Optical methods in chemistry
or
Photon tools for chemical sciences



Course layout — contents overview and general structure

e Introduction and ray optics

e Wave optics

e Beams

e From cavities to lasers

e More lasers and optical tweezers

e From diffraction and Fourier optics
e Microscopy

e Spectroscopy

e Electromagnetic optics

e Absorption, dispersion, and non-linear optics
e Ultrafast lasers

e Introduction to x-rays

e Summary



Ray optics and basic optical components



Postulate of ray optics

» Light travels in form of rays
» Rays are emitted by a light source and can be observed when they reach an optical detector
» An optical medium is characterized by a quantity n>=1 called refractive index with

» n =c,/c and c = speed of light
» Time for traveling a distance d takes:

» nd is called the optical path length
» In an inhomogeneous medium the refractive indes n(r) depends on r(x,y,z)
» Optical path length expressed as integral:

» Time to travel from A to B is proportional to othe optical path length



Fermat’s principle

Optical rays traveling between two points A and B follow a path such that the time of travel (that is
optical path length) between the two points is at an extremum (usually minimum)

In other words: Light travels along the path of least time



In homogenous media this results in Hero’s principle

Hero’s principle: The path of minimal time is also the path of minimal distance.

Or in other words: Light travels in straight lines. Lets try it, draw an image of

Shadow Projection Pinhole
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Reflection from a mirror

mirror

The reflection lays in the plane of incidence.

The angle of the reflection the angle of incidence



Snell’s law — reflection and refraction at the boundary of two media

At the boundary of two media with n1 and n2 the incident ray is split in two beams:

a reflected and a refracted beam

nlsin@1 = n2 sin 62 Snell’s law
ni sin 62
or = —
n2 sin 61

Important note: the proportion of the reflected and refracted light beams are not described by Ray optics



Snell’s law based on what we have learned so far

Medium n1l

Medium n2

Same time means same distance travelled, t= const

From geometry: sin

Relation:

Results in Snell’s law



Optical boundaries

» External refraction n1<n2 — refracted ray bends away

» Internal refraction n1>n2 — refracted light bends towards boundary

nl<n2 : nl>n2

> Total internal reflection

» Use for optical fibers
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Some optical components

 Ellipse — elliptical mirror reflects all light emitted in one focal point into another focal point

e Parabola — a parabolic mirror focuses parallel light into one point

11



Recall: Focusing properties of a lens (ray optics)
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Reminder: Our eye as an optical system

A‘ Relaxed
(a) muscle

Accommodation

(b) Contracted
muscle

This makes laser radiation so
dangerous to eye: parallel
beams give perfect focus

When designing optical systems (microscopes)
need to consider eye as optical element.

Nowadays eye is typically replaced by camera
which is also an imaging system.
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Magnifying glas: a simple optical element
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The microscope — a classical view

Principle:
Objective forms intermediate image
Eyepiece looks at and magnifies intermediate image

} Eyepiece

/ ! Field stop
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More extensive and more realistic schematic:
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Microscope variations: Confocal microscope

- Photomultiplier

Detector Detector ) aser Scanning
Pinhole Confocal Microscope
Aperture — Optical
Qut-of-Focus i
Fluorescence - Light Rays Configuration
Bﬂf{éﬁr Laser
Excitation
In-Focus Source
Light Rays - |
Dichromatic —
Mirror
Objective = Li r!t Source
inhole
Aperture
Focal
Planes Figure 2

Source: Olympus
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Light going through a lens:

* Ray optics

* Momentum vectors
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Now: Not a lens but a small particle in a (homogenous) light field

Some boundary conditions:

Optically thicker sample in optically
thinner medium
Transparent sample, i.e., negligible
scattering and reflection compared
to transmission

Process:

Rays are refracted, leading to
momentum change

Action equals reaction, sphere is
pushed ............ wards

With equal illumination there is......

19



But we learned: Laser beam has a Gaussian beam profile. More intense in center!

20



Now before and after focus

Particle before to focus

Particle behind to focus

21



Waves, wavefronts, interference and diffraction

22



Postulate of wave optics

> Light propagates in the form of waves, in vacuum light travels with c,,.

» An homogenous transparent medium is characterized by a single constant, the refractive index
n>=1. In the medium light travels with reduced speed c = ¢,/n.

» An optical wave is described by a wave function u(r,t) at position r and time t.

23



Wave function

The wave function satisfies the (partial) differential equation

Laplace operator in cartesian coordinates

The principle of superposition applies, i.e., if ul and u2 are optical waves then

Also represents an optical wave

24



Optical frequencies and wavelengths
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Optical intensity, power, energy

* The optical intensity I(r,t) is the optical power per unit area.
e The unitis Watts/cm?
* average of the squared wave function.

