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changes in time and space are crucial to understanding and mod-
0066-4154/08/0707-0001520.00 eling a biological system. In the past few years, the combination
of experimental and computational tools has allowed great progress
toward reaching this goal. Experimental methods include the large-
scale determination of protein interactions using two-hybrid or pull-
down analysis as well as proteomics. The latter one is especially valu-
able when changes in protein concentrations over time are recorded.
Computational tools include methods to predict and validate protein
interactions on the basis of structural information and bioinformat-
ics tools that analyze and integrate data for the same purpose. In this
review, we focus on the use of structural information in combination
with computational tools to predict new protein interactions, to de-
termine which interactions are compatible with each other, to obtain
some functional insight into single and multiple mutations, and to
estimate equilibrium and kinetic parameters. Finally, we discuss the
importance of establishing criteria to biologically validate protein
interactions.
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1. INTRODUCTION

Determining protein-protein and protein-
ligand (i.e., DNA, RNA, and small-molecule)
interactions is essential if we want a systems
biology understanding of living organisms
and/or cells. Much effort has been made in
the past years in experimentally determining
protein-protein interactions on a large scale.
Among the different methods used, we men-
tion the two-hybrid approach with all its vari-
eties [see Rual etal. (1), Uetzetal. (2), Ito etal.
(3), and Stelzl et al. (4)]; the pull-down exper-
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iments using different tags (5-7); and more
recently protein chips [8; reviewed in Kunk
& Snyder (9)]. Each of the different meth-
ods have their advantages and disadvantages,
which we do not discuss here [see Cusick et al.
(10), Fields (11), and Berggard et al. (10-12)].
In parallel over many years different groups
have attempted to predict protein-protein
interactions using homology modeling and
docking software. However, although we
have seen significant progress in the field, the
accuracy of methods is not good enough to
attempt large-scale prediction of interaction
networks [Aloy & Russell (17)]. With the
advent and progress of different structural
genomics projects, a new methodology,
complementary to the above activities termed
“interface modeling,” was developed. This
methodology depends on the availability
of several good-quality three-dimensional
(3D) structures, on correct (structure-based)
sequence alignments, and on careful struc-
tural inspection of domains and sequences
(16). Essentially, it needs the structure of a
complex at high resolution, and it is based
on the fact that proteins belonging to the
same family if they interact they normally do
it the same way and using similar positions
(15), thus avoiding the docking problem
(Figure 1) (18). Other simplifications are
that only the interacting secondary structure
elements are considered and the target
sequences modeled on them (19, 61; G.
Fernandez, P. Beltrao, L. Serrano, submitted
for publication). Even simpler versions of
this method just consider the nature of the
residues, which form the complex interface
and score the putative complex of related pro-
teins (15). Complementary to this approach,
other methodologies, such as the molecular
dynamics of protein-peptide complexes, have
been used to identify putative peptide ligands
for a globular domain (110). However, even
a successful prediction of an interaction
from a biophysical point of view (i.e., the
two proteins bind with nanomolar affinity)
does not guarantee that the interaction is
physiological. Thus, other computational
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Summary of the main concepts discussed in this review. Structural biology in combination with
computational tools can be used to validate interactions that have been found experimentally in a
complex and to predict new protein interactions in silico. Furthermore, structural information is used to
determine which interactions are compatible with each other and which ones exclude each other and to

estimate equilibrium and kinetic constants.

tools are needed to add some biological
credibility to the predicted interactions.
Information regarding protein interac-
tions is often depicted in interaction net-
work diagrams where usually proteins are
represented by dots and connections to
interacting proteins are shown as lines. This
concept is very powerful in order to ex-
plore global properties of network topologies.

However, treating proteins as dots neglects
the important biophysical properties of pro-
teins and protein complexes, which are cru-
cial in mediating their cellular function: Do
the interacting proteins form transient or sta-
ble protein complexes? Which domains me-
diate the interaction? What are the affinities
and kinetic constants? Which interactions ex-
clude each other and which ones can happen

www.annualreviews.org o Structure-Based Interaction Networks
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simultaneously? What will be the effects of
particular mutations, found in human popu-
lations, on the interactions?

Traditional high throughput methods do
not answer these questions, and for example,
they cannot distinguish between incompatible
complexes sharing one or more components
(13). This has prompted various groups to
develop methodologies to distinguish them.
For example, when doing pull-down exper-
iments, one can tag all the elements of the
complexes, and by finding particular associa-
tions, in principle, it should be possible to de-
cide about incompatibilities (7). Also, another
type of information, such as colocalization,
can be used to distinguish between different
complexes sharing common elements (14). Al-
ternatively, partial or total answers to these
questions can be obtained from structural in-
formation as pointed out by the pioneering
work of Aloy & Russell (15, 17), which postu-
lated that “Structural details can turn abstract
system representation into models that more
accurately reflect reality.” Regarding which
interactions exclude each other and which
ones can happen simultaneously the M.B.
Gerstein lab (104) was the first to apply struc-
tural information on a large-scale experimen-
tal network (the human proteome). By using
a 3D-structural exclusion, they could distin-
guish overlapping from nonoverlapping inter-
faces and thus provided evolutionary insights
into network evolution (104). Similarly, this
information of conserved domain-domain in-
teractions (and interface types) can be used
to find possible binary interactions if experi-
ments discover several proteins in a complex.
Furthermore, the idea of testing whether do-
main interactions are simultaneously possible
or whether they exclude each other can in-
crease the information of a given network,
allowing subdivision into mutually exclud-
ing complexes (A. Campagna, C. Kiel & L.
Serrano, manuscript in preparation). With re-
spect to the prediction of binding parameters,
the pioneering work of Schreiber and cowork-
ers (51) showed that, using structural infor-
mation, it was possible obtain an estimate of
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the k,, for the formation of a protein com-
plex. This work was later followed by other
groups (19) and ours, showing that quite ac-
curate estimates on k,, can be obtained for
mutant variants and for members of the same
families within protein complexes (C. Kiel, N.
Kuemmerer, L. Serrano, manuscriptin prepa-
ration). Baker’s group showed that it was pos-
sible to obtain some reasonable estimate on
K4 values for protein interactions (20). More
recently our group has shown that for the Ras-
Rbd family of protein complexes computer
methods can predict quite accurate estimates
of the Ky values (19). Finally protein design
algorithms, such as FoldX and others (86-91)
based on X-ray structures and interface mod-
els, can reliably predict the effect of mutations
on protein complex stabilities, which allow in-
terpretation of the effect of SNP variants on
protein functionality and complex formation
(21).

