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A mobile robotic chemist
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Brandon Harris1, Reiner Sebastian Sprick1 & Andrew I. Cooper1 ✉

Technologies such as batteries, biomaterials and heterogeneous catalysts have 
functions that are defined by mixtures of molecular and mesoscale components.  
As yet, this multi-length-scale complexity cannot be fully captured by atomistic 
simulations, and the design of such materials from first principles is still rare1–5. 
Likewise, experimental complexity scales exponentially with the number of variables, 
restricting most searches to narrow areas of materials space. Robots can assist in 
experimental searches6–14 but their widespread adoption in materials research is 
challenging because of the diversity of sample types, operations, instruments and 
measurements required. Here we use a mobile robot to search for improved 
photocatalysts for hydrogen production from water15. The robot operated 
autonomously over eight days, performing 688 experiments within a ten-variable 
experimental space, driven by a batched Bayesian search algorithm16–18. This 
autonomous search identified photocatalyst mixtures that were six times more active 
than the initial formulations, selecting beneficial components and deselecting 
negative ones. Our strategy uses a dexterous19,20 free-roaming robot21–24, automating 
the researcher rather than the instruments. This modular approach could be 
deployed in conventional laboratories for a range of research problems beyond 
photocatalysis.

The mobile robot platform is shown in Fig. 1a and Extended Data Fig. 1. It 
can move freely in the laboratory and locates its position using a combi-
nation of laser scanning coupled with touch feedback for fine position-
ing (Methods and Supplementary Video 1). This gave an (x, y) positioning 
precision of ±0.12 mm and an orientation precision of θ ± 0.005° within 
a standard laboratory environment with dimensions 7.3 m × 11 m (Fig. 1b; 
Extended Data Fig. 2; Supplementary Figs. 1–10). This precision allows 
the robot to carry out dexterous manipulations at the various stations 
in the laboratory (Fig. 1; Extended Data Fig. 3) that are comparable to 
those performed by human researchers, such as handling sample vials 
and operating instruments. The robot has human-like dimensions and 
reach (Fig. 1a, d) and it can therefore operate in a conventional, unmodi-
fied laboratory. Unlike many automated systems that can dispense only 
liquids, this robot dispenses both insoluble solids and liquid solutions 
with high accuracy and repeatability (Supplementary Figs. 12, 13, 16–20), 
broadening its utility in materials research. Factoring in the time needed 
to recharge the battery, this robot can operate for up to 21.6 h per day 
with optimal scheduling. The robot uses laser scanning and touch feed-
back, rather than a vision system. It can therefore operate in complete 
darkness, if needed (Supplementary Video 2), which is an advantage 
when carrying out light-sensitive photochemical reactions, as here. 
The robot arm and the mobile base comply with safety standards for 
collaborative robots, allowing human researchers to work within the 
same physical space (Supplementary Information section 1.5). A video 
of the robot operating an autonomous experiment over a 48-h period 
is shown in Supplementary Video 1.

The benefits of combining automated experimentation with a 
layer of artificial intelligence (AI) have been demonstrated for flow 

reactors25, photovoltaic films13, organic synthesis8–10,14, perovskites26 
and in formulation problems18. However, so far no approaches have 
integrated mobile robotics with AI for chemical experiments. Here, 
we built Bayesian optimization16–18 into a mobile robotic workflow to 
conduct photocatalysis experiments within a ten-dimensional space. 
Semiconductor photocatalysts that promote overall water splitting 
to produce both hydrogen and oxygen are still quite rare15. For many 
catalysts, a sacrificial hole scavenger is needed to produce hydrogen 
from water, such as triethylamine (TEA)27 or triethanolamine (TEOA)28, 
and these amines are irreversibly decomposed in the reaction. It has 
proved difficult to find alternative hole scavengers that compete with 
these organic amines29.