* The optical power (in units of Watts) flowing into an area A normal to the direction of
propagation is the integrated intensity

* The optical energy (in units of Joules) in a given time interval is the integral of the optical power
over the time interval
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Simple example: Monochromatic wave

* For a monochromatic wave the, the wave function reduces to

With:

 The amplitude and phase are generally position dependent

* Representation of a monochromatic wave

\3/ W_»,

u(1) A

T=1/v

(a)

TANAT
VRVAVAIAY

t
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Simple example: Monochromativ wave but as complex wave function

* A monochromatic wave can be explained by complex wave function

* This general description satisfies the

Helmholtz equation:

With wavenumber k =
* Note intensity:

* Monochromatic wave intensity is (complex amplitude)?
* Intensity does not vary in time

* Note: Wavefronts are surfaces of equal phase

28



Special case: plane wave

e A _>I 4 |<_ u(x» 2, tl)

ulx, z, 1)
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Plane waves: wavefronts are parallel planes perpendicular to k and separated by A

For graphical animations visit https://en.wikipedia.org/wiki/Sinusoidal plane wave 29



https://en.wikipedia.org/wiki/Sinusoidal_plane_wave

Special case: spherical wave

Spherical waves: wavefronts are concentric spheres separated by A=2m/k

For graphical animations visit https://en.wikipedia.org/wiki/\Wave equation#Spherical waves 30



https://en.wikipedia.org/wiki/Wave_equation

Special case: Fresnel approxima
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From ray to wave optics

What happens after focal point?
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Wave optics and simple optical components




Interference of two waves

When two monochromativ waves with complex amplitudes U; and U, are superimposed, the result
ia @ monochromatic wave of the same frequency that has a complex amplitude

U(r) = Uy(r) + Uy(r)

The intensity of the resulting wave is:

Resulting in the interference equation:

4

1| +12
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| | |
4mw 2w 0 2w 47 2]
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Interference: Some examples
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Interferometer, example Michelson

Nice demonstration: https://www.youtube.com/watch?v=j-u3IEgcTiQ
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https://www.youtube.com/watch?v=j-u3IEgcTiQ

The Huygens-Fresnel Principle

* Hugens: every point a wave (a luminous disturbance) reaches becomes a source of a spherical
wave; the sum of these secondary waves determines the form of the wave at any subsequent
time.

* Huygens-Fresnel: every unobstructed point of a wavefront serves as a source of spherical
secondary wavelets. The amplitude of the wave beyond is the superposition of all these wavelets.
(includes amplitude and relative phase)

Image credits: By Lookangmany thanks to Fu-Kwun Hwang and author of Easy Java Simulation = Francisco Esquembre - Own work, CC BY-SA 3.0, 37
https://commons.wikimedia.org/w/index.php?curid=16981632
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Wavefronts behind slit

Small vs. real slit
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Fresnel and Fraunhofer regime
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Different views on Fraunhofer Diffraction (R>>D) for single slit
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Different views on Fraunhofer Diffraction (R>>D) for single slit
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Now the double slit

d>» x=x/d=tan(0) = sin() = sin(a’)

90

80

As=a- sin(a')=a-* x/d
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Image source: wikipedia
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Diffraction pattern of 2D objects — 2 examples

Round aperture

Square aperture

AN000000
y

(@) (b)
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Note: Babinets principle

The diffraction pattern of an opaque body is identical to the one of a hole of the same
size and shape except in the forward direction.

Example:

Image: wikipedia
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Resolution limit of a classical optical apparatus: Remember Huygens Fresnel principle,
diffraction at a slit, Airy rings

Diffraction at slit / aperture Fresnel and Fraunhofer regime Airy rings of circular aperture
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Resolution limit of a classical optical apparatus

Clearly resolved

Not resolved




Beam optics
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Gaussian beam |

* U(r) is called a Gaussian beam

e With the following parameters
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Parameter: Intensity as function of radial distance

/1o 1/1o

(b) (©

Once a Gaussian — always a Gaussian!

48



Parameter: Intensity on beam axis
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Parameter: Beam waist
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Parameter: Depth of focus
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Parameter: Phase
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Parameter: Curvature of wavefront
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Comparison: plance wave, spherical wave, Gaussian beam
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Some statements to remember

* A Gaussian beam transmitted through a circularly symmetric optical component remains a
Gaussian beam

e Such optical components reshape the beam, i.e., its waist and curvature

* Focusing a collimated Gaussian beam:
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Gaussian Beam Resonator

Laguerre-Gaussian modes

L \\ BRERER /““}.,” »
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Fourier transforms and Fourier optics
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Principle idea
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Mathematical description

* The principle idea of the Fourier analysis / transformation is that any function can be represented
by an (infinite) series of harmonic functions.

* The Fourier transform decomposes a function into its constituent frequencies.