In this review, we introduce and summa-
rize the main applications of structural in-
formation and interface modeling to predict
and analyze protein interaction networks, as
summarized above (Figure 1), and show the
strengths and weaknesses of the methodol-
ogy. We do not discuss other approaches for
the prediction of protein-protein interactions
based on docking (18) nor the nonhomology-
based structural prediction methods (22).
Similarly, we do not review current method-
ologies for structure prediction (23).

2. MACROVIEW OF STRUCTURE

A protein (specially in Eukaryotes) usually
consists of many domains, and very often one
domain can interact with different types of
domains using different areas of its surface, as
shown for the Ras-like G domain fold, which
can interact with many different partner
domains of various structures (Figure 2a).
However, proteins belonging to the same
family [i.e., ubiquitin-like domain (UBD)]
usually interact in a similar way with a
particular protein family (i.e., Ras G proteins)
(17) (Figure 2b). In all Ras/UBD complexes,
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the binding mode is similar and involves ~ Table 1 Tools to analyze protein sequences, domains, and domain
mainly two antiparallel f-sheets of the UBD
and the Ras domain, respectively, as well as
the first helix of the UBD (19). However,
a recent large-scale structural classification

of protein-protein interfaces has shown that

interaction types

Type and name of tool References

Sequence similarity search
BLAST/PSI-BLAST Altschul et al. (28, 29)

Protein order and disorder prediction

24% of protein hetero-interactions between GlobPlot Linding et al. (30)

homologues associate in multiple orienta- TUPRed Dosztiny et al. (31, 32)

tions (24). Thus, further information on the DisProt Peng etal. (33)

target protein families is needed before we VSL2 Peng etal. (148)

can assume that they will interact the same PrDOS Ishida & Kinoshita (149)
POODLE-L Hirose et al. (150)

way as their homologues.

Structural proteomics efforts have already ~ Domain databases

found 700-800 different folds (25) of the SIfVIART Schultz et 31.1(34)’ Letunic etal. 35)
predicted 1000 domain folds in nature (26) Pfam Bateman etal. (36)
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. . PROSITE Hulo etal. (37)
and ~.20.00 of tbe predicted I0,0F)O d9maln— DD Marchler-Bauer et al. 38)
domain interaction types (25). It is estimated : P
h than 20 . ded btai Domain classification
atmore ) an cUyears Is neede .to o t31.n a CATH Orengo et al. (39), Pearl et al. (40)
representative structure for each interaction SCOP Murzin et al. (41), Andreeva et al. (42)
type (25). One important attempt to reach o re =~ oo type databases
this goal is the so called “Pfam5000” struc- iPfam Finn et al. (43)
tural genomics effort, which aims to solve the 3did Stein et al. (44)
structure of the 5000 most important domain SCOPPI Winter et al. (45)
families found in the Pfam database (27). PRISM Ogmen et al. (46)
The identification of domain families from SNAPPI-DB Jefferson et al. (47)
sequences is a very mature field in bioin- PIBASE Davis & Sali (48)

formatics. In Table 1, we list the current
Web tools and databases used to find domains
on the basis of sequence similarity, protein
order/disorder prediction, domain databases
and classifications, and domain interaction
type databases (28-48).

However, it is not the fold per se that de-
termines whether two domains can interact,
but rather epitopes on the surface of the do-
mains (49) (Figure 2¢). Thus, although pro-
teins of the same families interact through
equivalent surfaces, there is no guarantee that
any Ras protein will interact with an effec-
tor containing a UBD. It is often the case
that one or two differences at key positions
of the interaction surface are enough to pre-
vent binding (i.e., Ras and Rap with RalGDS
and Raf). In fact, it has been shown for Ras-
effector interactions that the thermodynamic
properties and kinetic properties can vary by
orders of magnitude (50), as shown for Ras
in complex with RalGDS-RA, Raf-RBD, and

PLCe-RA2 (Figure 2d-f). Depending on the
residues on the UBD fold, the affinities in
complex with Ras can be in the nano- or mi-
cromolar range. Enthalpy (AH) and entropy
(TAS) contributions to binding energy can
both be favorable, or large favorable enthalpy
contributions are compensated by small, but
unfavorable, entropy contributions. Similarly,
the contributions of association and dissoci-
ation rate constants (ko and ko) to affinity
(Kda = kofikon) vary significantly. Estimates
for ko, can be readily obtained from the struc-
ture of the complexes (51, 52). It is not yet
clear to what extent kinetic constants have an
important biological role, or whether it is the
K4 that is important.

In summary, although in the majority of
the cases it is found that interaction surfaces
tend to be conserved between domains be-
longing to the same families, it is the details
of the interaction that determine the binding
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affinity and kinetic properties. Thus, when
predicting if two proteins will interact using
the structural information of a complex in-
volving related domains, an atomic model of
the complex is needed. We discuss this process
below with an emphasis on the difficulties as-
sociated with interface modeling.

3. HOMOLOGY INTERFACE
MODELING

There are different methodologies to per-
form homology modeling [for reviews,
see Goldsmith-Fischman & Honig (53) and
Ginalski (54)], and different automatic servers
are available, e.g., SWISS-MODEL, WHAT
IE, and MODELLER (http://swissmodel.
expasy.org//SWISS-MODEL.html; http:/
swift.cmbi.kun.nl/WIWWWI/; http://
www.salilab.org/modeller) (55-57). When
the sequence homology is large and the loops
have the same length, homology modeling
just involves replacing the residues, which
are different in the template structure, with
those of the sequence to be modeled. This
is a side chain modeling problem, which
has been tackled by a number of algorithms
(58-60). Side chain modeling relies on the
discretization of the conformational space
of each amino acid into so-called rotamer
states and on a search algorithm to find
the best combination of these states. This
is followed by energy evaluation to see if
there is any structure incompatibility of
the new sequence side chains with the rest

of the protein, which could indicate that
the backbone of the template structure
should move to accommodate the new side
chains. Sometimes even a single amino acid
difference can slightly change the backbone.
One example of this is a UBD sequence
with a proline residue in a central position
of a fi-strand or «-helix, which changes
the backbone of these secondary structure
elements (61) (see Figure 3a). Another
example is the stabilization of a long loop,
which is involved in the interface between an
E2 and an E3 RING (really interesting new
gene) domain by a large bulky amino acid. A
tryptophan residue in the E3 RING domain
stabilizes the conformation of the loop, which
is involved in a complex formation with its
E2 partner. A RING sequence with a small
residue at this position cannot be modeled
reliably using this complex structure as a
modeling template (62) because the loop is
expected to have a different conformation
(Figure 3b). If placement of the new sequence
on the structural template does not result in
any major incompatibility, or if the problems
lie far away from the interaction surface, then
the model can be evaluated.