Our objective was to identify bioderived hole scavengers with effi-
ciencies that match petrochemical amines and that are not irreversibly 
decomposed, with the long-term aim of developing reversible redox 
shuttles. The photocatalyst that we chose was P10, a conjugated poly-
mer that shows good HERs in the presence of TEOA28. We first used the 
robot to screen 30 candidate hole scavengers (Extended Data Fig. 4). 
This was done using a screening approach, without any AI. Initially, the 
robot loads a solid-dispensing station that weighs any solid compo-
nents into sample vials (Fig. 1c), in this case the catalyst, P10. Next, the 
vials are transported 16 at a time in a rack to a dual liquid-dispensing 
station (Extended Data Fig. 3c), where the liquid components are added; 
here, 50 g l−1 aqueous solutions of the candidate hole scavengers (Sup-
plementary Videos 3, 4). The robot then places the vials into a capping 
station, which caps the vials under nitrogen (Supplementary Fig. 21; 
Supplementary Video 5). Optionally, the capped vials are then placed 
into a sonication station (Supplementary Fig. 23; Supplementary 
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Video 3) to disperse the solid catalyst in the aqueous phase. The vials 
are then transported to a photolysis station, where they are illuminated 
with a mixture of ultraviolet and visible light (Fig. 1a; Extended Data 
Fig. 3b; Supplementary Fig. 24; Supplementary Video 6). After photoly-
sis, the robot transfers the vials to a head space gas chromatography 
station where the gas phase is analysed for hydrogen (Fig. 1d) before 
storage of completed samples (Fig. 1e). Except for the capping station 
and the photolysis station, which were built specifically for this work-
flow, the other stations used commercial instruments with no physical 
hardware modifications: the robot operates them in essentially the 
same way that a human researcher would.

Conditional automation was used in this hole scavenger screen to 
repeat any hits; that is, samples that showed a hydrogen evolution rate 
(HER) of >200 µmol g−1 h−1 were automatically re-analysed five times. 
Most of the 30 scavengers produced little or no hydrogen (Extended Data 
Fig. 4), except for l-ascorbic acid (256 ± 24 µmol g−1 h−1) and l-cysteine 
(1,201 ± 88 µmol g−1 h−1). Analysis by 1H nuclear magnetic resonance 
(NMR) spectroscopy showed that l-cysteine was cleanly converted to 
l-cystine (Supplementary Fig. 32), indicating that it may have potential 
as a reversible redox shuttle in an overall water splitting scheme30.

While it showed promise as a hole scavenger, l-cysteine produced 
much less hydrogen than an aqueous solution of TEOA at the same 
gravimetric concentration (2,985 ± 103 µmol g−1 h−1 at 50 g l−1). We 
therefore sought to increase the HER of the P10/l-cysteine system by 
using an autonomous robotic search based on five hypotheses (Fig. 2a).  

The first hypothesis was that dye sensitization might improve light 
absorption and hence the HER, as found for the structurally related 
covalent organic framework, FS-COF31. Here, three dyes were investi-
gated (Rhodamine B, Acid Red 8731 and Methylene Blue). Second, we 
hypothesized that pH might influence the catalytic activity (NaOH 
addition). The third hypothesis was that ionic strength could also be 
important32 (NaCl addition). Catalyst wettability is known to be a factor 
in photocatalytic hydrogen evolution using conjugated polymers33, 
so the addition of surfactants (sodium dodecyl sulphate, SDS, and 
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Fig. 1 | Autonomous mobile robot and experimental stations. a, Photograph 
showing robot loading samples into the photolysis station. b, Map of the 
laboratory generated by laser scanning showing positions of the eight stations; 
the orange crosshairs indicate recorded navigation locations and the robot 
position is indicated by the green rectangle. Inputs 1–3 are areas for the storage 
of empty vials or completed sample racks. GC, gas chromatography station.  
c, Robot loading empty sample vials into the solid-dispensing station before 
dispensing the photocatalyst. d, Loading the gas chromatography station with 
a new rack of samples for analysis. e, Storing racks of completed samples in 
Input Station 1 after gas chromatography analysis.
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Fig. 2 | Hypothesis-led autonomous search strategy. a, The robot searches 
chemical space to optimize the activity of the photocatalyst + scavenger 
combination according to five separate hypotheses. It does this by 
simultaneously varying the concentration of the ten chemical species shown 
here. b, Plot showing the size of the simplex, or the search space, created with a 
discretization of 19 concentrations for each liquid and 21 concentration levels 
for the solid catalyst, P10, which corresponds to the solid/liquid dispensing 
precision over the constrained space of the experiment. For this 
ten-component problem, the full simplex has 98,423,325 points.
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polyvinylpyrrolidone, PVP) formed our fourth hypothesis. Fifth, we 
speculated that sodium disilicate might act as a hydrogen-bonding 
anchor for the scavenger, l-cysteine, or for the dyes, based on the 
observation that it aids in the absorption of dyes onto the surface of 
carbon nitride34.