Thus we can write

provided that

s sl TS, PRSI AT

Hecht chapter 11 60



Examples

Squares and composite

Gauss function
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Expansion 2D
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Principle of Fourier Optics: Any wavefront can be analyzed as superposition of plane waves

63



Implications
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Fourier transform of round aperture and airy pattern

Experiment: Diffraction pattern of circular Theory: Fourier transform of cylinder
aperture, Airy pattern or “top-hat” function

e = £x,)

|

(b)
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Diffraction as Fourier transform:
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Lens as Fourier transformer
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Abe image formation
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4f imaging setup
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The Nobel Prize in Physics 1953
Phase contrast microscopy

Photo from the Mobel Foundation
archive.

Frits Zernike

Prize share: 1/1

Conjugate planes

Positive Negative

I’\ 7 Phase plates

Annular diaphragm
in back focal plane Condenser
of substage L,
condenser

not shown

Figure 13.40 Phase contrast (only zeroth order shown). 20



Phase contrast microscopy

Phase Contrast Optical Train
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Rﬁ:&gd —— j———Direct Condenser
| Waves
Phase
Plate
Specimen
plg'!lane ’
(a) Q—COndenser Q
Source Stop Phase Stops :
Light Figure 3

Source: Zeiss Campus

Phase Contrast

Phase Contrast Imaging of Transparent Thin Specimens

(Thickest Ponlon)

(a) (b)
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Nucleu:
Adherent
e ~o Cell

(c)

Incident
Transmitted
— Light lllumination —

Coverslip

Figure 2
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Note: Electron microscopy

Imaging mode Diffraction mode

Electron Gun

Condenser aperture

Specimen

mag Intermediate lens
Objective lens (strength changes between two regimes)

Image Diffraction pattern
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Note on optical tricks: How to make a Gaussian beam or “Spatial Filtering”

Beom Intensity Laser Goussian
Distribution Beam Profile
—
Beam
Spot Size
Laser Singlet
(in Mounted Objective) ! Pinhole

Aperture

https://www.edmundoptics.com/resources/application-notes/lasers/understanding-spatial-filters/



https://www.edmundoptics.com/resources/application-notes/lasers/understanding-spatial-filters/

Light as electromagnetic waves
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Welcome to EM description of light!

o&
V %= 60752'
o0H
V& —,uo—at—
Vi &l =40
Vol =l
James Maxwell

1831 - 1879

Familiar wave equation:
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Maxwell equation in medium
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Boundary conditions at interfaces

Two dielectric media Dielectric and conducting media
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Electromagnetic waves in dielectric media

General

E(r,1)
—

Medium

P(r,1)

But stick with linear, nondispersive, homogenous, and isotropic media right now:

P = 6OXE”
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This leads to the following Maxwell and wave equations wave equations
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Complex refractive index

General:

Weakly absorbing media:
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Resonances and refractive index
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A note on wavefronts
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Characteristic fingerprints of a molecule: rotational, virbrational, electronic transitions
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Spectroscopy — different approaches
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The “classic approach” to spectroscopy

Version 1

Version 2
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Grating spectrometer

Common use in (far) infrared spectroscopy not restricted to this regime
Note strong absorption of water, work in “dry conditions”
Excitation source can be mercury discharge lamp

—~—— f -
Slit, S,
Source, S | - Mirror, M4
Grating, G
)etector, D I s fMirror, M,
Exit slit, S,

Figure 3.17 The Czerny—Turner grating mounting
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Spectrophotometer

Depending on excitation source from IR to visible to near-uv

Rotary solenoid

Grating
Tungsten lamp

Deuterium lamp

Toroid

Entrance slit
mirror

Paraboloid
mirror

Optical
attenuator
Toroid

; Toroid
mirror

mirror

Sampling

| o Detector
Rotating : s n

+ Sample
sector P Loi:?ld
mirror or

Figure 3.24 A typical double-beam recording visible and near-ultraviolet spectrophotometer
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Basics of Michelson interferometer (mono)
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Measuring an interferogram

Detector

Intensity

Empty Cell
o >

FT

80 40 200 0 20 40 6w
Displacement [m]

e Filled Cell
+ —

FT

Frequency [om’]

i

8000 7000 6000 S000 4000 3000 2000
Frequency [cm]

Divide

.f_j

T

Transmission
> 3 8888838

|

Frequency [cm’]

1 0



Example: Interferogram and spectrum of air
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Fourier spectroscopy

* Advantages
* Higher overall transmission through interferometer compared to spectrometer
* Multiplexing through use of all frequencies
* Faster acquisition times and better signal to noise ratio
e Higher accuracy for measuring mirror travel

* Limitations
e Tyipcally restricted to IR measurements
e Accuracy determined by mirror travel distance