When the homology is low, threshold
< 30%, [the so-called 30% rule (53), see
the structural explanation for this by Chung
& Subbiah (63)], and/or the loops have dif-
ferent lengths, the backbone is locally, or
globally, different from that in the reference
structure. For particular domain families, the
sequence identity threshold may vary. In some

Figure 2

Macroview of structure. (#) Different binding modes of Ras-effector interactions, where the G
domain-like fold uses different areas of its surface to mediate binding to various domains. (b) Similar
domains usually interact in a similar way, as shown by an overlay of four Ras-effector complexes. Ras is
shown in gray, and the Ras binding domains of RalGDS, Raf, PLCe, and PI3-kinase are in yellow, red,
blue, and green, respectively. (¢) The detailed amino acid contacts in the interface of the two domains
determine specificity and affinity toward other domains. Ras and the Ras-binding domain of RalGDS are
shown. (4) The affinities of three Ras-binding domains in complex with Ras (49). (¢) The thermodynamic
properties of three Ras-binding domains in complex with Ras (49). (f') The kinetic properties of three
Ras-binding domains in complex with Ras. Experimental binding information for panels 4, e, and f was
taken from Wohlgemuth et al. (49). Abbreviations: AH, enthalpy; kon, association rate constant; ko,
dissociation rate constant; T'AS, entropy; Ub, ubiquitin.
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proteins families, very similar structures have
low-sequence homology, and some clear se-
a Ras domain Ras-binding domain quence rules determine the local conforma-
tion (i.e., the SH3 family). Whereas in other
cases, significant changes in conformation
take place with the same homology level (i.e.,
the UBD family). In cases of low-sequence
identity, different methodologies are used to
model backbone movements: molecular dy-
namics (64), fragment libraries (65-67), or the
possibility of building chimeras using differ-
ent parts of proteins belonging to the same
family (G. Fernandez, in preparation); but
modeling requires a careful examination of the
protein family to which the target belongs.
Loops frequently create a homology mod-
eling problem. Insertion or deletion of one or

more residues, or simply changing a critical

residue in a loop, can result in large confor-
b RING domain UBCc domain mational changes that are difficult to predict.
If possible, loops that are not involved in the
interaction between proteins, or between pro-
tein and ligand, should not be modeled (16).
When it is necessary to model them, the best
solution is to build chimeras using loop in-
formation from other members of the same
family. If this is not possible, then automatic
methods like MODELLER (55) or WHAT
IF (56) can be used, but the results should be
regarded with caution.

3.1. Quality of Template Structures

When homology modeling is for sequences

with a high level of sequence identity, success
Figure 3 is dependent on the quality of the template

Examples of residues stabilizing a fold (backbone). (#) Overlay of 32 structure, the quality of the rotamer library,
(B-strand 2) of two ubiquitin-like domains without and with a proline the search engine, and the force field em-

residue: 32 of Raf-RBD, Protein Data Bank (PDB) entry: IGUA, and . .
PLCe-RA2, (PDB entry: 2C5SL). The B-strand of PLCe-RA2 has to bend ployed. Usually, a higher the resolution of the

to incorporate the proline residue. The complex of Ras and Raf-RBD is structure resultsina b(itter prediction. Ideally,
gray (PDB entry: 1GUA). (4) Stabilization of a loop by a tryptophan structures below 2.2 A resolution should be
residue (W408) in RING domains (PDB entry: 1FBV). Ribbon used. However, in some concrete cases where

representation of the cCbl-UBCH?7 complex in gray (PDB entry: 1FBV).
Included in this panel are the helix containing the TRP residue in 1IFBV
and the following loop as well as the helix of another RING domain : .
(PDB entry: IRMD) with a Cys residue at this position and the following sidered. One way to assess the quality of the
loop involved in the interaction. structure of a complex is to calculate the inter-

information from other members of the fam-
ily is available, a lower resolution can be con-

action energy after refinement with a protein
design algorithm. If the A AG-binding energy
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is not negative and is equal to or higher than
the experimental data, the quality of the tem-
plate is not good. In some cases, the problem
could be local (a particular residue with bad,
i.e., combinations of angles resulting in van
der Waals clashes, ¢ and 1 angles, for ex-
ample), whereas in others, it could be more
global.

Further validation could be done by per-
forming an 7z silico alanine-scanning mutage-
nesis with the original NMR structures and
comparing the results with experimental mu-
tagenesis data. If predicting a single alanine
mutant is successful, this is an indication that
the X-ray structure is of high quality (the
opposite is not necessarily true because lo-
cal conformational changes in response to the
mutation could result in mispredictions). In
the case of Ras effector interactions, alanine
mutants were predicted with a correlation of
0.7/0.8 for the complexes of Ras in complex
with RalGDS-RA and Raf-RBD (68).

A typical problem encountered when do-
ing side chain replacement at the protein, or
DNA, level is that the position of the CB
(carbon atom f) in the case of amino acids,
or of the N9 or N1 atoms in the case of
DNA, is not always constant with respect to
the backbone. This means that placement of
standard side chains on a protein or DNA
backbone could result in large deviations at
the tip of the residue or base. This problem
can be solved by always superimposing struc-
tures on the CB atoms (or N9 or N1 in the
case of DNA). However, this assumes that the
deviations of these atoms with respect to stan-
dard side chains are due to structure deter-
mination artifacts and are not real. If the de-
viations are real and if the atoms have some
small capacity for displacement, then the cor-
rect side chain conformation, which fits with
a small displacement of the CB atom, may be
missed.

In any case before doing any homology
modeling, it is always recommended that the
structural template be repaired. This means
flipping the Asn, Gln, and His side chains
back and forth 180° to see if they are cor-

rectly placed because in X-ray structures it is
not possible to distinguish the CO and NH2
groups of Asn and Gln or the CD2 and ND1
atoms of His. Side chains should be moved
slightly to eliminate van der Waals clashes,
and if residues on the surface are part of
the crystal contacts, other rotamers should be
explored.

NMR structures should not be used unless
they have been refined to very high resolution
using dipolar couplings and other techniques
(69, 70). If NMR structures are used, the rec-
ommended strategy is to repair them using
the same protein design algorithm that will
be used later for homology modeling and to
select the structure with lowest energy.

3.2. Multiple Sequence Alignments:
A Tree of Methods

One of the crucial steps for homology mod-
eling that still requires further development
is the alignment of the target sequence to
model with the structural template. In par-
ticular, when sequence identity between the
target sequence and template sequence is low
(<30%), the accuracy of the alignment and
the produced model are very weak (71).