These five hypotheses had the potential to be synergistic or 
anti-synergistic; for example, ionic strength could either enhance or 
decrease dye absorption onto the surface of the photocatalyst. We 
therefore chose to explore all five hypotheses at once. This involved 
the simultaneous variation of the concentration of P10, l-cysteine, 
the three dyes, NaOH, NaCl, the two surfactants, and sodium disili-
cate, which equates to a ten-variable search space (Fig. 2a). The space 
was constrained by the need to keep a constant liquid volume (5 ml) 
and therefore head space for gas chromatography analysis and by the 
minimal resolution for liquid dispensing module (0.25 ml) and solid 
dispensing module (0.2 mg).

Problems of this type are defined by a simplex that scales exponen-
tially with size (Fig. 2b). For this specific search space, there were more 
than 98 million points. Full exploration of such a space is unfeasible, 
so we developed an algorithm that performs Bayesian optimization 
based on Gaussian process regression and parallel search strategy35 
(see Methods). To generate a new batch, we build a surrogate model 
predicting the HER of potential formulations based on the measure-
ments performed so far and quantify the uncertainty of prediction. 
Subsequent sampling points are chosen using a capitalist acquisition 
strategy, where a portfolio of upper confidence bound functions is 
generated on an exponential distribution of greed to create markets 
of varying risk aversion, which are searched for global maxima. Each 
market is given an agent that searches to return a global maximum, 

or batch of k-best maxima. The uneven distribution of greed allows 
some suggested points to be highly exploitative, some to be highly 
explorative, and most to be balanced, thus making the strongest use 
of the parallel batch experiments.

The output from this autonomous robotic search is shown in Fig. 3a. 
The baseline HER for P10 and l-cysteine only (5 mg P10 in 5 ml of 20 g l−1 
l-cysteine) was 3.36 ± 0.30 µmol h−1. Given that the robot would operate 
autonomously over multiple days, this two-component mixture was 
repeated throughout the search (two samples per batch) to check for 
long-term experimental stability (black squares in Fig. 3a). Initially, 
the robot started with random conditions and discovered multicom-
ponent catalyst formulations that were mostly less active than P10 
and l-cysteine alone (the first 22 experiments in Fig. 3a). The robot 
then discovered that adding NaCl provides a small improvement to 
the HER, validating the hypothesis that ionic strength is important. 
In the same period, the robot found that maximizing both P10 and 
l-cysteine increased the HER. In further experiments (15–100), the 
robot discovered that none of the three dyes or the two surfactants 
improves the HER; indeed, they are all detrimental, counter to our 
first and fourth hypotheses. These five components were therefore 
deselected after around 150 experiments (Fig. 4); that is, after about 
2 days in real experimental time (Fig. 3a). Here, P10 differs from the 
structurally related crystalline fused-sulfone covalent organic frame-
work (FS-COF), where the addition of Acid Red 87 increased the HER31. 
After 30 experiments, the robot learned that adding sodium disilicate 
improves the HER substantially in the absence of dyes (up to 15 µmol 
after 300 experiments), while deprioritizing the addition of NaOH and 
NaCl. After 688 experiments, which amounted to 8 days of autonomous 
searching, the robot found that the optimum catalyst formulation is a 
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Fig. 3 | Output from the autonomous robotic search. a, Plot showing 
hydrogen evolution achieved per experiment in an autonomous search that 
extended over 8 days. Sixteen experiments were performed per batch, along 
with two baseline controls. The baseline hydrogen evolution was 
3.36 ± 0.30 µmol (black squares). The maximum rate attained after 688 
experiments was 21.05 µmol h−1. The robot made 319 moves between stations 

