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Technologies such as batteries, biomaterials and heterogeneous catalysts have
functions that are defined by mixtures of molecular and mesoscale components.

As yet, this multi-length-scale complexity cannot be fully captured by atomistic
simulations, and the design of such materials from first principlesis still rare'>.
Likewise, experimental complexity scales exponentially with the number of variables,
restricting most searches to narrow areas of materials space. Robots can assistin
experimental searches® ™ but their widespread adoption in materials research is
challenging because of the diversity of sample types, operations, instruments and
measurements required. Here we use amobile robot to search forimproved
photocatalysts for hydrogen production from water”. The robot operated
autonomously over eight days, performing 688 experiments within a ten-variable
experimental space, driven by a batched Bayesian search algorithm'* 8, This
autonomous search identified photocatalyst mixtures that were six times more active
than theinitial formulations, selecting beneficial components and deselecting
negative ones. Our strategy uses a dexterous'®?° free-roaming robot*?*, automating
theresearcher rather than the instruments. This modular approach could be
deployed in conventional laboratories for a range of research problems beyond

photocatalysis.

Themobilerobot platformisshowninFig.1aand Extended DataFig. 1.1t
canmove freelyinthe laboratory and locatesits position using a combi-
nation oflaser scanning coupled with touch feedback for fine position-
ing (Methods and Supplementary Video1). This gave an (x, ) positioning
precisionof +0.12 mmand an orientation precision of 8+ 0.005° within
astandard laboratory environment with dimensions 7.3 m x 11 m (Fig. 1b;
Extended Data Fig. 2; Supplementary Figs.1-10). This precision allows
therobot to carry out dexterous manipulations at the various stations
inthe laboratory (Fig. 1; Extended Data Fig. 3) that are comparable to
those performed by humanresearchers, such as handling sample vials
and operatinginstruments. The robot has human-like dimensions and
reach (Fig.1a,d) and it can therefore operate in a conventional, unmodi-
fied laboratory. Unlike many automated systems that can dispense only
liquids, thisrobot dispenses both insoluble solids and liquid solutions
with high accuracy and repeatability (Supplementary Figs.12,13,16-20),
broadeningits utility in materials research. Factoringin thetime needed
to recharge the battery, this robot can operate for up to 21.6 h per day
with optimal scheduling. The robot uses laser scanning and touch feed-
back, rather than avision system. It can therefore operate in complete
darkness, if needed (Supplementary Video 2), which is an advantage
when carrying out light-sensitive photochemical reactions, as here.
The robot arm and the mobile base comply with safety standards for
collaborative robots, allowing human researchers to work within the
same physical space (Supplementary Information section1.5). Avideo
of the robot operating an autonomous experiment over a 48-h period
isshown in Supplementary Video 1.

The benefits of combining automated experimentation with a
layer of artificial intelligence (Al) have been demonstrated for flow

reactors®, photovoltaic films®, organic synthesis® >, perovskites®

and in formulation problems'. However, so far no approaches have
integrated mobile robotics with Al for chemical experiments. Here,
we built Bayesian optimization'®® into a mobile robotic workflow to
conduct photocatalysis experiments within a ten-dimensional space.
Semiconductor photocatalysts that promote overall water splitting
to produce both hydrogen and oxygen are still quite rare®. For many
catalysts, a sacrificial hole scavenger is needed to produce hydrogen
fromwater, such as triethylamine (TEA)? or triethanolamine (TEOA)?*,
and these amines are irreversibly decomposed in the reaction. It has
proved difficult to find alternative hole scavengers that compete with
these organic amines®.