Multiple sequence alignment (MSA) tools
have been under development for decades
(72, 74, 75). Wallace and colleagues (73) re-
ported that, in 2005 alone, 20 new publica-
tions, describing new methods, were found
in the literature. They showed that the dif-
ferent methodologies can be combined in a
meta-alignment method (dubbed M-Coffee)
by careful selection of independent methods
(76).

Perhaps one of the most significant de-
velopments for the use of MSAs in homol-
ogy modeling has been the incorporation of
structural information [see the descriptions
of 3DCoffee (77), Staccato (78), and SAlign
(79)]. Given the robustness of protein struc-
ture against amino acid substitution, homolo-
gous proteins are more likely to retain struc-
tural similarity than sequence identity over
time (80). For 3DCoffee, it was shown that
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the inclusion of protein structures among dis-
tantly related sequences increased MSA 4%
per added structure (77). The use of sequence
alignment tools for the purpose of homology
modeling of low target to template sequence
identity was recently benchmarked (81). Dal-
ton & Jackson (81) showed that when us-
ing the same modeling tool (modeller 8v2),
3D(T)Coffee + MODELLER perform best.
Improvements were achieved for two- to four-
template modeling, giving a significantadvan-
tage over one-template modeling.

Packages that bundle various programs
and speed the creation of different modeling
protocols are useful. One of the few examples
of currently available packages is Biskit (82),
a Python library for structural bioinformatics.
Even using the best automatic sequence align-
ment methods, it is, nevertheless, necessary at
the end to inspect the alignment manually us-
ing structural information to ensure that it is
correct (83).

3.3. Limits of Structural Coverage

In 2005, Chandonia & Brenner (27) estimated
that the available protein structures would
cover from 35% to 51% of the proteomes
of model organisms. This estimate was cal-
culated as the fraction of proteins containing
at least one domain belonging to a family that
has one of its members resolved structurally.
As we discussed above, to create an accurate
model using homology modeling, stricter re-
quirements are needed. Some domain families
are more easily modeled than others. SH3 do-
mains, for example, retain structural similar-
ity for low-sequence identity. For this reason
in a best-case scenario, SH3 domains serve
as a good model to test how much structural
coverage is achievable with current homology
modeling methods. We set up an automatic
modeling pipeline using Biskit (82) as a wrap-
per for 3DCoffee (77) and MODELLER (57)
to test the extensibility of current structural
coverage for modeling SH3 domains. We used
single- and two-template modeling of seven
SH3 domains of known structure to bench-
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mark the procedure (see Figure 44). Using
two templates and the best current practices,
reasonable SH3 models were obtained when
the average sequence identity of the templates
was above 30%. At this threshold, 98% of
the models had an average CA-RMSD (car-
bon a-root mean square deviation) of less than
1.5 A, and 65% of the models had an average
CA-RMSD below 1.0 A. For single-template
modeling, a higher identity threshold is re-
quired. Using single templates of 40% or bet-
ter sequence identity, 88% of the models pro-
duced had a CA-RMSD below 1.5 A, and 60%
had a CA-RMSD below 1.0 A. As expected,
the deviations from the known structure were
not uniformly distributed in the whole struc-
ture but were more likely to occur in the
loop regions (see Figure 4b). Therefore, the
larger the number of structures of a particular
complex and of its protein constituents, the
larger the probability of success (19, 61). We
tested the structural coverage for human SH3
domains using stringent cutoffs and the 79
nonredundant (at a 95% identity cutoff) SH3
domains of known X-ray structure that were
available in the Protein Data Bank (PDB).
Out of a total of 453 human SH3 domains,
64 (or 14%) have been solved, and 97 (or
22%) have at least 60% identity to known
structures and should be possible to model
with very high accuracy. Another 140 domains
(31%) have at least 40% average identity to
two of these templates, which also assures the
likelihood of a very accurate model. Current
structural coverage and automatic homology
modeling methods allow for determination of
close to 67% of all human SH3 domains (see
Figure 5). This is, however, a very favorable
case, which likely represents an upper bound
of the current possibilities for protein mod-
eling. For the majority of domains, structural
coverage is scarce, and therefore, there are se-
quences that cannot be modeled reliably.

4. LEVELS OF PREDICTION

In this section, we discuss the advances in
the use of emperical and energy potencials to
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Figure 4

Automatic modeling of SH3 domains. (2) Seven
SH3 domains of known structure were modeled by
the current best practices for homology modeling
[Dalton & Jackson (81)] using either
single-template (circles) or two-template modeling
(diamonds). For these seven domains, most of the
models produced were of good quality, even for
sequence identities close to 30%. (b)) For each
domain, the average CA-RMSD per residue can
be plotted back onto the known structure to
determine what regions are harder to model. For
all domains, difficulties in modeling were generally
located in the loop regions, primarily the N-scr
loop, the distal loop, and the tip of the RT loop. In
panel b, low = 0, and high = >2. Abbreviations:
CA-RMSD, carbon «-root mean square deviation;
RMSD, root mean square deviation.

predict protein interactions. We mention the
analysis of domain-peptide interactions sep-
arately to emphasize some of the difficulties
associated with the prediction of this type of
interaction.

4.1. Protein-Protein Interactions

Assuming that similar sequences have a sim-
ilar fold and that domains with a similar fold
interact through the same surface (17), much
progress has been made in predicting protein-
protein interactions on the basis of structural
information (17) and homology modeling (19,
61). In Figure 6, we show different template
structures for use depending on the actual
modeling problem. On the basis of the origi-
nal NMR structure, template structures used
in homology modeling can be generated. The
modification of the original template struc-
ture depends on the application and on the
sequence similarity of the domain to be mod-
eled with the template.

® If the sequences are very similar, and
the loops between secondary structure
elements have identical lengths, the
complete X-ray structure is used as a
template structure (Figure 6a) (68).
The predictions are very accurate be-
cause they take into consideration re-

Template sequence (%)

Two templates

100 -G;'OO
> Single template

80+

60

40 -
0]
20 Il J
0 3 4

T

Low CA-RMSD
0

gions at the edge of the interface, which
contribute a small amount to the overall
binding energy and thus are included.