and travelled a total distance of 2.17 km during this 8-day experiment. b, Radar 
plot showing the evolution of the average sampling of the search space in 
millilitres; the scale denotes the fraction of maximum solution volume 
dispensed. The starting conditions (Batch 1) were chosen randomly. The best 
catalyst formulation found after 43 batches contained P10 (5 mg), NaOH (6 mg), 
l-cysteine (200 mg) and Na2Si2O5 (7.5 mg) in water (5 ml).
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mixture of NaOH, l-cysteine, sodium disilicate and P10, giving a HER of 
21.05 µmol h−1, which was six times higher than the starting conditions.

A number of scientific conclusions can be drawn from these data. 
Increased ionic strength is beneficial for hydrogen production (NaCl 
addition), but not as beneficial as increasing the pH (NaOH/sodium 
disilicate addition), which also increases the ionic strength. We had 
not investigated surfactant addition before, but for the two surfactants 
studied here, at least, the effect on catalytic activity is purely negative. 
Intriguingly, the dye sensitization that we observed for a structurally 
similar covalent organic framework, FS-COF31, does not translate to this 
polymer, P10, possibly because the COF is porous whereas P10 is not.

To explore the dependence of the algorithmic search performance 
on the random starting conditions, we carried out 100 in silico virtual 
searches, each with a different random starting point, using a regression 
model and random noise to return virtual results (Supplementary Infor-
mation section 7). Around 160 virtual experiments were needed, on 
average, to find solutions with 95% of the global maximum HER (Fig. 5).

We estimate that it would have taken a human researcher several 
months to explore these five hypotheses in the same level of detail 
using standard, manual approaches (Supplementary Fig. 31). Man-
ual hydrogen evolution measurements require about 0.5 days of 
researcher time per experiment (1,000 experiments take 500 days). 
The semi-automated robotic methods that we developed recently33 can 
perform 100 experiments per day (a half-day to set up, plus a half-day 
for automatic dispensing and measurement; 1,000 experiments take 

10 days, of which 5 days are dedicated researcher time). The autono-
mous robot that we present here also requires half a day to set it up 
initially, but it then runs unattended over multiple days (1,000 experi-
ments take 0.5 days of researcher time). Hence, the autonomous work-
flow is 1,000 times faster than manual methods, and at least ten times 
faster than semi-automated but non-autonomous robotic workflows. 
It is unlikely that a human researcher would have persevered with this 
multivariate experiment using manual approaches given that it might 
have taken 50 experiments or 25 days to locate even a modest enhance-
ment in the HER (Fig. 3a). The platform allows us to tackle search spaces 
of a size that would otherwise be impossible, which is an advantage for 
problems where our current level of understanding does not allow us 
to reduce the number of candidate components to a more manageable 
number. There were ten components in the example given here, but 
search spaces with up to at least 20 components should be tractable 
with some modifications to the algorithm.

