebook.com/bruker.corp/videos/o.712956095479376/10152856330318129/?type=2&theater


Raman spectroscopy (short introduction)

Raman process: Inelastic scattering of light
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Raman spectroscopy
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Optical resonators, cavities
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Fabry-Perot Resonator
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Idea: Trap light between highly reflective mirrors

Standing waves represent resonator modes



Properties of the Fabry Perot Resonator
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Ideal vs real resonator – real is with losses
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Spherical Resonator
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Lasers
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Absorption, energy level diagram
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Absorption, emission, stimulated emission - overview
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Spontaneous
emission

Stimulated
Emission

(Stimulated)
absorption



Fundamental concept of laser

Note: The gain must always be higher than the losses!
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Active medium



2, 3, 4 level systems
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2 level system

3 level system

4 level system



Fundamental concept of laser laser oscillator:

Note: The gain must always be higher than the losses!
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Active medium



Lasers and laser cavities

Atomic lines vs cavity modes
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Mode selection



The Ruby laser

For fun https://www.youtube.com/watch?v=yV09p5LY7GA 106

https://www.youtube.com/watch?v=yV09p5LY7GA


The Helium Neon Laser - HeNe
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Selected laser examples: Molecular gas laser

• Example: CO2 laser

• Output in the mid-IR region

• High-power cw laser

• Machining and medical applications

108



Selected laser examples: Excimer laser

• Excimer – ”excited dimer”

• Important for output in UV spectral region

• UV processing, medical applications

• Pulsed, high output
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Selected laser examples: Dye laser

• Tunable over large wavelength regime

• Organic dyes in solution

• High maintenance, mostly replaced by solid state lasers
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Selected laser examples: Nd:YAG
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• Neodym doped Yttrium-Aluminium-Granate

• Nd3+ ions in glass matrix

• Solid state laser

• Main line 1064 nm

• Work horse laser in many laboratories



Selected laser examples: TiSa
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• Ti3+ ions in Al2O3 (Saphire)

• Tunable, broad bandwidth

• Can provide ultrashort pulses

• Workhorse laser for ultrafast sciences



Better approach: Mode selection witn intracavity etalon
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Pulsed and Ultrafast Lasers
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A short pulse in a dispersive medium
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Pulsed lasers: Q-switching
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Short pulse needs many frequencies: Shortest pulse is Fourier transform limited pulse 
(aka bandwidth limited pulse)
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Note: Mathematical description of optical pulse
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E t( ) = A t( )e
ij t( )
eij0

A t( )

A t( ); pulse envelope

j t( ); time dependent phase of electric field

j0 ; absolute phase (typically neglected for multi-cycle pulses)

w t( ) = -
dj t( )
dt

; instantaneous frequency



Back to formal description of light as EM wave
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James Maxwell
1831 - 1879

But stick with linear, nondispersive, 
homogenous, and isotropic media right 
now:



Generalization of susceptibility  (still linear)

• Inhomogenous media

• Anisotrope media

• Dispersive media

General:

Interpretation: Dynamic relationship between  an P

•  induces bound electrons in material to oscillate

• Time-dependent Polarization density P(t)

• Time-delay between (t) and P(t)
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Non-linear optical media

Handwaving:

• Linear: restoring force of light induced fields linear (“Hookes law applies”)

• Non-linear: Light induced fields comparable to inter-atomic fields in crystal (”no more linear 
forces”)

• (Note: fields still weak compared to intra-atomic fields – that is a later topic)
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Second order non-linear optics example: Second harmonic generation
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Second order non-linear optics example: Sum frequency generation
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Second order non-linear optics example: Optical parametric devices
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Second order non-linear optics example: Description as photon interaction process
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Third order non-linear optics example: Optical Kerr Effect and Self-Focusing
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Third order non-linear optics example: Self-phase modulation
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normal refractive index time-dependent refractive index

w t( ) = -
dj t( )
dt

; instantaneous frequency

• Conceptually – consider a plane monochromatic wave

• Time-dependent index leads to time-dependent frequency

• New frequency components are generated

n



Back to lasers. Remember the problem?

128

Short pulses and cavities – how do they go together?



Mode locking
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Kerr lens from non-linear refractive index
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intensity

radial coordinate

spatial profile:

material behaves transparent material behaves as a lens

r



Resonant laser cavity
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L

Resonant modes have nodes at cavity end mirrors

Resonant wavelengths and possible frequency modes given by: 

ln =
2L

n
nn = n

c

2L

æ

è
ç

ö

ø
÷

pump laser emission



TiSaphire gain medium
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Self mode locking
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L

• Kerr Lens Effect, due to nonlinear index of refraction

• At high intensities, the gain crystal acts like a lens

• Cavity tuned so that is most efficient with the crystal behaving as a lens

• Many modes lase and automatically arrange phases for pulsed high-intensity operation

• Intra-cavity dispersion tuned to support pulsed operation

• nJ pulse energies as short as 4 fs FWHM

• Output ~100MHz repetition rate pulse train

pump laser emission

urep-rate =
c

2L

æ

è
ç

ö

ø
÷



A note on “chirp”
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transform-limited linearly chirped