If sequences have different loop lengths
than those in the original X-ray struc-
ture and the loops are not, or are min-
imally, involved in the interaction, 3D
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—— SH3 domains with above 60% identity to at least one known structure
—— Human SH3 domains with above 40% average identity to two known structures
—— Human SH3 domains that are not so easily modeled with current structural coverage

Figure 5

Modeling human SH3 domains. We built a phylogenetic tree for 453 human SH3 domains from the
SMART database (http://smart.embl.de) and 79 nonredundant SH3 domains of known X-ray structure
from the Protein Data Bank (http://www.pdb.org/pdb/home/home.do). Those domains that either
have a known structure or that should be possible to model using available structures are indicated
(diamonds).

structures are modified by deleting the
structural parts not involved in the in-
teraction (Figure 6b) (19, 61).

If sequences have different loops
lengths and the loops contribute signif-
icantly to binding, the loops are gen-

s.12 Kiel o Beltrao o Serrano

erated using the WHAT IF library
(56), or any other homology model-
ing tool, i.e., MODELLER (57), which
contains loops of different lengths from
a database of X-ray loop fragments
(Figure 6¢). This was successful in the



Annu. Rev. Biochem. 2008.77. Downloaded from arjournals.annualreviews.org
by University of Lausanne on 05/05/08. For personal use only.

ANRV345-BI77-05 ARI 5 February 2008 14:39

a Single-/multiple-point mutants

b Homology modeling without loops

or generating Chimera

Figure 6

Template structures for homology modeling. (#) Complete 3D complex structures can be used if the
sequences to be modeled have a similar loop lengths. () To model sequences with different loops lengths,
which are not involved in the interaction, 3D complex structures are modified by deleting loops and
secondary structural elements not involved in the interaction. (c) To model sequences with different loop
lengths when the loops are involved in the interaction, loop template structures are generated using the
WHAT IF library (see text). (d) If the sequences modeled are expected to have significant backbone
changes, new chimera template structures are generated by superimposing the 3D complex structures
with a 3D structure of a single domain of a similar sequence. Another possibility is to generate new
template structures with a changed backbone using molecular dynamic simulations.

prediction of the Ras-effector interac-
tion (61).

If the structure of one of the part-
ners to be modeled into the complex is
known and differs from the template,
or if the sequence analysis suggests im-
portant conformational changes at the

interaction surface, then it is necessary
to generate new templates (Figure 64).
There are two ways of doing this. One
can generate complex chimeras by su-
perimposing on a 3D complex struc-
ture the known 3D structure of a single
domain. Alternatively, if there is clear
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evidence that particular sequences in a
protein family determine certain spe-
cific local changes, a domain chimera
is built by using different parts from
proteins belonging to the same family
(domain chimeras). This was successful
for the prediction of SH3 domains with
their target peptides (84).

Is there an ideal domain interaction type
for the prediction of interactions on the ba-
sis of structural information? Ras proteins
mediate their binding to effector domains
using fi-sheet interactions and loops. The
structural flexibility in these interfaces is
low because of the backbone hydrogen bond
(H-bond) interactions. In fact, the main struc-
tural changes occur in the helix «l in the
Ras-binding domain; these changes can have
significantly different conformations depend-
ing on the complex. Thus, the accuracy of
the predictions is very good, although only
six different template structures have been
used (61). The tumor necrosis factor (TNF)
family ligand-receptor binding seems to be
ideal for structure-based design because TNF
family members adopt a very similar tertiary
structure, and the diverse features of sur-
face residues mediate the specificity between
different TNF family members (85). Inter-
actions through the formation of a B-sheet
seem easy to predict, probably because the
backbone-backbone H-bonds restrict the pos-
sibilities of slightly different conformations
in various complexes. Surfaces that involve
little or no main chain H-bonds are more
problematic for the simple reason that side
chain mutations could slightly change the in-
teraction geometry between molecules A and
B, and therefore the number of templates
required for successful prediction increases
enormously. The flexibility in protein-peptide
complexes is much higher, and thus prediction
methods for protein-peptide interactions are
discussed separately, see below.

Large-scale predictions were done for the
Ras-effector system (61). Because in this ap-
proach the backbone is kept constant and
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just the side chains are replaced, the prob-
lem of possible backbone movements is taken
into consideration by using several template
structures to model a sequence and to calcu-
late the binding energy. Protein design algo-
rithms, such as FoldX (86-88), usually predict
changes in affinity accurately, but the interac-
tion energies for different protein complexes
are not easily transferable into affinity con-
stants, as derived from quantitative binding
experiments. However, when a set of 20 Ras
proteins was modeled in complex with Ras
and Rap, a low correlation between the ex-
perimental and calculated affinities was found
(19). Therefore, a successful approach to an-
alyze the interaction energies and to decide
if two proteins interact on the basis of their
interaction energies was to select the model
with the lowest interaction energy generated
using different template structures (19, 61).
However, if the total energy (protein stabil-
ity) of a sequence modeled with a particular
template structure is very bad (has high en-
ergy) as a result of high van der Waals clashes,
the model should be discarded because the re-
sult indicates that the sequence and the tem-
plate structure are not compatible, and thus
the result of homology modeling will not be
reliable, although interaction energies might
be favorable. After the best model, gener-
ated using different template structures, has
been selected, one needs criteria for energy
thresholds to decide whether this sequence
will bind. To do so, energy thresholds are
defined by calibrating energy sum values us-
ing experimental information (61). Using this
threshold information, new binding and non-
binding domains can be successfully pre-
dicted, and the rest of the prediction is in
the “twilight zone” (61). The prediction ac-
curacy of predicting binding and nonbinding
domains is very high (~0.8) using this method
(61).

Interface modeling, although accurate, is a
time-consuming process, especially when pre-
dictions are done on a genome-wide scale.
Consequently, a new method, the prediction
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of protein-protein interactions on the basis of
energy matrices, was successfully developed
and applied to the prediction of Ras-effector
interactions (93). In this method, position-
specific energy matrices are generated, and
using different Ras-effector X-ray template
structures, all amino acids in the Ras-binding
domain are sequentially mutated to all other
amino acid residues, and the effect on binding
energy is calculated. Then the precalculated
matrices are used to score the binding of any
Ras or effector sequences. Using these ma-
trices, the sequences of putative Ras-binding
domains are scanned quickly to calculate an
energy sum value. By calibrating energy sum
values with quantitative experimental binding
data, thresholds are defined, and nonbinding
domains are excluded quickly. Sequences that
have energy sum values above this threshold
are considered potential binding domains and
can be further analyzed using homology in-
terface modeling.