* Video by Brooker company for modern apparatus

https://www.facebook.com/bruker.corp/videos/0.712956095479376/10152856330318129/?type=2
&theater
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https://www.facebook.com/bruker.corp/videos/o.712956095479376/10152856330318129/?type=2&theater
https://www.facebook.com/bruker.corp/videos/o.712956095479376/10152856330318129/?type=2&theater

Raman spectroscopy (short introduction)

Raman process: Inelastic scattering of light

Energy

Avi rtual energy
level

1st excited
vibrational state

Ground state

AE =hv, {

Rayleigh
scattering

anti-Stokes

scattering scattering

Photo from the Nobel Foundat

Slr Chandrasekhara
Venkata Raman
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Raman spectroscopy

Virtual 7y
energy
states 5
A
Vibrational
energy states
4
3
2
Y 1
f Y 0
Infrared Rayleigh Stokes  Anti-Stokes
absorption scattering Raman Raman
scattering scattering

Spectrometer

Grating

Entrance slit
| —

Beam
splitte/ Laser beam

Focussing
optics

Sample chamber

Sample

l:n::i—‘
CCD

detector

' Laser
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Optical resonators, cavities
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Fabry-Perot Resonator

Idea: Trap light between highly reflective mirrors
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Properties of the Fabry Perot Resonator
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|deal vs real resonator — real is with losses
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Spherical Resonator

Input —>

—
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Lasers
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Absorption, energy level diagram

: n=4.
' n=3.
: n=2,

5| 5
E IR N UV | Hydrogen
E Vertical scale of levels
- visible transitions

-10f !

Parahelium E Orthohelium

EV SZD : S:'I
: n=1

| i Helium
i energy

i< . levels
-25 !

0 1 2 3 0 1 2 3
Orbital angular momentum |
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Absorption, emission, stimulated emission - overview

Spontaneous Stimulated (Stimulated)
emission Emission absorption
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Fundamental concept of laser

’ —

Note: The gain must always be higher than the losses!
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2, 3, 4 level systems

2 level system

3 level system

4 level system
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Fundamental concept of laser laser oscillator:

’ —

Note: The gain must always be higher than the losses!
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Lasers and laser cavities

Atomic lines vs cavity modes

/

Atomic
transition

Cavity modes
vi2L

Mode selection
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' Absorption

The Ruby laser
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For fun https://www.youtube.com/watch?v=yV09p5LY7GA 106



https://www.youtube.com/watch?v=yV09p5LY7GA

The Helium Neon Laser - HeNe
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Selected laser examples: Molecular gas laser

Example: CO, laser

Output in the mid-IR region

High-power cw laser

Machining and medical applications
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Selected laser examples: Excimer laser

* Excimer — “excited dimer”
* Important for output in UV spectral region

* UV processing, medical applications

e Pulsed, high output
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Selected laser examples: Dye laser

* Tunable over large wavelength regime
* Organic dyes in solution
* High maintenance, mostly replaced by solid state lasers
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Selected laser examples: Nd:YAG

* Neodym doped Yttrium-Aluminium-Granate

* Nd3+ions in glass matrix

e Solid state laser
e Main line 1064 nm

* Work horse laser in many laboratories

4 9p

T e————

5/2

| cr—————

E ! 1502

L e———

O

(a)

#/em=1
] . 11502
a/2 11414

(b)
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Selected laser examples: TiSa

Ti3* ions in Al,O; (Saphire)
Tunable, broad bandwidth

Can provide ultrashort pulses

Workhorse laser for ultrafast sciences
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Better approach: Mode selection witn intracavity etalon

113



Pulsed and Ultrafast Lasers
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A short pulse in a dispersive medium
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Pulsed lasers: Q-switching
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Short pulse needs many frequencies: Shortest pulse is Fourier transform limited pulse
(aka bandwidth limited pulse)

10

electric field (a.u.)

time (fs)
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Note: Mathematical description of optical pulse

E(r)= A(r) ™" A(r)

--\./ \Z-.-
\J U U \/ U /-7 time

A (t) pulse envelope —

j(t); time dependent phase of electric field

W(l‘) = - d;l(t) ; instantaneous frequency
l

_lo ; absolute phase (typically neglected for multi-cycle pulses)
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Back to formal description of light as EM wave

o0& _>g(”) Medium ﬂi, 0E James Maxwell
Vxﬂ{=eoa fo’f=€—5t- 1831 - 1879
OH OH
ot But stick with linear, nondispersive, ot
V &= homogenous, and isotropic media right Yo &z
V¥ =0, now: V.3 =0.