Our objective was to identify bioderived hole scavengers with effi-
ciencies that match petrochemicalamines and thatare notirreversibly
decomposed, with the long-term aim of developing reversible redox
shuttles. The photocatalyst that we chose was P10, a conjugated poly-
mer that shows good HERs in the presence of TEOA?. We first used the
robot to screen 30 candidate hole scavengers (Extended Data Fig. 4).
Thiswas done using a screening approach, without any Al. Initially, the
robot loads a solid-dispensing station that weighs any solid compo-
nentsintosample vials (Fig.1c), in this case the catalyst, P10. Next, the
vials are transported 16 at a time in a rack to a dual liquid-dispensing
station (Extended Data Fig.3c), where the liquid components are added;
here, 50 gl aqueous solutions of the candidate hole scavengers (Sup-
plementary Videos 3,4). The robot then places the vialsintoa capping
station, which caps the vials under nitrogen (Supplementary Fig. 21;
Supplementary Video 5). Optionally, the capped vials are then placed
into a sonication station (Supplementary Fig. 23; Supplementary
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Fig.1|Autonomous mobilerobot and experimental stations. a, Photograph
showing robotloading samplesinto the photolysis station. b, Map of the
laboratory generated by laser scanning showing positions of the eight stations;
the orange crosshairsindicate recorded navigation locations and the robot
positionisindicated by the greenrectangle. Inputs 1-3 are areas for the storage
of empty vials or completed sample racks. GC, gas chromatography station.

¢, Robotloadingempty sample vialsinto the solid-dispensing station before
dispensing the photocatalyst. d, Loading the gas chromatography station with
anew rack of samples for analysis. e, Storing racks of completed samplesin
Input Station1after gas chromatography analysis.

Video 3) to disperse the solid catalyst in the aqueous phase. The vials
arethentransportedtoaphotolysis station, where they areilluminated
with a mixture of ultraviolet and visible light (Fig. 1a; Extended Data
Fig.3b; Supplementary Fig. 24; Supplementary Video 6). After photoly-
sis, the robot transfers the vials to a head space gas chromatography
station where the gas phase is analysed for hydrogen (Fig. 1d) before
storage of completed samples (Fig. 1e). Except for the capping station
and the photolysis station, which were built specifically for this work-
flow, the other stations used commercial instruments with no physical
hardware modifications: the robot operates them in essentially the
same way that a human researcher would.

Conditional automation was used in this hole scavenger screen to
repeatany hits; thatis, samples that showed a hydrogen evolution rate
(HER) of >200 pmol g™ h™ were automatically re-analysed five times.
Most of the 30 scavengers produced little or nohydrogen (Extended Data
Fig. 4), except for L-ascorbic acid (256 + 24 pmol g h™) and L-cysteine
1,201+ 88 pmol g h™). Analysis by 'H nuclear magnetic resonance
(NMR) spectroscopy showed that L-cysteine was cleanly converted to
L-cystine (Supplementary Fig. 32), indicating that it may have potential
as areversible redox shuttle in an overall water splitting scheme®.

While it showed promise as a hole scavenger, L-cysteine produced
much less hydrogen than an aqueous solution of TEOA at the same
gravimetric concentration (2,985 +103 pmol g h?at50 g1™). We
therefore sought to increase the HER of the P10/L-cysteine system by
using an autonomous robotic search based on five hypotheses (Fig. 2a).
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Fig.2|Hypothesis-led autonomoussearchstrategy.a, Therobotsearches
chemical space to optimize the activity of the photocatalyst + scavenger
combinationaccording to five separate hypotheses. It does this by
simultaneously varying the concentration of the ten chemical species shown
here. b, Plot showing the size of the simplex, or the search space, created with a
discretization of 19 concentrations for each liquid and 21 concentration levels
for the solid catalyst, P10, which corresponds to the solid/liquid dispensing
precision over the constrained space of the experiment. For this
ten-component problem, the full simplex has 98,423,325 points.

The first hypothesis was that dye sensitization might improve light
absorption and hence the HER, as found for the structurally related
covalent organic framework, FS-COF. Here, three dyes were investi-
gated (Rhodamine B, Acid Red 87*' and Methylene Blue). Second, we
hypothesized that pH might influence the catalytic activity (NaOH
addition). The third hypothesis was that ionic strength could also be
important® (NaCladdition). Catalyst wettability is known to be afactor
in photocatalytic hydrogen evolution using conjugated polymers®,
so the addition of surfactants (sodium dodecyl sulphate, SDS, and
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Fig.3|Outputfromthe autonomousroboticsearch. a, Plot showing
hydrogen evolution achieved per experimentin an autonomous search that
extended over 8 days. Sixteen experiments were performed per batch, along
with two baseline controls. The baseline hydrogen evolution was