In Figure 7, the prediction success is
compared—as judged from a range of en-
ergy thresholds—with a set of 50 UBD do-
mains in complex with Ras and Rap using
three different methods: homology model-
ing with loops, homology modeling without
loops, and energy matrices. The highest dis-
crimination power is obtained using homol-
ogy models that explicitly take loop modeling
into consideration (Figure 7). After adding
experimental binding information, there are
two clear thresholds for predicting binding
and nonbinding domains, leaving only a very
narrow twilight zone of 5 kcal/mol. Discrimi-
nation power decreases somewhat when mod-
eling Ras-effector interactions if no loops are
taken into consideration (Figure 7). Here,
we also observe clear thresholds for bind-
ing and nonbinding domains; however, the
area of twilight is little larger (10 kcal/mol).
The results for predictions with position en-
ergy matrices using the test set of Ras/Rap-
effector interactions (Figure 7c) show a very
good discriminative power for nonbinding
domains. However, the false positives can oc-
cur at low-energy values, which makes defin-

ing the threshold for predicting binding do-
mains difficult.

4.2. Domain-Peptide Interactions

The studies mentioned above focused on try-
ing to predict domain-domain interactions
and usually did not consider domain-peptide
interactions. That is, the interaction is as-
sumed to be between two folded structures
with relatively large binding interfaces instead
of interactions with linear peptides as is the
case of several protein domains (SH3, SH2,
WW, 14-3-3 domains). The binding speci-
ficity of peptide-binding domains can be char-
acterized experimentally by many different
approaches with the use of oriented peptide
libraries. These peptide libraries can be pre-
sented either in phage display (94), spotted
on cellulose membrane (95, 96), or allowed
to interact with protein arrays containing the
binding domains (97). These experimental ap-
proaches are time consuming and do not nec-
essarily provide with an understanding of the
structural properties that define the specificity
of each domain. Developments in structure-
based predictions of domain-peptide interac-
tions are poised to circumvent these deficits.
We discuss these developments, giving em-
phasis to the difficulties associated with the
larger conformational variability of peptide
ligands and the lack of specificity of peptide-
binding domains.

Some of the first attempts to predict
domain-peptide interactions with the aid of
some structural information were developed
in the mid- to late 1990s (105). In this
study, a simple energy potential function,
specially developed for particular domain-
peptide interactions, was fitted using struc-
tures of known complexes and experimentally
determined binding energies. This approach
requires significant knowledge and is not eas-
ily applicable to other cases. In the early
2000s, different groups built upon this idea to
determine the binding specificity of domain
families by analysis of complexes and known
binding peptides for SH3 domains (106),
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protein kinase domains (107), and SH2 do-
mains (108). The structures of several do-
mains of the same family, in complex with
a peptide, were analyzed together with in-
formation on known binding peptides. The
authors, mentioned above, determined the
residues that are important for binding from
the structural analysis and then used differ-
ent methods to correlate the binding residues
in the domain with the target residues in the
peptide. With these rules, it is possible to
use any protein domain of the family under
study (SH3, kinase, and SH2), with similar
enough sequences, and match key residues
with predicted binding specificity. Predicting
the binding specificity of new domains in this
way can be very accurate but is only applica-
ble for domains thatare significantly similar to
the ones already studied (109). By this means,
current knowledge of binding specificity is ex-
tended to domains of identical sequences, but
several complex structures and experimen-
tally determined peptide-binding data must
be available for the domain family chosen.
These procedures are also related to the ap-
proach used by Aloy & Russell (15), described
above, for Ras/RBD interactions.

More recently, our group and the lab
of Wei Wang have used general purpose
energy force fields to predict the binding
specificity of peptide-binding domains (84,
110, 111; N. Sanchez, under review; G.
Fernandez-Ballester, in preparation). These
methods have the great advantage that no
domain-specific information is required aside
from a model of the complex for the do-
main under investigation. This might notbe a
difficult requirement because, in some cases,
this model can be obtained from homology
modeling, shown by Gregorio and colleagues,
manuscriptin preparation, and G. Fernandez-
Ballester, manuscript in preparation. As de-

scribed above for Ras-effector interactions, it
is possible to use these force fields to do in
silico mutagenesis of the target ligand. One
advantage of predicting protein-peptide in-
teractions is that the target ligand usually
adopts an extended conformation, and an-
other is that ligand positions can be assumed
to be mostly independent. From this com-
putational analysis, a position-specific scoring
matrix (PSSM) is created containing the infor-
mation on the preferred residues at each po-
sition in the ligand. Given that the target is a
peptide ligand and not a folded domain, using
these ligand matrices requires no domain in-
formation or modeling for the target protein
analyzed.

The main difficulty in applying these ap-
proaches to protein-peptide predictions is the
large conformation variability possible for the
ligand. SH3 ligands, for example, are usually
referred to as class I or class II ligands de-
pending on their orientation (112). Soon after
the initial peptide studies, a third group for
less common types of ligands was suggested
(113). Our own recent analysis of SH3 domain
complexes retrieved 29 SH3 ligands of differ-
ent conformations (G. Fernandez-Ballester,
in preparation). This large variability makes it
harder to evaluate the binding of putative tar-
gets because different amino acids might be
accommodated with movements of the pep-
tide backbone. As detailed above, it is pos-
sible to model each different conformation
separately and analyze the energy of all con-
formations, but the problem becomes harder
to tackle. Future improvements in domain-
peptide predictions from structure have much
to gain from programs capable of predicting
backbone movements upon mutation. This
can be achieved by incorporating molecular
dynamics algorithms (110) or fragment li-
braries (65).

Figure 7

Prediction accuracy for a test set of 50 ubiquitin-like domains modeled in complex with Ras and the
Ras-like protein, Rap1. (#) Homology modeling using loops. (6) Homology modeling without loops.
(¢) Prediction using position energy matrices. Abbreviation: AGiy,, interaction energy.
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Another disadvantage for target prediction
of domain-peptide prediction, when com-
pared to protein-protein predictions, is the
smaller specificity defined by the binding
surface. A domain-peptide interaction is usu-
ally determined by a small number of residues
in the target peptide (114), which makes them
difficult to identify in the proteome. How-
ever, many of these target sites are thought
to occur in unstructured regions of the pro-
teome (115). Interactions with unstructured
protein segments might be functionally im-
portant for different reasons (e.g., decoupling
of specificity and affinity, clustering of multi-
ple binding sites, faster rates of association and
dissociation), and many computational strate-
gies have been developed to predict these sites
of disorder [see the review by Radivojac et al.
(116) and Table 1]. Therefore, improvements
in binding accuracy can be achieved by re-
stricting the search of putative binding sites
to protein segments predicted to be intrinsi-
cally disordered (117).