P = ongv
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Generalization of susceptibility X (still linear)

* Inhomogenous media
* Anisotrope media

* Dispersive media

General:

Interpretation: Dynamic relationship between E an P
* E induces bound electrons in material to oscillate
* Time-dependent Polarization density P(t)

* Time-delay between E(t) and P(t)
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Non-linear optical media

Handwaving:
* Linear: restoring force of light induced fields linear (“Hookes law applies”)

* Non-linear: Light induced fields comparable to inter-atomic fields in crystal (“no more linear
forces”)

* (Note: fields still weak compared to intra-atomic fields — that is a later topic)

121



Second order non-linear optics example: Second harmonic generation
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Second order non-linear optics example: Sum frequency generation

Nd3+:YAG laser f 1
1.06 pm [
Proustite crystal
m—e—
- 10.6 pm
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Second order non-linear optics example: Optical parametric devices
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Second order non-linear optics example: Description as photon interaction process

T

4\<\;
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Third order non-linear optics example: Optical Kerr Effect and Self-Focusing

Nonlinear
medium
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Third order non-linear optics example: Self-phase modulation

normal refractive index time-dependent refractive index

JVWINWWW

dj(t)
w(t) = - ; instantaneous frequency STATATRERTATESRY
dt_ '.‘ ,' '.”.’ l'.." ‘.“,' “\." '|“J :U.‘ '-“.'

e Conceptually — consider a plane monochromatic wave

* Time-dependent index leads to time-dependent frequency
* New frequency components are generated
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Back to lasers. Remember the problem?

Short pulses and cavities — how do they go together?

Energy (eV)

Ti**: Al,O, (Ti: Sapphire)

2 E T3)

O @

Pump

3.0

29

2.0

1)

1.0

0.5
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Mode locking
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Kerr lens from non-linear refractive index

intensity

spatial profile:

radial coordinate

- -

material behaves transparent material behaves as a lens
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Resonant laser cavity

pump

> laser emission

Resonant modes have nodes at cavity end mirrors
Resonant wavelengths and possible frequency modes given by:

2 c 0
I =— I
n SL

2 -1- O
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TiSaphire gain medium

energy

¥ pump

ii

2,

decay

W ow frequency, long wavelength

WW v high frequency, short wavelength

Relative Intensity

o
EREEEETREL SR

'E«

400

i sgel

500 600 700 800 900 1000
Wavelength (Nanometers)
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Self mode locking

pump / laser emission
\ y

Kerr Lens Effect, due to nonlinear index of refraction
At high intensities, the gain crystal acts like a lens
Cavity tuned so that is most efficient with the crystal behaving as a lens
Many modes lase and automatically arrange phases for pulsed high-intensity operation
Intra-cavity dispersion tuned to support pulsed operation
nJ pulse energies as short as 4 fs FWHM
Output ~100MHz repetition rate pulse train

2 c 0
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A note on “chirp”

Initially transform limited pulse becomes chirped upon propagation, (k, # 0, y = 0)

linearly chirped

transform-limited

101 107
9 9r !
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7 7r 1
1
1
1
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electric field (a.u.)
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electric field (a.u.)
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time (fs)

time (fs)
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TiSaphire oscillator setup
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Chirped pulse amplification

Initial short pulse A pair of gratings disperses

the spectrum and stretches

/\_ / - the pulse by a factor
/ of a thousand

Short-pulse oscillator

The pulse is now long l

and low power, safe
for amplification

.

High energy pulse after amplification n

.

Power amplifiers

vl &

Resulting high-energy,
ultrashort pulse

A second pair of gratings
reverses the dispersion of the
first pair, and recompresses the pulse.
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X-rays
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X-ray interactions with matter



X-ray interactions with matter

Incident x-ray Auger/photo-
photon secondary electrons
Inelastic scattering Elastic scattering
(Compton) (Thomson)
. 0 . . . 0
surface
L Fluorescence
bulk

.
.

Transmitted
photon
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X-ray cross sections
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Photoionization / absorption

Fluorescence Auger emission
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1s binding energy [eV]

lonization energies of elements
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Table 1-1. Electron binding energies, in electron volts, for the elements in their natural forms.

Element Kls Ly2s La2py2  L32pip M 3s M23py2  M33piz Mg3ddiz, Ms3ddsp Ny ds N2 4p12
1 H 136

2 He 24.6*

3 Li 54.7*

4 Be 111.5*

5B 188*

6 C 2842%

TN 4099+ 37.3*

80 543.1* 41 .6*

9F 696.7*

10 Ne 870.2* 48.5* 21.7* 21.6*

11 Na 107081 635t 30.65 30.81

12 Mg 1303.0% 887 4978 49.50

13 Al 1559.6 1178 7295 7255

14 Si 1839 149.7*b 99.82 9942

15 P 21455 189* 136* 135#*

16 § 2472 2309 163 6* 162.5*

17 Cl 28224 270* 202+ 200*

18 Ar 32059* 326.3* 250.6t1 248 4* 29.3* 15.9* 15.7*
19 K 3608.4* 378.6* 297.3* 294 6* 34.8% 18.3* 18.3*
20 Ca 4038.5* 43841 3497t 346.2% 443 254¢ 254+
21 Sc 4492 498.0* 403 6* 398.7* 51.1* 28.3* 28.3*
22 Ti 4966 56091 46021 453 8t 587t 326t 32.6t
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Thomson scattering

