
Receptor - ligand interactions:
- Equilibrium
- Thermo & kinetics
- Methods to determine
- Efficacy
"Receptor" can also be "enzyme" or more general "protein"

1

Receptor - Ligand interaction: How strong?

Gibbs free energy at equilibrium: $\Delta G^o = RT \ln(K_D)$

	Receptor - Ligand intera	action
Scaling interactions	s looking at the energy:	
Covalent bonds	200 - 400 kJ/mole	
Ion - dipole Anion-cation Dipole-dipole H-bond Ion - π π - π Van der Waals kT	50 - 200 6 at 3Å in water 5 - 50 4 - 13 5 - 80 0 - 50 2 - 4 per atom pair 2.48	Varenicline bound to acetylcholine binding protein
2 -	Thermodynamics	p. '

Receptor - Ligand interaction: Who long?

Association:

$$\frac{\delta[RL]}{\delta t} = k_{on} \cdot [R] \cdot [L] - k_{off} \cdot [RL]$$

Assuming
$$[L\tau] >> [R\tau]$$
: $[RL]_t = [RL]_{eq} \cdot (1 - e^{-(k_{on}\{L] + k_{off})t})$

Dissociation upon removal of **L**:

$$[RL]_t = [RL]_{eq} \cdot e^{-k_{off} \cdot t}$$

♦ The mean lifetime <7> of RL equals 1/koff

Kinetics

5

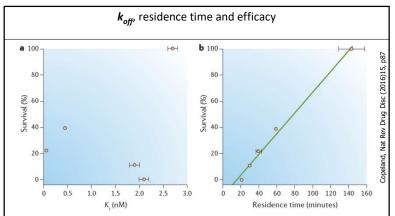
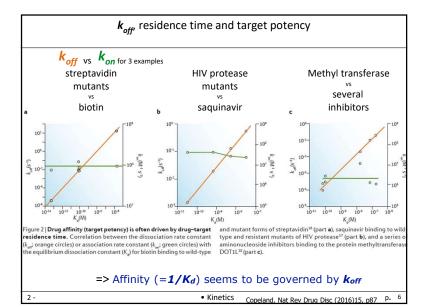
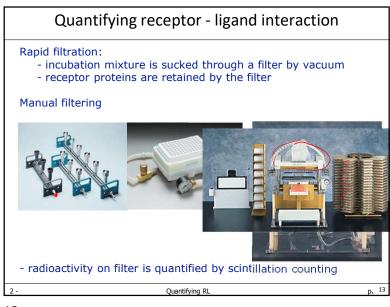



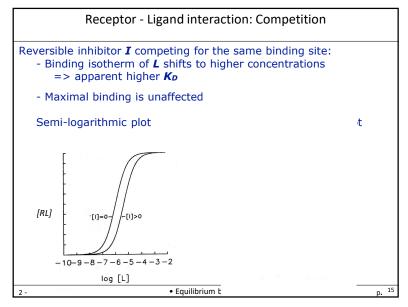
Figure 4 | In vivo efficacy often depends on drug-target residence time. Lu $et\,al.^{30}$ investigated the relationship between the residence time of a series of Fabl enoyl-reductase inhibitors and in vivo activity. The plots presented here show the percent survival of mice 10 days after they were infected with the bacterium Francisella tularensis and then treated with the inhibitors. \mathbf{a} | Correlation of percent survival with the inhibitior constant (K). \mathbf{b} | Correlation of percent survival with inhibitor residence time. Figure is adapted with permission from REF 5, Wiley.

• Kinetic

6

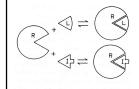

- Methods to determine binding

Loc	calising receptors in tissu	es
Auto	radiography of tissue slices incubated with radioactively labelled ligands	
Hi: hipocampus La: lateral layer Pir : pyramidal layer	B List	
Cb : cerebellum Sol : solaris nucleus tractus	D Sol X	See also: www.proteinatlas.org visible human project
DH : dorsal horn	B Sol	
	B	
2 -		p. ⁹


Quantify	ing and localising receptor - ligand interactions	
Receptor		
<u>Ligand</u>		
Assay format	Hamananana.	
2 -		p. ¹¹