It took an initial investment of time to build this workflow (approxi-
mately 2 years), but once operating with a low error rate (Supplemen-
tary Fig. 38), it can be used as a routine tool. The time required to 
implement this approach in another laboratory would be much shorter, 
since much of the 2-year development timescale involved core proto-
cols and software that are transferable to other research problems. Also, 
this modular approach to laboratory automation uses instruments in 
a physically unmodified form, so that it will be straightforward to add 
further modules, such as for NMR or X-ray diffraction, now that the basic 
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Fig. 4 | Selection and deselection of 
photocatalyst formulation components. Plots 
showing the mass (in milligrams for P10) or 
volume (millilitres for all other components) 
dispensed for the various components in the 
search space as a function of experiment. The 
photocatalyst, P10, and the scavenger, l-cysteine, 
are selected, along with sodium disilicate 
(Na2Si2O5) and NaOH. All other components were 
deselected after around 150 experiments. The 
three dyes and the two surfactants had a negative 
effect on the HER. NaCl had a small positive effect, 
but less so than the four selected components, 
and it was therefore deselected. Note that NaOH 
was initially deselected, and not included in 
experiments 15–283 (see black arrow), while 
Na2Si2O5 and l-cysteine were favoured. The 
positive effect of NaOH was initially masked by 
negative components such as the dyes. Later in 
the search, NaOH was favoured, ultimately in 
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principles are in place. This modularity makes our strategy applicable 
to a wide range of research problems beyond chemistry. The speed and 
efficiency of the method allow the exploration of large multivariate 
spaces, and the autonomous robot has no confirmation bias36; this 
raises the prospect of emergent function in complex, multi-component 
materials that we could not design in the conventional way. Autono-
mous mobile robots could also have extra advantages in experiments 
with especially hazardous materials, or where traceability and auditing 
are important, such as in pharmaceutical processes.

This approach also has some limitations. For example, the Bayesian 
optimization is blind, in that all components have equal initial impor-
tance. This robotic search does not capture existing chemical knowl-
edge, nor include theory or physical models: there is no computational 
brain. Also, this autonomous system does not at present generate and 
test scientific hypotheses by itself37. In the future, we propose to fuse 
theory and physical models with autonomous searches: for example, 
computed structures and properties1–5 could be used to bias searches 
towards components that have a higher likelihood of yielding the 
desired property. This will be important for search spaces with even 
larger numbers of components where purely combinatorial approaches 
may become inefficient. To give one example, energy–structure–func-
tion maps38 could be computed for candidate crystalline components 
to provide Boltzmann energy weightings39 for calculated properties, 
such as a charge transport or optical gap, to bias the robotic search.
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Methods

Robot specifications
The robot used was a KUKA Mobile Robot mounted on a KUKA Mobile 
Platform base (Fig. 1a; Extended Data Fig. 1). The robot arm has a 
maximum payload of 14 kg and a reach of 820 mm. The KUKA Mobile 
Platform base can carry payloads of up to 200 kg. The robot arm and 
the mobile base have a combined mass of approximately 430 kg. The 
movement velocity of the robot was restricted to 0.5 m s−1 for safety rea-
sons (section 1.5 of the Supplementary Information,). A multipurpose 
gripper was designed to grasp 10-ml gas chromatograph sample vials, 
solid dispensing cartridges, and a 16-position sample rack (Extended 
Data Fig. 5), thus allowing a single robot to carry out all of the tasks 
required for this workflow. This robot was specified to be a flexible 
platform for a wide range of research tasks beyond those exemplified 
here; for example, the 14 kg payload capacity for the arm is not fully 
used in these experiments (one rack of filled vials has a mass of 580 g), 
but it could allow for manipulations such as opening and closing the 
doors of certain equipment. Likewise, the height and reach of the robot 
allows for operations such as direct loading of samples into the gas 
chromatograph instrument (Fig. 1d). By contrast, a smaller and perhaps 
less expensive robot platform might require an additional, dedicated 
robot arm to accomplish this, or inconvenient modifications to the 
laboratory, such as lowering bench heights.