3.36+0.30 pmol (black squares). The maximum rate attained after 688
experiments was 21.05 umol h™. The robot made 319 moves between stations

polyvinylpyrrolidone, PVP) formed our fourth hypothesis. Fifth, we
speculated that sodium disilicate might act as a hydrogen-bonding
anchor for the scavenger, L-cysteine, or for the dyes, based on the
observation that it aids in the absorption of dyes onto the surface of
carbon nitride>*,

These five hypotheses had the potential to be synergistic or
anti-synergistic; for example, ionic strength could either enhance or
decrease dye absorption onto the surface of the photocatalyst. We
therefore chose to explore all five hypotheses at once. This involved
the simultaneous variation of the concentration of P10, L-cysteine,
the three dyes, NaOH, NaCl, the two surfactants, and sodium disili-
cate, which equatesto aten-variable search space (Fig. 2a). The space
was constrained by the need to keep a constant liquid volume (5 ml)
and therefore head space for gas chromatography analysis and by the
minimal resolution for liquid dispensing module (0.25 ml) and solid
dispensing module (0.2 mg).

Problems of this type are defined by a simplex that scales exponen-
tially with size (Fig. 2b). For this specific search space, there were more
than 98 million points. Full exploration of such a space is unfeasible,
so we developed an algorithm that performs Bayesian optimization
based on Gaussian process regression and parallel search strategy™
(see Methods). To generate a new batch, we build a surrogate model
predicting the HER of potential formulations based on the measure-
ments performed so far and quantify the uncertainty of prediction.
Subsequent sampling points are chosen using a capitalist acquisition
strategy, where a portfolio of upper confidence bound functions is
generated on an exponential distribution of greed to create markets
of varying risk aversion, which are searched for global maxima. Each
market is given an agent that searches to return a global maximum,

—— 16 samples
64 samples
—— 80 samples
— 112 samples
—— 142 samples
—— 188 samples
488 samples
663 samples

NaOH

L-cysteine

Acid Red

Rhodamine B

and travelled atotal distance of 2.17 km during this 8-day experiment. b, Radar
plotshowing the evolution of the average sampling of the search space in
millilitres; the scale denotes the fraction of maximum solution volume
dispensed. Thestarting conditions (Batch 1) were chosen randomly. The best
catalyst formulation found after 43 batches contained P10 (5 mg), NaOH (6 mg),
L-cysteine (200 mg) and Na,Si,0; (7.5 mg) in water (Sml).

or batch of k-best maxima. The uneven distribution of greed allows
some suggested points to be highly exploitative, some to be highly
explorative, and most to be balanced, thus making the strongest use
ofthe parallel batch experiments.

The output from this autonomous robotic searchis showninFig.3a.
Thebaseline HER for P10 and L-cysteine only (SmgP10in5mlof20gI™
L-cysteine) was 3.36 + 0.30 pmol h™%. Given that the robot would operate
autonomously over multiple days, this two-component mixture was
repeated throughout the search (two samples per batch) to check for
long-term experimental stability (black squares in Fig. 3a). Initially,
the robot started with random conditions and discovered multicom-
ponent catalyst formulations that were mostly less active than P10
and L-cysteine alone (the first 22 experiments in Fig. 3a). The robot
then discovered that adding NaCl provides a small improvement to
the HER, validating the hypothesis that ionic strength isimportant.
In the same period, the robot found that maximizing both P10 and
L-cysteine increased the HER. In further experiments (15-100), the
robot discovered that none of the three dyes or the two surfactants
improves the HER; indeed, they are all detrimental, counter to our
first and fourth hypotheses. These five components were therefore
deselected after around 150 experiments (Fig. 4); that is, after about
2 days in real experimental time (Fig. 3a). Here, P10 differs from the
structurally related crystalline fused-sulfone covalent organic frame-
work (FS-COF), where the addition of Acid Red 87 increased the HER?.
After 30 experiments, the robot learned that adding sodium disilicate
improves the HER substantially in the absence of dyes (up to 15 pmol
after 300 experiments), while deprioritizing the addition of NaOH and
NaCl. After 688 experiments, whichamounted to 8 days of autonomous
searching, the robot found that the optimum catalyst formulationisa
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mixture of NaOH, L-cysteine, sodium disilicate and P10, giving aHER of
21.05 umol h™, which was six times higher than the starting conditions.