4.3. Nonatomic Detail Prediction

In principle, predictions, which are based on
sequence alone, are not be possible because
only one residue change in the interface
could lead to complete loss of binding
affinity. However, aside from homology
modeling, which quantitatively describes the
interaction in atomic-level detail, nonatomic-
detail methods have been successfully used to
predict the interaction of proteins (15, 98).
These methods, such as Interaction Predic-
tion through Tertiary Structure (InterPreTS)
(http://www.russell.embl.de/cgi-bin/
interprets2) (99) and MULTIPROSPEC-
TOR (100), use empirical pair potentials,
which describe how well a homologous pair
of sequences fit into a complex structure.
Both were successfully applied to predict the
specificities of large domain families, e.g., the
complex between fibroblast growth factors
and their receptors (15).
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5. STRUCTURAL INFORMATION
AS A TOOL TO ANALYZE
PROTEIN INTERACTION
NETWORKS

As discussed above, structural information in
combination with protein design algorithms
can be used to predict new protein interac-
tions. However, there are other possible uses
of structural information in the analysis of in-
teraction networks. The relative interaction
energy, which is based on complex protein
structures, can be predicted in a fast and ac-
curate way with existing protein design al-
gorithms. Successful predictions of binding
affinities for wild-type and mutant complexes
have been carried out using the protein de-
sign algorithms FoldX (86-88) and Rosetta
(89-91). Examples are the prediction of Ras-
effector interactions (19, 61, 68) and ala-
nine mutations at the interface of a mem-
ber of the TNF-related apoptosis-inducing
ligand (TRAIL) family in complex with its
receptor, DR5 (92). Prediction of ubiquitin
with ubiquitin-interacting motifs also gives
the qualitatively correct trend (83). Struc-
tural information in combination with bioin-
formatic tools (118, 119) and/or protein de-
sign algorithms (21) can be used to predict the
functional effect of human single-nucleotide
polymorphisms.

As mentioned above protein design algo-
rithms usually predict changes in affinity ac-
curately. However, prediction of the absolute
value for a binding constant or kinetic param-
eter is more difficult. Thus, the interaction
energies for different protein complexes are
not easily transferable into affinity constants,
as derived from quantitative binding exper-
iments. However, for proteins of the same
family, and for complexes between proteins
that do not involve conformational changes
upon binding, rough estimates can be ob-
tained for the binding constant (19, 20) and
kon values (19, 51) provided that a calibra-
tion with experimental data has been done
first.
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Finally, we should mention the possibil-
ity of using structural information to parti-
tion protein interaction networks into struc-
turally compatible subnetworks. It is quite
obvious now that many proteins do have more
partners than surface available for interac-
tion and therefore that some interactions must
be mutually exclusive. In principle, if enough
information is available regarding the com-
plexes made by one protein or domain with
several other proteins or domains, one could
easily decide which interactions are simulta-
neously possible by doing a superimposition
and looking for excluded surfaces (104). In the
absence of structural information, it is pos-
sible to look for complexes involving homo-
logue domains and, assuming that proteins of
the same families will in general interact the
same way, do the same exclusion exercise (A.
Campagna, C. Kiel, & L. Serrano, manuscript
in preparation). With more structures and
complexes being deposited every day, the like-
lihood of dissecting protein interaction net-
works into functional subnetworks is becom-
ing more pausible and will be one of the main
contribuitions of structural biology to systems
biology.

6. MINING FOR BIOLOGICAL
CONTEXT

The structure-based methods described
above predict binding affinities in the same
way one would obtain them from in vitro
assays. Knowledge of binding affinities alone
is not sufficient to determine if proteins
interact inside the cell. What determines
binding in a living organism is a conjugation
of factors, such as expression levels, localiza-
tion, complex formation (i.e., scaffolding),
posttranslation modifications, splicing forms,
and association with small compounds. We
need what one could call the biological
context information or a way to predict it to
make inroads into in vivo binding predictions.
Some recent developments started to tackle
this problem by using integrative probabilis-
tic approaches that try to weight different

information sources and by combining them
with protein-binding specificity information
(61, 120). We explore, below, some of the
most commonly used methods to predict
protein-protein interactions and ways to
combine these into a single scoring function.

6.1. Sequence-Based Methods

Some early attempts to predict protein-
protein association came from the early com-
parative genomics analyses. For example, it
was observed that conserved proximity of two
open reading frames correlates with an in-
crease in likelihood of protein interaction be-
tween the coded proteins (121).

In similar fashion, it was shown that phylo-
genetic association of protein pairs also signals
functional linkage. That s, if two proteins are
always present or absent together (not nec-
essarily in close vicinity in the genome) in
many different species, then the two proteins
are likely part of the same complex/pathway
(122). Another sequence-based method re-
lies on the determination of protein fusion
events. In 1999, Marcotte and colleagues
(123) showed that if two proteins are some-
times seen in some species fused into one
contiguous protein, then these are very likely
related in function and, therefore, also more
likely to interact. These methods have the ad-
vantage that they only require the simple anal-
ysis of a large number of genomes, but they
do not directly predict protein interactions
but instead functional association. Another
disadvantage is that these methods are not
very effective in eukaryotic species, given that
they have a more complex genome structure
and fewer of these genomes are available to
study.

A different method to predict protein in-
teraction from sequence information was de-
veloped by Pazos and colleagues (124, 125).
Analyzing alignments of interacting proteins,
the authors showed that correlated muta-
tions, between the two proteins, are iden-
tifiable signals for protein-protein interac-
tion. This method not only identifies directly
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protein-protein association, but it also deter-
mines the protein-binding regions.

Since these works by Pazos et al., many
other metrics of correlated mutations have
been proposed [reviewed by Halperin et al.
(126)], although most have been directed
at studies of intramolecular interactions in-
stead of prediction of intermolecular contacts.
Halperin and colleagues (126) tested the ca-
pacity of these different measures to predict
protein-protein contacts and found most to
be weak predictors.

A related method to the study of correlated
mutations is the analysis of the coevolution
of entire sequences known as “mirror tree”
methods, pioneered by Goh and colleagues in
2000 (127) and further improved later, see the
review by Shoemaker & Panchenko (128). In
this approach, proteins from interacting pro-
tein families are aligned, and the correlation
of the obtained pairwise distances is used as a
signal of coevolution.

In both the correlated mutations and mir-
ror tree methods, it is assumed that the evo-
lution of the protein sequences of the inter-
acting families will be mostly driven by the
correlated changes in the binding epitopes.
Given that most of variance in protein evolu-
tionary rates can be explained by the level of
protein expression (129), itis possible that the
predictive power of these approaches might be
limited (130).