Robot navigation
In a process analogous to simultaneous localization and mapping 
(SLAM)40, the robot tracks a cloud of possible positions, and updates 
its position to the best fit between the output of its laser scanners and 
the map for each position in the cloud. The position of the robot is 
determined by x and y (its position on the map) and θ (its orientation 
angle). Histograms of the robot position measured over 563 move-
ments are shown in Supplementary Figs. 2–5, which show that the  
(x, y) positioning precision was better than ±10 mm and the orienta-
tion precision was less than ±2.5°, as achieved within a real, working 
laboratory environment. This level of precision allows navigation to the 
various experimental stations in the laboratory, but it does not allow 
fine manipulations, such as placement of sample vials. The precision 
was therefore enhanced by using a touch-sensitive 6-point calibration 
method. Here, the robot touches six points on a cube that is associated 
with each experimental station to find the position and orientation of 
the cube relative to the robot (Supplementary Figs. 7–11). This increased 
the positioning precision to ±0.12 mm and the orientation precision to 
±0.005°. This makes it possible for the robot to operate instruments 
and to carry out delicate manipulations such as vial placements at a 
level of precision that is broadly comparable to a human operator.

Experimental stations
The workflow comprised six steps, each with its own station. Solid 
dispensing was carried out with a Quantos QS30 instrument (Mettler 
Toledo) (Fig. 1c; Supplementary Fig. 11; Extended Data Fig. 3a; Sup-
plementary Video 3). Liquid dispensing was carried out with a bespoke 
system that used a 200 series Mini Peristaltic Pump (Williamson) and 
a PCG 2500-1 scale (Kern), to dispense liquids gravimetrically using a 
feedback loop (section 2.2 in Supplementary Information; Supplemen-
tary Video 5). This system showed excellent precision and accuracy for 
a range of aqueous and non-aqueous liquids over 20,000 dispenses 
(Supplementary Figs. 16, 17, 19, 20). A bespoke instrument was built 
(Labman) to allow both for sample inertization (to exclude oxygen) 
and cap crimping in one step. It would be straightforward to modify 
this platform to allow other gases to be introduced; for example, to 
study photocatalytic CO2 reduction. The instrument used caps from a 
vibratory bowl feeder to cap-crimp 10-ml headspace vials (section 2.2 
in Supplementary Information; Supplementary Video 5). If required, a 
sonication station was used to disperse the solid photocatalyst in the 

aqueous solution, before reaction (Supplementary Fig. 23). Photolysis 
was carried out at a bespoke photolysis station (Fig. 1a) that uses vibra-
tion to agitate liquids and a light source that is composed of BL368 
tubes and LED panels (Extended Data Fig. 5b; Supplementary Fig. 24; 
Supplementary Video 6). Gas chromatograph measurements were per-
formed with a 7890B GC and a 7697A Headspace Sampler from Agilent 
GC (Supplementary Video 3; Extended Data Fig. 3d). The experimental 
stations were controlled by a process management system module, 
which contains all of the process logic for controlling the labware. 
Communication between the process management system and the 
stations was achieved using various communication protocols (TCP/IP 
over WIFI/LAN; RS-232), as detailed in section 2.7 in the Supplementary 
Information (Supplementary Fig. 28).

Autonomous search procedure and scheduling
The robot worked with batches of 16 samples per sample rack and ran 
43 batches (688 experiments) during the search. Of these 688 experi-
ments, 11 results were discarded because of workflow errors or because 
the system flagged that the oxygen level was too high (faulty vial seal). 
It took, on average, 183 min to prepare and photolyse each batch of 
samples and then 232 min per batch to complete the gas chromatograph 
analysis. The detailed timescales for each of the step in the workflow 
are shown in Extended Data Fig. 6. The work was heuristically sched-
uled in parallel, with the robot starting the oldest available scheduled 
job. While the robot was working on one job, other instruments, such 
as the solid dispenser, the photolysis station and the gas chromato-
graph, worked in parallel. This system can process up to six batches 
at once, but given the timescales for this specific workflow, where the 
preparation/reaction time is approximately equal to the analysis time, 
the robot processed two batches simultaneously. That is, it prepared 
samples and ran photolysis for one batch while analysing the hydrogen 
produced for the second batch using the gas chromatograph. The robot 
recharged its battery automatically in between two jobs when the bat-
tery charge reached a 25% threshold. The robot was charged but idle 
for approximately 32% of the time in this experiment, largely because 
of time spent waiting for the gas chromatograph analysis, which is the 
slow step. In principle, this time could be used to run other experiments 
in parallel. The autonomous workflow was programmed to alert the 
operator automatically when the system is out of stock (if, for example, 
it ran out of sample vials or stock solutions were low), or if a part of the 
workflow failed (section 8 of the Supplementary Information). Most 
errors could be reset remotely without being in the laboratory because 
all stations were equipped with 24/7 closed-circuit television cameras 
(Supplementary Fig. 39).

