Upload your finished worksheet as a single pdf file on moodle before the next class session in order to get participation credit.

Try to keep your books closed. Discuss with your fellow students to come to an answer. Show your work.

Name:

1. Beam optics

A Gaussian beam is described by

$$U(r) = A_o \frac{\omega_o}{\omega(z)} exp \left[\frac{-\rho^2}{\omega(z)^2} exp[-ikz - ik\frac{\rho^2}{2R(z)} + i\xi(z)] \right]$$
 (1)

and $\rho = \sqrt{x^2 + y^2}$

(a) Describe the meaning of $\omega(z) = \omega_o \sqrt{1 + (\frac{z}{z_o})^2}$.

Beam width as a function of z, depending on beam waist w, and Rayleigh length z.

Describe the meaning of $R(z) = z[1 + (\frac{z}{z_0})^2]$.

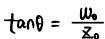
The curvature of wave front at a distance Z

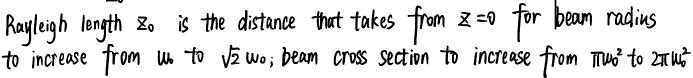
Describe the meaning of $\xi(z) = tan^{-1} \frac{z}{z_o}$.

Phase retardation of a Gaussian beam

Describe the meaning of $\omega_o = \sqrt{\frac{\lambda z_o}{\pi}}$.

Beam waist, which is the beam radius at z=0. The tightest focus of the beam


19


2. What is the correlation between beam optics and Ray optics for $z \to \infty$? What is the Rayleigh length?

Z small: Beam Optics

&>∞: Ray Optics

 $W_{\mathbb{Z}_1} = W_0 \sqrt{1 + (\frac{\mathbb{Z}}{\Sigma_0})^2}$, $\lim_{N \to \infty} W_{\mathbb{Z}_1} = W_0 \cdot \frac{\mathbb{Z}}{\Sigma_0}$

3. The confocal parameter of a Gaussian beam relates the Rayleigh length and beam width. It is defined as twice the Rayleigh length and is given by $2z_o = \frac{2\pi\omega_o^2}{\lambda}$.

What is the relationship between depth of focus and focal spot size? How do you obtain the smallest possible focal spot?

Depth of focus: $d = 2\mathbb{Z}_0 = \frac{2\pi}{\lambda} w_0^2$

proportional to wo and inverse proportional to 7

Obtain smallest possible focal spot:

According to next question (Q4), focal size $2u_0 \times \frac{4}{\pi} \times \frac{T}{D}$

So NI FIDT for a smaller focal size.

(Optional) Remark: focal point size is limited by diffraction, so the minimum of 2wo is on the scale of 71 or min (2wo) ~ 1, the approximation equation 2wox年7. will fail when 2wo is comparable to Search "Airy Disk Radius" if you are interested.

4. When a Gaussian beam is focussed with a lens the diameter of the spot can be described by $2w_o \approx \frac{4}{\pi} \lambda F_{\#}$

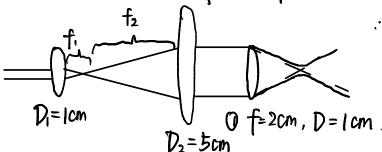
and $F_{\#} = f/D$ is the so called F-number. f is the focal length and D the diameter of your lens, i.e. maximum beam width $\omega(z)$ that your optical components can allow.

You want to focus your HeNe laser (640 nm, beam waist of laser = 1 mm) as tightly as possible. You have two lens kits available. One contains optics with a diameter of 1 cm and focal lengths of 2 cm, 5 cm, 10 cm. The other kit contains larger optics with a diameter of 5 cm and focal lengths of 10 cm, 20 cm, and 50 cm.

How do you setup your system? Argue. Sketch.

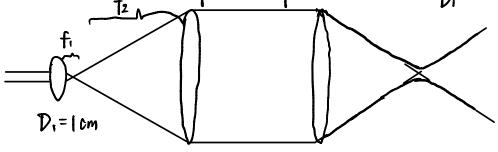
Remark: D in equation 2000 × 共力 actually represents "Effective" Lens Diameter instead of Lens Diameter.

D₂ | P₁ = ---


focal spot size in this case = $\frac{4}{\pi} \lambda \frac{f}{D_1}$ instead of

Thus, the idea is to $\min\{\frac{f}{D}\}$ \Rightarrow 0 f = 2cm, D = 1cm 0 f = 10 cm, D = 5cm Original beam waist = 1mm, we need to use following optical lens group to extend the beam waist:

What is the resulting spot size? According to geometry we have $\frac{\mathbf{vf}}{\mathbf{D}} = \frac{\mathbf{f}_2}{\mathbf{f}}$


 $\therefore \frac{Vf}{Di} = 5 = \frac{f_2}{4}$

for case 0, we need final Df = 1cm and initial Di = 2wo = 2mm

two possible (f_1, f_2) sets: $(1) f_1 = 2cm f_2 = 10cm (2) f_1 = 10cm, f_2 = 50cm$ O uses one Lens twice, so only $(f_1, f_2) = (10 \text{ cm}, 50 \text{ cm})$

for case ②, we need final $D_f = 5cm$ with $\frac{D_f}{D_i} = 50 = \frac{f_2}{f}$

D=5cm Of=10cm, D=5cm

only 1 possible (f_1, f_2) set: 2 $f_1 = 2cm$, $f_2 = 100 cm$.

Focal spot size $2w_0 = \frac{4}{\pi} \pi \cdot 2 \times 1.63 \,\mu\text{m}$

The End.