Optical methods in chemistry
or
Photon tools for chemical sciences

Session 11



Course layout — contents overview and general structure

e Introduction and ray optics

e Wave optics

e Beams

e From cavities to lasers

e More lasers and optical tweezers

e From diffraction and Fourier optics
e Microscopy

e Spectroscopy

e Electromagnetic optics

e Absorption, dispersion, and non-linear optics
e Ultrafast lasers

e Introduction to x-rays

e Summary

Today:

Ultrafast lasers with a bit of non-linear optics




Recall: Many different ideas and version
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Recall: Lasers and laser cavities

Atomic lines vs cavity modes
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Recall: Mode selection with intracavity wavelength selection (here etalon)

> add wdlibon-C oplical Comgpsnentt (efelon)
—D ‘I"Uwu. Cmmt\ WVB{F&“L{".BS



Pulsed lasers: Gain switching
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Pulsed lasers: Cavity dumping
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See video at: https://www.rp-photonics.com/q switching.html



https://www.rp-photonics.com/q_switching.html

Now going to really short pulses:



Short pulse needs many frequencies: Shortest pulse is Fourier transform limited pulse
(aka bandwidth limited pulse)

electric field (a.u.)
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Note: Mathematical description of optical pulse

E(r)= A(r) ™" A(r)

=& \/ \/ U \/ Ux -~ time

A(t) pulse envelope w &(WSS‘(LM ~ oo [‘é )

j(t), time dependent phase of electric field

W(l‘) = - dc;’(t) ; instantaneous frequency
l

_lo ; absolute phase (typically neglected for multi-cycle pulses)
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A note on “chirp”

electric field (a.u.)

Initially transform limited pulse becomes chirped upon propagation, (k, # 0, y = 0)

transform-limited linearly chirped
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Important laser: TiSa
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energy

Yhigh frequency, short wavelength

Workhorse laser for ultrafast sciences
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Short pulses and cavities — how do they go together?
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Mode locking
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Expanded description of relationship between Polarization density P and Electric field E
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Third order non-linear optics example: Optical Kerr Effect and Self-Focusing
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Kerr lens from non-linear refractive index

spatial profile:

intensity
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Resonant laser cavity

pump

> laser emission

Resonant modes have nodes at cavity end mirrors
Resonant wavelengths and possible frequency modes given by:
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Self mode locking
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Kerr Lens Effect, due to nonlinear index of refraction
At high intensities, the gain crystal acts like a lens

Cavity tuned so that is most efficient with the crystal behaving as a lens
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TiSaphire oscillator setup
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Important laser: TiSa

Ti3* ions in Al,O; (Saphire)
Tunable, broad bandwidth

Can provide ultrashort pulses

Workhorse laser for ultrafast sciences
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Chirped pulse amplification =~ — hoote  male  mfos JJC*— pelses
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Back to start

CPA - chirped pulse amplification The pulse is compressed

and its intensity increases
dramatically.

Short light pulse The pulse is stretched, The stretched

from a laser. which reduces pulse is amplified. ) : ] /
its peak power. {
> L ]
A Ill. Niklas EImehe Nok A lia Nobel Media AB. A k Wedia AB. Pho A
: Arthur Ashkin NIRAIONH viahgiond:
i _ Gérard Mourou Donna Strickland
: Prize share: 1/2
: Prize share: 1/4 Prize share: 1/4

Grating pair, Amplifier Grating pair,
pulse stretcher f pulse compressor

The inventions being honoured this year have revolutionised laser physics. Extremely small objects and incredibly
fast processes now appear in a new light. Not only physics, but also chemistry, biology and medicine have gained
precision instruments for use in basic research and practical applications. Arthur Ashkin invented optical tweezers
that grab particles, atoms and molecules with their laser beam fingers. Viruses, bacteria and other living cells can be
held too, and examined and manipulated without being damaged. Ashkin’s optical tweezers have created entirely
new opportunities for observing and controlling the machinery of life. Gérard Mourou and Donna Strickland paved
the way towards the shortest and most intense laser pulses created by mankind. The technique they developed has
opened up new areas of research and led to broad industrial and medical applications; for example, millions of eye
operations are performed every year with the sharpest of laser beams.




The Nobel Prize in Chemistry 1999
Ultrafast lasers in chemistry
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Fig. 1b) Experimental observations of coherent vibrations (so-called wave-
Fig. la) Potential energy curves showing the energies of ground state (bottom packet motion) in femtosecond-excited Nal, on one hand manifested in terms of

curve with deep minimum) and excited state (top curve) for Nal as function of amount of activated complex [Na-1]* at covalent (short) distance, on the other
the distance between the nuclei.