Bayesian search algorithm
The AI guidance for the autonomous mobile robot was a batched, con-
strained, discrete Bayesian optimization algorithm. Traditionally, 
Bayesian optimization is a serial algorithm tasked with finding the 
global maximum of an unknown objective function16. Here, this equates 
to finding the optimal set of concentrations in a multicomponent mix-
ture for photocatalytic hydrogen generation. The algorithm builds a 
model that can be updated and queried for the most promising points 
to inform subsequent experiments. This surrogate model is con-
structed by first choosing a functional prior ϕ θ( )prior

, informed by exist-
ing chemical knowledge (if any). Given data D and a likelihood model 

Dϕ θ( | )likelihood , this yields a posterior distribution of models using 
Bayes’ theorem:
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D
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ϕ θ ϕ θ

ϕ
( | ) =

( | ) ( )

( )
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posterior
likelihood prior

The Gaussian process prior used a Matern similarity kernel, constant 
scaling and homoscedastic noise41. This composite kernel allows for var-
iable smoothness, catalytic activity and experimental noise. The form 



and respective hyperparameters were refined using cross-validation 
on other, historical photocatalysis datasets (350 experiments). Other 
alternatives for a functional prior included Bayesian neural networks17; 
but Gaussian processes were selected here for robustness and flexibil-
ity42. An acquisition function, αUCB, was assembled from the posterior 
distribution by considering the posterior mean, μ(x), and uncertainty, 
σ(x). The maximum of this function was then used as the next suggested 
experiment. To balance exploitation (prioritizing areas where the mean 
is expected to be largest) and exploration (prioritizing areas where the 
model is most uncertain), we used an upper confidence bound that 
is dependent on a single hyperparameter, β, to govern how ‘greedy’ 
(exploitative) the search is:

Dα x μ x βσ x( ; ) : = ( ) + ( ) (2)UCB

The portfolio of acquisition functions for different values of β, 
which we call markets, was used to generate a batch. This ‘capitalist’ 
approach has the advantage of simple parallelization and is robust 
across variable batch sizes35. Our method allowed us to constrain 
the sum of all liquid components to 5 ml to allow a constant gas 
headspace volume for gas chromatograph analysis. The sum total 
volume constraint was handled during the market searches; dis-
cretization, which was determined by instrument resolution, was 
handled after the market searches. The market search was completed 
using a large initial random sampling followed by a batch of seeded 
local maximizations using a sequential least-squares programming 
(SLSQP) algorithm as implemented in the scipy.optimize package. 
This maximization occurs in a continuous space, and the results 
are placed into discrete bins following the experimental precision. 
The explored space is tracked as a continuous variable for model 
building and as a discrete variable for acquisition function maximi-
zation. The algorithm was implemented using the scikit-learn and 
in scipy packages43.

Materials and synthetic procedures
The polymeric photocatalyst P10 was synthesized and purified accord-
ing to a modification on a literature procedure44 (section 10 of the Sup-
plementary Information). For solid dispensing, the polymer was ground 
with mortar and pestle before use. Sodium disilicate was obtained as a 
free sample from Silmaco. Tap water was purified with PURELAB Ultra 
System. All other materials were purchased from Sigma-Aldrich and 
used as received.