E-field
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Atomic scattering factors and refractive index
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Now full cross section / atomic scattering factors
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Diffraction by a crystal
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Characteristic signals from different — chemically identical — samples

Counts

SiO2 Glass
4000 -
2000

4000 - Quartz
3000
2000
1000 ~

Cristobalite
4000

2000 ~

20 30 40 50
Position [°2Theta] (Copper (Cu))
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The diffraction pattern of a mixture is a simple sum from each component phase

Quartz

Mixture

| Cristobalite

T T T T T T T T T | T T T T T T T T T | T T T T T T T T T
10 20 30 40
Position [*2Theta] (Copper (Cu))

1 I I I 1 I 1 1 I | I 1 I 1 I 1 1 I 1 | I I I I 1 1 I 1 I
10 20 30 40

Position [°2Theta] (Copper (Cu))
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Crystaline materials are characterized by the long-range order
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Lattice planes

Bragg
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Bragg scattering

Bragg
A=2dsinB

The Nobel Prize in Physics 1915

V\./f‘l‘liam Lawrence
Bragg Bragg

Prize share: 1/2 Prize share: 1/2
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A single crystal (typically) produces one family of Bragg peaks for fixed geometry and A
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Why care about x-ray diffraction of crystals?
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A crystal is defined by ist lattice and basis

(a) primitive (b) non-primitive
o o L] [} (-] ° o [
o [} (-] L ° o
“——0 : ° ° a2 i : ) o
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L — ° ° = e )
a, a,

(d) Crystal=lattice * basis
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Lattice Basis Crystal
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Why and how does it work?

Remember last week:

(@) « o

(b) .
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Allowed and forbidden reflections
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Solving a crystal structure

(a) L] L] . . .
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Starting model
F(exp) + rand {¢}

satisfy
reciprocal-space
constraints:

F = F(exp)

W

satisfy/adapt
real-space
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positivity
atomicity
support size

refinement

-

x-rays‘

crystal

diffraction
pattern

electron
density map

atomic
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Powder diffraction
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Diffraction of a polycrystalline sample
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Diffraction signal of different sample types

single twinned crystal with textured powder nanocrystalline
crystal crystal mosaic spread sample sample powder
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Powder diffraction data bases for elemental analysis

L Mateh!
OB &é % A3 LA Nl A A e W Ere S8 D0y BN R el
950 [96-801-2301] G Diamond 1a2a|m |40 [sufen[m| e [1b[2n3a]4a/5a[6a[7a]8a
[Manual] C Graphite I S S
2007 PL| | H He
850 P2| | U Be BLCIN|O|F|Ne
8004 P3| | Na Mg Alsi|P|s|a|a
7504 P4| | K Ca Sc|Ti |V Cr Mn Fe Co Ni Cu|Zn Ga Ge As|Se|Br Kr
700 P5| Rb S Y |Zr [Nb Mo Tc Ru Rh Ag|Cd | In Sn Sb|Te| 1 | Xe
6504 P6| Cs Ba La Hf|Ta|W Re Os Ir Pt|Au|Hg T Pb Bi Po At Rn
P7 Fr Ra Ac
600 4
550 L||Ce|Pr Nd Pm Sm Eu|Gd|Th Dy Ho Er Tm | Yb|Lu
5004 A||T™ Pa| U |Np|Pu Am Cm|Bk|Cf| Es Fm Md| No| Lr
450~ Element selection by mouse Hame: | %
4004 [ RORT
Froggle Blem. count: B[ %
350 _ None
A Formula sum: Sclh
300+ o ! [Creset
250 - OO optona Inorganics only (no C-H-bonds)
200
150
100
" LAl | |
| h L 5 h L | L I “J Lo |
I | Il Il
| I LA DU W D I 0 WRUEEROE 0 I o Preset: | None / new set v || save || Delete || Reset
T T T T T T T T T T T T T T T T T
10.00 20.00 30.00 40.00 50.00 60.00 70.00 B80.00 90.00 100.00 110.00 120,00 130.00 140.00 150.00 160.00 170.00 1
Cuka (1.541674 A) 2theta WV Restraints (7255) | + Add.enties | [ Peaklist | =) Datasheet  FPRi«|»
Color  Qual. Entry Formula - Candidate phase P(2theta) P(1/10) 1 scale fet. e FoM  *  Color Entry Formuta Matched phase Quant.(%) ~
C 960012232 C Graphite 0.0000 0.0000 0.0000 1.79 0.0000 96-901-2301 C Diamond na.
C  95901-2233 C Graphite 0.0000 0.0000 0.0000 2.27 0.0000 99-999-9900 C Graphite na.
[+ 96-901-2234 C Graphite 0.0000 0.0000 0.0000 1.88 0.0000
C 969012235 C Graphite 0.0000 0.0000 0.0000 1.68 0.0000
C 959012236 C Diamond 0.0000 0.0000 0.0000 0.67 0.0000
[+ 96-901-2237 C Diamond 0.0000 0.0000 0.0000 0.78 0.0000
C 959012238 C Diamond 0.0000 0.0000 0.0000 035 0.0000
C 959012239 C Diamond 0.0000 0.0000 0.0000 0.69 0.0000
[+ 96-901-2290 C Diamond 0.0000 0.0000 0.0000 0.70 0.0000
C 959012241 C Diamondoid BC-8 0.0000 0.0000 0.0000 0.85 0.0000
Cc 959012242 C Supercubane 0.0000 0.0000 0.0000 1.20 0.0000
Unregistered copy 2th: 59.03 d: 1.5648 Irel.: 649.09 7255entries COD-Inorg REV218120 2019.09.10 Exp. date: 28.01.2020
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Debye-Scherrer Formula

