Optical methods in chemistry
or
Photon tools for chemical sciences
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Course layout — contents overview and general structure

e Introduction and ray optics

e \Wave optics

e Beams and cavities

e Principles of Lasers

e More Lasers and a Specific Application: Optical Tweezers
e From diffraction and Fourier optics

e Application: Microscopy

e Application: Manipulation

e Application: Spectroscopy

e Electrodynamic optics

e Materials properties, linear and non-linear
e Ultrafast lasers

* Introduction to X-rays

e Summary and review

Today:
Lets get going with x-rays

Some new ideas and many applications of
previous material




Introduction and historical perspective



The discovery of x-rays in 1895
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* Rontgens lab in Wirzburg « During experiments illuminated his hand and

 Experiments with vacuum tube saw bone structure

* Noticed fluorescence on a screen despite * Took first “medical” x-ray on his wifes hand
light-tight packaging of tube * Denied patenting request to fully exploit

* Postulated mysterios x-rays potential of x-rays



Discovery of X-rays triggered many technological and scientific
developments




X-rays are high-energy electromagnetic (em) waves
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X-rays: Physics? Chemistry? Biology? Medicine?
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Why care about x-ray diffraction of crystals?

From: https://www.nobelprize.org/prizes/chemistry/1964/perspectives/

Chemists were still struggling to isolate penicillin in a pure and active form. It was not until July
1943 that they knew the composition of the active ingredient. After systematically breaking down
penicillin into smaller pieces, chemists knew it consisted of 27 atoms: 11 hydrogen, 9 carbon, 4
oxygen, 2 nitrogen atoms and 1 sulphur atom. The trouble was that this combination of atoms
could form two very different structures, and chemists couldn’t decide which structure was more
likely. Some chemists were convinced the structure contained two five-membered rings
connected by a single bond, known as a thiazolidine-oxazolone. Others were equally sure it was a
four-membered ring fused to a five-membered ring, known as a beta lactam.

“No absolutely unequivocal conclusion could be derived from it,” Ernst Chain explained in his
Nobel Lecture. “The final solution of the problem of the structure of penicillin came from
crystallographic X-ray studies.”



The power of x-rays
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Fig. 1-5. Mass absorption coefficients (continued).
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Scattering with atomic resolution

Lysozym (Protein, Immunsystem) Experiment at the Swiss Light Source

Stochiometric formula

C125H196N40()36S2 |‘I/:5(;(|)Oc.f\%:m1\x1wlypomuxcw ’ gg‘um

frame : 0 ms Date : 20171404

Time : 02:46

Structure
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Elements possess specific colors — also in X-ray spectral regime

Rose of Lausanne: Barkla:
Characteristic visible colors Characteristic emission lines of

elements in x-ray regime

Barkla, Nobel Prize in 1917
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Combination of large penetration depth, elemental information, and high resolution

Example: Geological Thalium sample (Geochemistry)
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Arsenic Thalium

Unique Opportunities from SLS 2.0
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X-ray interactions with matter



X-ray interactions with matter

Auger/photo-

Incident x-ray
secondary electrons

photon
Inelastic scattering Elastic scattering
(Compton) (Thomson)
¢
surface
Fluorescence
bulk

Transmitted
photon



Photoionization / absorption

Fluorescence

Auger emission
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Thomson scattering

E-field
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Atomic scattering factors and refractive index
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Atomic scattering factors again
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X-ray cross sections
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Diffraction by crystals
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Why should we care about x-rays, crystals, lattices, etc? Source:
The Cambridge Structural
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https://www.ccdc.cam.ac.uk/solutions/csd-system/components/csd/

The Huygens-Fresnel Principle

* Hugens: every point a wave (a luminous disturbance) reaches becomes a source of a spherical
wave; the sum of these secondary waves determines the form of the wave at any subsequent
time.

* Huygens-Fresnel: every unobstructed point of a wavefront serves as a source of spherical
secondary wavelets. The amplitude of the wave beyond is the superposition of all these wavelets.
(includes amplitude and relative phase)

Image credits: By Lookangmany thanks to Fu-Kwun Hwang and author of Easy Java Simulation = Francisco Esquembre - Own work, CC BY-SA 3.0, 23
https://commons.wikimedia.org/w/index.php?curid=16981632
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Diffraction examples

L

w=50pn d=150p 3 slits 4 slits 5 slits 7 slits




Crystaline materials are characterized by the long-range order
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Bragg scattering

Bragg
A=2dsinB

The Nobel Prize in Physics 1915

Photo from the Nobel Foundation Photo from the Nobel Foundation

archive. archive.

Sir William Henry William Lawrence
Bragg Bragg

Prize share: 1/2 Prize share: 1/2
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Lattice planes

(21) planes

(10) planes
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Characteristic signals from different — chemically identical — samples

Counts

SiO2 Glass
4000 -
2000

4000 - Quartz
3000
2000
1000 ~

Cristobalite
4000

2000 ~

20 30 40 50
Position [°2Theta] (Copper (Cu))




A single crystal (typically) produces one family of Bragg peaks for fixed geometry and A
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Powder diffraction

31



Diffraction of a polycrystalline sample
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Diffraction signal of different sample types

single twinned crystal with textured powder nanocrystalline
crystal crystal mosaic spread sample sample powder
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Powder diffraction data bases for elemental analysis

eCe Match!
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Color | Qual. Entry Formula = Candidate phase P(2theta) P(1/10) Iscale fct. I/ic FoM “ Color Entry Formula Matched phase Quant(%) ™
C 969012232 C Graphite 0.0000 0.0000 0.0000 179 0.0000 96-901-2301 C Diamond na.
C 969012233 C Graphite 0.0000 0.0000 0.0000 227 0.0000 99-999-9900 C Graphite na.
c 96-901-2234 C Graphite 0.0000 0.0000 0.0000 1.88 0.0000
C 969012235 C Graphite 0.0000 0.0000 0.0000 1.68 0.0000
C 969012236 C Diamond 0.0000 0.0000 0.0000 0.67 0.0000
C 969012237 C Diamond 0.0000 0.0000 0.0000 0.78 0.0000
C 969012238 C Diamond 0.0000 0.0000 0.0000 0.35 0.0000
C 969012239 C Diamond 0.0000 0.0000 0.0000 0.69 0.0000
Cc 96-901-2240 C Diamond 0.0000 0.0000 0.0000 0.70 0.0000
C 969012241 C Diamondoid BC-8 0.0000 0.0000 0.0000 0.85 0.0000
C 969012242 C Supercubane 0.0000 0.0000 0.0000 1.20 0.0000
Unregistered copy 2th: 59.03 d: 1.5648 Irel.: 649.09 7255entries COD-Inorg REV218120 2019.09.10 Exp. date: 28.01.2020
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Debye-Scherrer Formula

The diffraction peak width may contain microstructural
information

Width=0.007 rad
X5~ 19 nm

Width=0.002 rad N S——
e XS= 30 nm Size — K Paul Scherrer
Width+cos @ Swiss Physicist (1890-1969)
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A crystal is defined by ist lattice and basis

(a) primitive (b) non-primitive
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Why and how does it work?

Remember last week:
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Allowed and forbidden reflections
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a crystal

Solving a crystal structure —— ‘
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The end
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