Initially transform limited pulse becomes chirped upon propagation, (k2 ≠ 0, γ = 0)

z



TiSaphire oscillator setup
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Chirped pulse amplification
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X-rays

137



X-ray interactions with matter



X-ray interactions with matter
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X-ray cross sections
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Photoionization / absorption
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Ionization energies of elements
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Thomson scattering
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Atomic scattering factors and refractive index
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Now full cross section / atomic scattering factors
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Diffraction by a crystal

146



Characteristic signals from different – chemically identical – samples
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Position [°2Theta] (Copper (Cu))
20 30 40 50

Counts

0

2000

4000

0

1000

2000
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4000

0

2000

4000

 SiO2 Glass

 Quartz

 Cristobalite



The diffraction pattern of a mixture is a simple sum from each component phase

15
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Crystaline materials are characterized by the long-range order
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Lattice planes
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Miller indices
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Bragg scattering
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A single crystal (typically) produces one family of Bragg peaks for fixed geometry and 
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Why care about x-ray diffraction of crystals?
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A crystal is defined by ist lattice and basis
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Why and how does it work?

162

Remember last week:



Allowed and forbidden reflections
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Solving a crystal structure
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Powder diffraction
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Diffraction of a polycrystalline sample

168
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Diffraction signal of different sample types

169



Powder diffraction data bases for elemental analysis
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Debye-Scherrer Formula

171

Paul Scherrer
Swiss Physicist (1890-1969)



Things you may want to remember
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Back to start

173

The inventions being honoured this year have revolutionised laser physics. Extremely small objects and incredibly 
fast processes now appear in a new light. Not only physics, but also chemistry, biology and medicine have gained 
precision instruments for use in basic research and practical applications. Arthur Ashkin invented optical tweezers 
that grab particles, atoms and molecules with their laser beam fingers. Viruses, bacteria and other living cells can be 
held too, and examined and manipulated without being damaged. Ashkin’s optical tweezers have created entirely 
new opportunities for observing and controlling the machinery of life. Gérard Mourou and Donna Strickland paved 
the way towards the shortest and most intense laser pulses created by mankind. The technique they developed has 
opened up new areas of research and led to broad industrial and medical applications; for example, millions of eye 
operations are performed every year with the sharpest of laser beams.



Also in physics
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The inventions being honoured this year have revolutionised laser physics. Extremely small objects and incredibly 
fast processes now appear in a new light. Not only physics, but also chemistry, biology and medicine have gained 
precision instruments for use in basic research and practical applications. Arthur Ashkin invented optical tweezers 
that grab particles, atoms and molecules with their laser beam fingers. Viruses, bacteria and other living cells can be 
held too, and examined and manipulated without being damaged. Ashkin’s optical tweezers have created entirely 
new opportunities for observing and controlling the machinery of life. Gérard Mourou and Donna Strickland paved 
the way towards the shortest and most intense laser pulses created by mankind. The technique they developed has 
opened up new areas of research and led to broad industrial and medical applications; for example, millions of eye 
operations are performed every year with the sharpest of laser beams.

Optical tweezers: 
https://www.youtube.com/watch?v=ju6wENPtXu8

https://www.youtube.com/watch?v=ju6wENPtXu8


Recent examples of applications of light to chemistry

175

At the beginning of the twentieth century, the chemical 
foundations for life were a mystery. Today we know how many 
of the most important processes function, all the way down to 
the atomic level. The 2009 Nobel Prize in Chemistry is awarded 
for the detailed mapping of the ribosome – the cell’s own 
protein factory. The ribosome translates the passive DNA 
information into form and function. 



Recent examples of applications of light to chemistry

176

This year’s Nobel Laureate, Professor Ahmed Zewail, is rewarded for his pioneering investigations of 
chemical reactions on the time-scale they really occur. This is the same timescale on which the atoms in the 
molecules vibrate, namely femtoseconds (1 fs = 10-15 seconds). Only recently have developments in laser 
technology enabled us to study such rapid processes, using ultra-short laser flashes. Professor Zewail’s 
contributions have brought about a revolution in chemistry, with consequences for many other fields of 
science, since this type of investigation allows us to understand and predict important processes.



Last comment: Remember session 1?
Recent examples of applications of light to chemistry

177

Eric Betzig, Stefan W. Hell and William E. Moerner are 
awarded the Nobel Prize in Chemistry 2014 for having 
bypassed a presumed scientific limitation stipulating that an 
optical microscope can never yield a resolution better than 0.2 
micrometres. Using the fluorescence of molecules, scientists 
can now monitor the interplay between individual molecules 
inside cells; they can observe disease-related proteins 
aggregate and they can track cell division at the nanolevel. 



Stefan Hell: Stimulated Emission Depletion Microscope (STED)

• Based on Fluorescence Microscope

• Based on Laser Scanning Microscope

But with Important additional concepts:

Remember Gaussian, Bessel beams, focal spots

178Enjoy video: https://www.youtube.com/watch?time_continue=428&v=0NCNy6pVIZE 

https://www.youtube.com/watch?time_continue=428&v=0NCNy6pVIZE


SNOM – Scanning Near Field Optical Microscope

179

Zenobi and Deckert, Angew. 
Chemie Review, 2000
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