The diffraction peak width may contain microstructural
information

Width=0.007 rad

X5™ 19 nm g
Width=0.002 rad , —— =
1000 - ¥S= 90 nm Size — K Paul Scherrer
Width+cos @ Swiss Physicist (1890-1969)

171



Things you may want to remember
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Back to start

CPA - chirped pulse amplification The pulse is compressed

and its intensity increases
dramatically.

Short light pulse The pulse is stretched, The stretched
from a laser. which reduces pulse is amplified.
its peak power.

Arthur Ashkin

Prize share: 1/2

Gérard Mourou Donna Strickland

Prize share: 1/4 Prize share: 1/4

Grating pair, Amplifier Grating pair,
pulse stretcher : pulse compressor

The inventions being honoured this year have revolutionised laser physics. Extremely small objects and incredibly
fast processes now appear in a new light. Not only physics, but also chemistry, biology and medicine have gained
precision instruments for use in basic research and practical applications. Arthur Ashkin invented optical tweezers
that grab particles, atoms and molecules with their laser beam fingers. Viruses, bacteria and other living cells can be
held too, and examined and manipulated without being damaged. Ashkin’s optical tweezers have created entirely
new opportunities for observing and controlling the machinery of life. Gérard Mourou and Donna Strickland paved
the way towards the shortest and most intense laser pulses created by mankind. The technique they developed has
opened up new areas of research and led to broad industrial and medical applications; for example, millions of eye
operations are performed every year with the sharpest of laser beams. 1



Also in physics

1 Small transparent spheres are set in motion
when they are illuminated with laser light.
Their speed corresponds to Ashkin’s
theoretical estimation, demonstrating that it
really is radiation pressure pushing them.

2 One unexpected effect was the gradient
force that pushes the spheres towards
the centre of the beam, where the light is
most intense. This is because the
intensity of the beam decreases outwards
and the sum of all the forces pushing the
spheres sends them towards its centre.

3 Ashkin makes the spheres levitate
by pointing the laser beam
upwards. The radiation pressure
counteracts gravity.

4 The laser beam is focused with a lens.
The light captures particles and even
live bacteria and cells in these optical
tweezers,

sphere laser beam

— 0

—0

gradient force

EESE — 0 -- centre, highes
4\ intensity
gravity
L) —— levitating sphere

radiation pressure *

sphere held in place
using optical tweezers

- F=Bo

lens

Arthur Ashkin.

Prize share: 1/2 Donna Strickland

Prize share: 1/4

Gérard Mourou

Prize share: 1/4

Optical tweezers:
https://www.youtube.com/watch?v=ju6wENPtXu§8

The inventions being honoured this year have revolutionised laser physics. Extremely small objects and incredibly
fast processes now appear in a new light. Not only physics, but also chemistry, biology and medicine have gained
precision instruments for use in basic research and practical applications. Arthur Ashkin invented optical tweezers
that grab particles, atoms and molecules with their laser beam fingers. Viruses, bacteria and other living cells can be
held too, and examined and manipulated without being damaged. Ashkin’s optical tweezers have created entirely
new opportunities for observing and controlling the machinery of life. Gérard Mourou and Donna Strickland paved
the way towards the shortest and most intense laser pulses created by mankind. The technique they developed has
opened up new areas of research and led to broad industrial and medical applications; for example, millions of eye
operations are performed every year with the sharpest of laser beams. 174


https://www.youtube.com/watch?v=ju6wENPtXu8

Recent examples of applications of light to chemistry

V4
P Q
ey

- F--
2 v
=
X-rays crystal dm"; The Nobel Foundation. Photo: U eN
pattern Montan Montar Montar
Venkatraman Thomas A. Steitz Ada E. Yonath
Ramakrishnan Prize share: 1/3 Prize share: 1/3