6.2. Domain Interaction Propensity

From the analysis of the different interaction
networks experimentally determined, one can
extract the likelihood that any two given pro-
tein domains might interact. This knowledge
of domain interaction propensities can then be
used to direct the prediction of new protein-
protein interactions (101-103). These ap-
proaches were further improved by advances
in the statistical analysis (13 1) with the current
top performing algorithm being the InSite
program (132). A great advantage of these ap-
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proaches is that they not only predict protein-
protein interactions but also directly inform
on the putative domains involved.

6.3. Graph Theory Methods

One early approach in the study of large cel-
lular interaction maps was to simplify the in-
formation into a graph form. Each component
was symbolized asanode, and each interaction
as an edge in the graph (133). This graph ab-
straction is, in many respects, too large a sim-
plification of what we already know of proteins
and cellular functions, but it allowed for a vast
number of studies regarding interaction net-
works (133-136). One interesting observation
coming from these graph studies is that pro-
tein interactions, or edges, can be predicted
just by looking at the graphs of currentincom-
plete interactomes (137, 138). Some recent
advances in protein-protein interaction pre-
diction have come from trying to do compar-
ative graph analysis between the interactomes
of different species (139, 140). This type of
approach, dubbed comparative interactomics
(141), can be thought of as the analogy to com-
parative genomics.

6.4. Integration of Different Methods

The proliferation of experimental and com-
putational methods to study protein-protein
interactions has prompted comparative stud-
ies of the different approaches (142). These
analyses have shown that the different exper-
imental and computational methods are not
overlapping, and all suffer from low accuracy
and low coverage when benchmarked against
a trusted dataset. Also, it was demonstrated
that interactions that were observed in more
than one of the analyses were more likely to be
a true interactions. From these first efforts to
compare the different methods came then the
idea that more reliable information can be ob-
tained from the combination of different ex-
perimental and computational observations.
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One year after the comparative analysis from
von Mering and colleagues (142), two dif-
ferent groups provided the first examples
of a statistical combination of the vari-
ous approaches with a Bayesian framework
(14, 143). This strategy was used in 2005
to integrate different information sources to
predict human protein interactions with con-
siderable success (10,000 predictions with a
20% false-positive rate) (144). Given the in-
terdependences that occur between the dif-
ferent datasets used, there is a limit to the
benefit obtained from this type of integration
(145).

These probabilistic weighting schemes can
be used to increase the reliability of interac-
tions determined by the prediction of binding
specificities. Recently this approach was used
to improve the prediction of human kinase
targets (120). In this work, known phospho-
rylation targets were linked to the most likely
kinase by combining information on binding
specificity with prediction of functional in-
teractions taken from the STRING database
(146). In our lab, we have used a naive Bayes
network to weigh different interaction pre-
dictors with a set of in vivo interactions re-
trieved from the Human Protein Reference
Database (147). This combined predictor was
then used to attribute confidence scores to pu-
tative Ras/RBDs (61).

We believe that effort should be made by
the community to establish prediction servers
thatare constantly updated to integrate mean-
ingful datasets and computation methods.
These servers in combination with putative
binding specificity should allow us to predict
biological pathways with great accuracy.

SUMMARY POINTS

7. LIMITATIONS

Structure-based prediction of protein-protein
interactions is becoming a mature field. The
recent advances in protein design algorithms
and MSAs, in combination with other bioin-
formatic approaches, allow genome-wide pre-
diction for particular domain interactions.
However, there are some serious limitations
that preclude its broad general use. The more
important one is the lack of enough struc-
tural templates in many cases, both at the level
of isolated domains and also at the level of
protein complexes. The quality of the predic-
tions is strictly related to the abundance of dif-
ferent templates that explore the conforma-
tional space available for a particular complex.
Molecular dynamics and chimeras can partly
compensate for it, but they require some ex-
pertise and are time consuming. It is impor-
tant that, in the future, structural genomics
projectscientists focus on filling the structural
gaps in families. Although it does not make
too much sense to determine the structure of
a domain if there is already a PDB record of
a closely related protein, filling the structural
gaps is critical to solve structures of sequences
with low homology.

Even with the best methodology (experi-
mental and computational), a detailed bioin-
formatic or experimental biological validation
should be done. Any computationally or ex-
perimentally determined Ky is meaningless in
the absence of a biological context. Thus, a
micromolar K could be relevant if the con-
centration is high or if one of the two pro-
teins is localized. Similarly, a nanomolar Ky is
meaningless if the two proteins never see each

other.

1. Methods to predict protein interactions on the basis of structural information can

complement large-scale experimental protein interaction networks.

2. All prediction methods are based on the finding that structurally similar domains

usually interact in a similar way.
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. However, itis not the fold per se which determines whether two proteins can interact,

but rather certain amino acid residues on the surface of this conserved fold determine
the affinity and specificity between the domains.

. Homology modeling is used to generate complex models for sequences that are ho-

mologous to the template (X-ray) structure, and interaction energies can be calculated
using protein design force fields.

. Energy matrices contain the binding energy contributions for all 20 amino acid

residues for every position in the interface. They can be used to quickly scan se-
quences and evaluate whether they are potential binding domains and need to be
modeled, and they can exclude sequences that cannot bind.

. Structural information can also be used to partition interaction networks into struc-

turally compatible subnetworks.

. Crude estimates of binding (equilibrium and kinetic) parameters as well as functional

consequences of point mutations can be obtained from structural analysis.

. Bioinformatics data integration helps validate predictions and provides further knowl-

edge about expression levels and localization.

. The main limitations of structure-based predictions are the quality of template struc-

tures, slightly different binding modes, and backbone changes of the participating
domains.

FUTURE ISSUES

1.

Kiel o

In the area of homology/interface modeling, the following importantissues need to be
solved: backbone moves, loop modeling, automatization of template selection (which
sequences are compatible with a specific template structure?).

. Structure-based sequence alignments need to be optimized.

. Current structural proteomics approaches will solve the structure of more protein

complexes and thus increase the number of template structures (~10,000 domain-
domain interaction types are predicted, so far only ~2,000 are known).

. The existing methods to predict domains based on the amino acid sequence need to

be optimized by taking secondary structure prediction and structural information into
account.

. Simulations have to be performed to integrate protein interaction network changes

(time and localization).

. Prediction of thermodynamic and kinetic parameters (Kq, kon, kofr) on the basis of

structure need to be further developed.

. The roles of different Kys/specificity for signal transduction and signaling flow have

to be studied.

. There is a need for bioinformatic servers, which are capable of integrating predicted

binding affinity with other experimental resources to determine biologically relevant
protein interactions.
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