This year’s Nobel Laureate, Professor Ahmed Zewail, is rewarded for his pioneering investigations of
chemical reactions on the time-scale they really occur. This is the same timescale on which the atoms in the
molecules vibrate, namely femtoseconds (1 fs = 10-15 seconds). Only recently have developments in laser
technology enabled us to study such rapid processes, using ultra-short laser flashes. Professor Zewail’s
contributions have brought about a revolution in chemistry, with consequences for many other fields of
science, since this type of investigation allows us to understand and predict important processes.
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Third order non-linear optics example: Self-phase modulation

normal refractive index
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Post Compression by SPM & Chirped Mirror Compressor
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The end.
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Kerr lensing needs to be analyzed in wave / beam picture! It is about accumulated

phase.

From https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-977-ultrafast-optics-spring-2005/lecture-notes/chapter7.pdf

7.1.4 The Kerr Lensing Effects

At high intensities, the refractive index in the gain medium becomes intensity
dependent
n=ng+nyl. (7.59)

The Gaussian intensity profile of the beam creates an intensity dependent
index profile

; 2P T o
I(r) = = exp [72(3) ] . (7.60)
In the center of the beam the index can be appoximated by a parabola
’ 1 2,2
n(r) = ng 1—57 r? |, where (7.61)
ro 2k _1 [8mP
ng = ng+ My 1= =3 pe (7.62)

A thin slice of a parabolic index medium is equivalent to a thin lens. If the
parabolic index medium has a thickness , then the ABCD matrix describing
the ray propagation through the medium at normal incidence is [16]

cos 7yt —Lsinyt
My = x "0 4 i 7.63
K ( —ngysinyt  cosyt ) )

Note that, for small t, we recover the thin lens formula (t — 0, but nfy*t =
1/f =const.). If the Kerr medium is placed under Brewster’s angle, we again
have to differentiate between the sagittal and tangential planes. For the

sagittal plane, the beam size entering the medium remains the same, but for
the tangential plane, it opens up by a factor nf

w, = w (7.64)
w, = weng

The spotsize propotional to w? has to be replaced by w? =w,w, . Therefore,
under Brewster angle incidence, the two planes start to interact during prop-
agation as the gamma parameters are coupled together by

P
- 1 811’2 (7.65)
wewy \| ngmw
o 1 8na P (7.66)
T wan, nyT !

Without proof (see [12]), we obtain the matrices listed in Table 7.2. For low

[ Optical Element [ ABCD-Matrix |
Kerr Medium Mo = ( cosyt "[375'1111-3‘ )
Normal Incidence | *°% —nhysinyt  cosyt
Kerr Medium M. — ( cos b “#sin 7t )
Sagittal Plane I ngy.siny,t  cos7,t
Kerr Medium Mt = ( €08 7yt :-D']T sin-y,t )
Tangential Plane | =" —niv,sinyt cost

Table 7.2: ABCD matrices for Kerr media, modelled with a parabolic index
profile n(r) = nj (1-3+%r2) .

peak power P, the Kerr lensing effect can be neglected and the matrices in
Table 7.2 converge towards those for linear propagation. When the laser is
mode-locked, the peak power P rises by many orders of magnitude, roughly
the ratio of cavity round-trip time to the final pulse width, assuming a con-
stant pulse energy. For a 100 MHz, 10 fs laser, this is a factor of 10°. With
the help of the matrix formulation of the Kerr effect, one can iteratively find
the steady state beam waists in the laser. Starting with the values for the
linear cavity, one can obtain a new resonator mode, which gives improved

values for the beam waists by calculating a new cavity round-trip propaga-
tion matrix based on a given peak power P. This scheme can be iterated
until there is only a negligible change from iteration to iteration. Using such
a simulation, one can find the change in beam waist at a certain position in
the resonator between cw-operation and mode-locked operation, which can
be expressed in terms of the delta parameter

~ lwg(P2) —wa(P=0.2)
T p we, (P =0,z)
where p is the ratio between the peak power and the critical power for self-
focusing

Bo (7.67)

p = P/Poir. with Py = A}/ (2rnand) . (7.68)
To gain insight into the sensitivity of a certain cavity configuration for KLM,
it is interesting to compute the normalized beam size variations d,; as a
function of the most critical cavity parameters. For the four-mirror cavity,
the natural parameters to choose are the distance between the crystal and the
pump mirror position, @, and the mirror distance L, see Figure 7.12. Figure
7.15 shows such a plot for the following cavity parameters i, = f; = 10 cm,
Ly =104 cm, Ly = 86 cm, t = 2 mm, n = 1.76 and P = 200 kW.
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Figure 7.15: Beam narrowing ratio &,. for cavity parameters 7,
cm, L; = 104 cm, Ly = 86 em, t = 2 mm, n = 1.76 and P

Courtesy of Onur Kuzucu. Used with permission.
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