	Quan	tifying recep	otor - ligand interaction	
=> Unders	tanding re	ceptor ligano	l interaction, e.g. for med	ical chemistry
3568 Journal of	Medicinal Chemi	stry, 2005, Vol. 48, No.	o. 10	Cappelli et
Table 2. 5-HT ₃ Re Quinoline Nucleus	ceptor Binding Af	finities of Compounds 6	Sa-n: Effects of the Variation of the Substitu	ents in Position 4 of the
compd	R	R_3	R ₄	$K_i \pm \text{SEM}^a (\text{nM})$
6a 6b 6c 6c 6c 6d 6c 6f 6g 6h 6i 6i 6i 6n	CH ₃ CH ₄ CH ₅ CH ₅ CH ₆ CH ₆ CH ₇	CH ₃ CH ₄ CH ₅ CH ₅ CH ₇ CH ₉ CH ₂	COC ₆ H ₂ COC ₆ H ₂ CH ₃ CON(CH ₂ CH ₃) CON(CH ₂ CH ₃) ₂ CON(CH ₂ CH ₃) ₂ CON(CH ₂ CH ₃) ₂ CON(CH ₂ CH ₂ CH ₃) ₂ CON(CH ₃ CH ₂ CH ₂ CH ₃) ₂ CON(CH ₃ CH ₂ CH ₂ CH ₂ CH ₃) ₂ CON(CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃) ₂ CON(CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃) ₂ CON(CH ₃ CH ₂ C ₄ T ₅ CON(CH ₃ CH ₂ CH ₂ CH ₃) CON(CH ₃ CH ₂ CH ₃ CH ₄	$\begin{array}{c} 0.84 \pm 0.17 \\ 0.43 \pm 0.02 \\ 1.6 \pm 0.70 \\ 0.37 \pm 0.09 \\ 2.2 \pm 0.55 \\ 0.11 \pm 0.004 \\ 0.78 \pm 0.12 \\ 19 \pm 2.4 \\ 188 \pm 50 \\ 0.55 \pm 0.15 \\ 0.45 \pm 0.12 \\ 13 \pm 4.1 \\ 2.7 \pm 0.52 \\ 0.17 \pm 0.02 \\ \end{array}$
2 -				p. ¹⁰

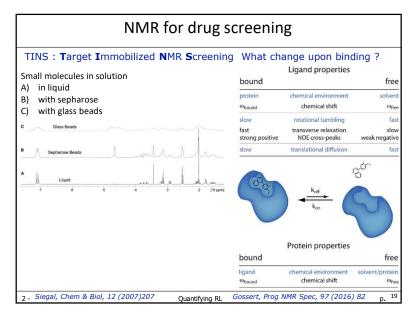
Heterogeneous methods : Separation neede	d	
How to determine RL without affecting the equilibrium?		
=> be fast, with separation times $< 1/k_{off}$		
Compare 2 standard separation methods:		
- Rapid filtration separation in ~ 1 sec - Gel filtration ~10-300 sec		
=> Only applicable in case high-affinity or very slow ligands		
2 - Quantifying RL	р.	12



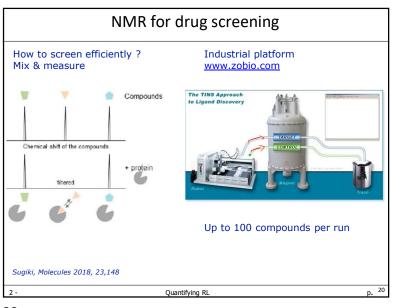
13

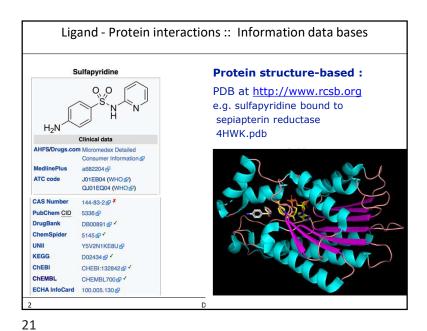
Ligand-binding assays with competition

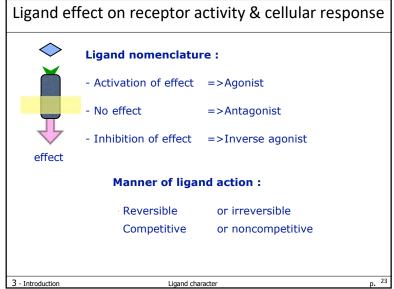
Reversible inhibitor \boldsymbol{I} competing for the $\underline{\textbf{same}}$ binding site:

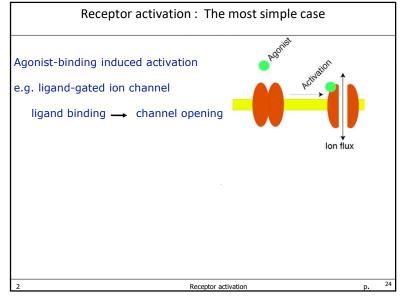


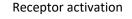
Equilibrium binding


14

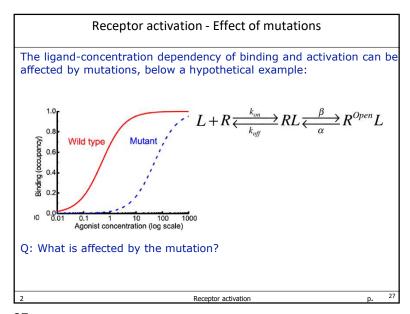

Receptor - Ligand interaction : Competition Increasing concentrations of [I] will compete out L for binding to receptor e.g. [Rt]=[Kt]=[L]= 10 nM ICso: [I] of half-maximal inhibition of binding of L to R 1 to R • Equilibrium binding p. 16