' Prize chare: 1/%

Figure 4. X-ray crystallography. The researchers create X-rays using synchrotrons, circular tunnels where electrons
are acceler-ated to nearly the speed of light. When the rays hit the ribosome crystal they scatter, making millions of
dots on a CCD detector. By analyzing this pattern, researchers can determine the position of each atom in the ribosome.
Special software is used to visualize the ribosome [picture to the right).

e—— cytoplasm
At the beginning of the twentieth century, the chemical P H—ﬁ Sgt?fm:nmic
foundations for life were a mystery. Today we know how many I F \. ® ‘i
of the most important processes function, all the way down to
the atomic level. The 2009 Nobel Prize in Chemistry is awarded
for the detailed mapping of the ribosome — the cell’s own
protein factory. The ribosome translates the passive DNA
information into form and function.

DNA

nucleus

2. ¢————— ribosomes



The Nobel Prize in Chemistry 1999
Recent examples of applications of light to chemistry

Free-fragment
detection .

o« o ;

Activated-complex |
detection

Potential Energy
Signal
.

Photo from the Nobel Foundation
archive.

Ahmed H. Zewail

Prize share: 1/1

\ = ! 1 I -2 -1 0 1 2 3 4 5 6 7 8
0 5 J 10' 15 20 Time delay (ps)
Internuclear Separation (A)

Fig. 1b) Experimental observations of coherent vibrations (so-called wave-
Fig. 1a) Potential energy curves showing the energies of ground state (bottom packet motion) in femtosecond-excited Nal, on one hand manifested in terms of

curve with deep minimum) and excited state (top curve) for Nal as function of amount of activated complex [Na-1]* at covalent (short) distance, on the other
the distance between the nuclei.

This year’s Nobel Laureate, Professor Ahmed Zewalil, is rewarded for his pioneering investigations of
chemical reactions on the time-scale they really occur. This is the same timescale on which the atoms in the
molecules vibrate, namely femtoseconds (1 fs = 10-15 seconds). Only recently have developments in laser
technology enabled us to study such rapid processes, using ultra-short laser flashes. Professor Zewail’s
contributions have brought about a revolution in chemistry, with consequences for many other fields of
science, since this type of investigation allows us to understand and predict important processes.
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Last comment: Remember session 1?
Recent examples of applications of light to chemistry

The principle of STED microscopy

Regular optical STED microscope

microscope @

@ 3 The final image gets a
4 resolution that is much
Exciting laser —= \S(? better than 0.2
beam & 2 micrometre.
A

Exciting laser —
Quenching laser

beam béam 2 The laser beams scan over the
& sample. Since scientists know
» exactly where the beam hits the
> sample, they can use that informa-
4 tion to render the image at a much
In a regular optical microscope, higher resolution.
the contours of a mitochondrion )
can be distinguished, but the 1 In a STED microscope, an
resolution can never get better annular laser beam quenches
than 0.2 micrometres. all fluorescence except that in

a nanometre-sized volume.

Eric Betzig, Stefan W. Hell and William E. Moerner are
awarded the Nobel Prize in Chemistry 2014 for having
bypassed a presumed scientific limitation stipulating that an
optical microscope can never yield a resolution better than 0.2
micrometres. Using the fluorescence of molecules, scientists
can now monitor the interplay between individual molecules
inside cells; they can observe disease-related proteins
aggregate and they can track cell division at the nanolevel.

Eric Betzig

Prize share: 1/3

Stefan W. Hell

Prize share: 1/3

Williavrvn E. Moerner

Prize share: 1/3
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Stefan Hell: Stimulated Emission Depletion Microscope (STED)

* Based on Fluorescence Microscope

* Based on Laser Scanning Microscope

But with Important additional concepts:

Remember Gaussian, Bessel beams, focal spots

Enjoy video: https://www.youtube.com/watch?time continue=428&v=0NCNy6pVIZE 178



https://www.youtube.com/watch?time_continue=428&v=0NCNy6pVIZE

SNOM - Scanning Near Field Optical Microscope

Feedback
; — control CW Laser
© oJ=] : unit
3 ! Laser
i il Dither Piezo
Near-field
. CCD
Detection Figure 4. A) SNOM/fluorescence image and B) topographic image of a
Optics \ 10 x 10 pm area of a PVB film containing fluorescent microspheres. The
¢ 1 ' spheres had a diameter of 288 nm. The fluorescence was excited with the
i 488 nm line of an Ar-ion laser.
AL Spectro-
X ¥,z graph
Scanner
Microscope
. Objective
Zenobi and Deckert, Angew.
Chemie Review, 2000 Flipable

Mirror

Dichroic
Mirror

Pinhole ==

Video
Control APD
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