Data availability
The implementation of the liquid-dispensing station, photolysis sta-
tion and the workflow, along with three-dimensional designs for lab-
ware developed in the project, are available at https://bitbucket.org/
ben_burger/kuka_workflow, the code for the robot at and the Bayes-
ian optimizer is available at https://github.com/Taurnist/kuka_work-
flow_tantalus and https://github.com/CooperComputationalCaucus/
kuka_optimizer. Additional design details can be obtained from the 
authors upon request.
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Extended Data Fig. 1 | Mobile robotic chemist. The mobile robot used for this 
project, shown here performing a six-point calibration with respect to the black 
location cube that is attached to the bench, in this case associated with the 
solid cartridge station (see also Supplementary Fig. 11 and Extended Data 
Fig. 3a).



Extended Data Fig. 2 | Laboratory space used for the autonomous experiments. The key locations in the workflow are labelled. Other than the black location 
cubes that are fixed to the benches to allow positioning (see also Extended Data Fig. 1), the laboratory is otherwise unmodified.
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Extended Data Fig. 3 | Stations in the workflow. a, Photograph showing the 
robot at the solid dispensing / cartridge station. The two cartridge hotels can 
hold up to 20 different solids; here, four cartridges are located in the hotel on 
the left. The door of the Quantos dispenser is opened using custom workflow 
software that interfaces with the command software that is supplied with the 
instrument before loading the correct solid dispensing cartridge into the 
instrument (Supplementary Video 3). Since the KUKA Mobile Robot is 
free-roaming and has an 820 mm reach, it would be simple to extend this 
modular approach to hundreds or even thousands of different solids given 
sufficient laboratory space. b, Photograph showing the KUKA Mobile Robot at 

the photolysis station (see also Supplementary Videos 3, 6). c, Photograph 
showing the KUKA Mobile Robot at the combined liquid handling/capping 
station. The robot can reach both the liquid stations and the Liverpool 
Inertization Capper-Crimper (LICC) station after six-point positioning, such 
that liquid addition, headspace inertization and capping can be carried out in a 
single coordinated process (see Supplementary Videos 3, 5), without any 
position recalibration. d, Photograph of the KUKA Mobile Robot parked at the 
headspace gas chromatography (GC) station. The gas chromatography 
instrument is a standard commercial instrument and was unmodified in this 
workflow.



Extended Data Fig. 4 | Hydrogen evolution rates for candidate bioderived 
sacrificial hole scavengers. Results of a robotic screen for sacrificial hole 
scavengers using the mobile robot workflow. Of the 30 bioderived molecules 
trialed, only cysteine was found to compete with the petrochemical amine, 

triethanolamine. Scavengers are labelled with the concentration of the stock 
solution that was used (5 ml volume; 5 mg P10). The error bars show the 
standard deviation.
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Extended Data Fig. 5 | Multipurpose gripper used in the workflow. The 
gripper is shown grasping various objects. a, The empty gripper; b, gripper 
holding a capped sample vial (top grasp); c, gripper holding an uncapped 
sample vial (side grasp); d, gripper holding a solid-dispensing cartridge; and  

e, gripper holding a full sample rack using an outwards grasp that locks into 
recesses in the rack. The same gripper was also used to activate the gas 
chromatography instrument using a physical button press (see Supplementary 
Video 3; 1 min 52 s).



Extended Data Fig. 6 | Timescales for steps in the workflow. Average 
timescales for the various steps in the workflow (sample preparation, 
photolysis and analysis) for a batch of 16 experiments. These averages were 
calculated over 46 separate batches. These average times include the time 

taken for the loading and unloading steps (for example, the photolysis time 
itself was 60 min; loading and unloading takes an average of 28 min per batch). 
The slowest step in the workflow is the gas chromatography analysis.
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