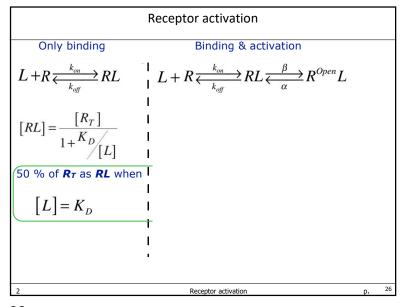

	Quan	tifying recep	otor - ligand interaction	
=> Unders	tanding re	ceptor ligano	d interaction, e.g. for med	ical chemistry
3568 Journal of	Medicinal Chemi	stry, 2005, Vol. 48, N	o. 10	Cappelli et
Table 2. 5-HT ₃ Re Quinoline Nucleus	ceptor Binding Af	finities of Compounds	6a-n: Effects of the Variation of the Substitu	ents in Position 4 of the
		(A NOW H	
compd	R	R_3	R ₄	$K_i \pm \text{SEM}^a (\text{nM})$
Ga Gb Gc Gd Ge Gf Gg Gh Gi	CH ₃ CH ₄ CH ₅ CH ₆ CH ₆ CH ₇	CH ₃ CH ₅ CH ₅ CH ₉ COOC ₂ H ₆	COC dHs COO(HgCHs) CON(CHgCHs)s2 CON(CHgCHs)s2 CON(CH(CHgCHgCHs)s2 CON(CHgCHgCHgCHs)s2 CON(CHgCHgCHgCHgCHs)s2 CON(CHgCHgCHgCHgCHgCHgCHgCHgCHgCHgCHgCHgCHgC	$\begin{array}{c} 0.84 \pm 0.17 \\ 0.43 \pm 0.02 \\ 1.6 \pm 0.70 \\ 0.37 \pm 0.09 \\ 2.2 \pm 0.55 \\ 0.11 \pm 0.004 \\ 0.78 \pm 0.12 \\ 19 \pm 2.4 \\ 188 \pm 50 \\ 0.55 \pm 0.15 \\ 0.45 \pm 0.12 \\ 13 \pm 4.1 \\ 2.7 \pm 0.52 \\ 0.17 \pm 0.02 \\ \end{array}$
) -				p. 1

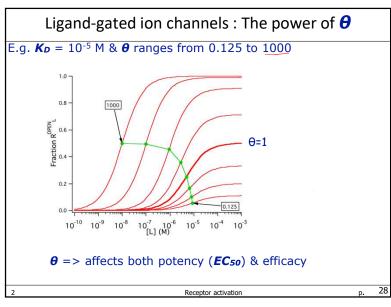

Methods to quantify	receptor - liga	and interaction
	Label-free	Labelled
Homogeneous	ITC. NMR	radioactive*
	CETSA	fluorescence
Heterogeneous	GC, LC, MS	radioactive
		fluorescence
Cr	iteria for evaluation: Through-put Reproducibility	
	Cost	
	Working range Ease of handling	
	Environment	

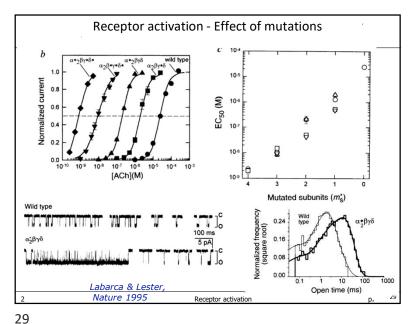


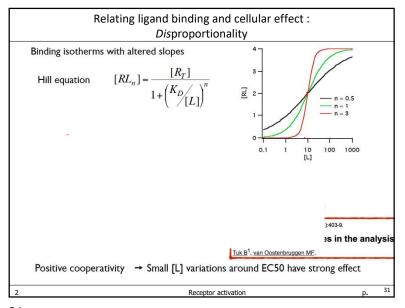
- Efficacy




Ligand binding is followed by a structural change that leads to opening of an internal channel


Del Castillo-Katz equation (1957): $L + R \xrightarrow{k_{on}} RL \xrightarrow{\beta} R^{Open}L$


Receptor activation


25

Relating ligand binding and cellular effect: **Disproportionality**

Binding isotherms with altered slopes

Single receptors have multiple binding sites for the same ligand.

Ligand binding might or not affect affinity for binding to remaining sites

 $R + nL \leftrightarrow RL_n$

In a linear mechanism:
$$K_D^{global} = \frac{[R] \cdot [L]^n}{[RL_n]} = \prod_{i=1}^n \frac{[RL_{i-1}] \cdot [L]}{[RL_i]} = \prod_{i=1}^n K_{Di}$$

Hill equation:
$$K_{Di} = K_{Dj} = RL_n = \frac{[R_T]}{1 + \left(\frac{K_D}{[L]}\right)^n}$$

n: Hill coefficient

Receptor activation

Hille, 1910

30

Further reading:

Stryer

Solution
Colquhoun 1998 : Receptor - ligand interactions

Colquhoun 2006: Historical perspective

Copeland 2016: Drug-target residence time

Next week:

Molecular interactions

https://www.proteinatlas.org

2 - Introduction

31