A number of scientific conclusions can be drawn from these data.
Increased ionic strength is beneficial for hydrogen production (NaCl
addition), but not as beneficial as increasing the pH (NaOH/sodium
disilicate addition), which also increases the ionic strength. We had
notinvestigated surfactant addition before, but for the two surfactants
studied here, atleast, the effect on catalytic activity is purely negative.
Intriguingly, the dye sensitization that we observed for a structurally
similar covalent organic framework, FS-COF*, does not translate to this
polymer, P10, possibly because the COF is porous whereas P10 is not.

To explore the dependence of the algorithmic search performance
ontherandomstarting conditions, we carried out 100 in silico virtual
searches, eachwithadifferent random starting point, using aregression
model and random noise to return virtual results (Supplementary Infor-
mation section 7). Around 160 virtual experiments were needed, on
average, to find solutions with 95% of the global maximum HER (Fig. 5).

We estimate that it would have taken a human researcher several
months to explore these five hypotheses in the same level of detail
using standard, manual approaches (Supplementary Fig. 31). Man-
ual hydrogen evolution measurements require about 0.5 days of
researcher time per experiment (1,000 experiments take 500 days).
The semi-automated robotic methods that we developed recently® can
perform 100 experiments per day (a half-day to set up, plus a half-day
for automatic dispensing and measurement; 1,000 experiments take
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10 days, of which 5 days are dedicated researcher time). The autono-
mous robot that we present here also requires half a day to set it up
initially, butit thenruns unattended over multiple days (1,000 experi-
ments take 0.5 days of researcher time). Hence, the autonomous work-
flowis 1,000 times faster than manual methods, and at least ten times
faster than semi-automated but non-autonomous robotic workflows.
Itisunlikely that ahumanresearcher would have persevered with this
multivariate experiment using manual approaches given that it might
have taken 50 experiments or 25 days to locate even amodest enhance-
mentinthe HER (Fig.3a). The platformallows us to tackle search spaces
ofasizethat would otherwise be impossible, whichis an advantage for
problems where our current level of understanding does not allow us
toreduce the number of candidate components to a more manageable
number. There were ten components in the example given here, but
search spaces with up to at least 20 components should be tractable
with some modifications to the algorithm.

Ittook aninitial investment of time to build this workflow (approxi-
mately 2 years), but once operating withalow error rate (Supplemen-
tary Fig. 38), it can be used as a routine tool. The time required to
implement thisapproachin anotherlaboratory would be much shorter,
since much of the 2-year development timescale involved core proto-
colsand software that are transferable to other research problems. Also,
thismodular approach to laboratory automation uses instrumentsin
aphysicallyunmodified form, so that it will be straightforward to add
further modules, suchas for NMR or X-ray diffraction, now that the basic
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principlesarein place. This modularity makes our strategy applicable
toawiderange of research problems beyond chemistry. The speed and
efficiency of the method allow the exploration of large multivariate
spaces, and the autonomous robot has no confirmation bias®; this
raises the prospect of emergent function in complex, multi-component
materials that we could not design in the conventional way. Autono-
mous mobile robots could also have extra advantages in experiments
with especially hazardous materials, or where traceability and auditing
areimportant, such as in pharmaceutical processes.

This approach also has some limitations. For example, the Bayesian
optimizationis blind, in that all components have equal initial impor-
tance. This robotic search does not capture existing chemical knowl-
edge, norincludetheory or physical models: there is no computational
brain. Also, this autonomous system does not at present generate and
test scientific hypotheses by itself*”. In the future, we propose to fuse
theory and physical models with autonomous searches: for example,
computed structures and properties'* could be used to bias searches
towards components that have a higher likelihood of yielding the
desired property. This will be important for search spaces with even
larger numbers of components where purely combinatorial approaches
may become inefficient. To give one example, energy-structure-func-
tionmaps® could be computed for candidate crystalline components
to provide Boltzmann energy weightings® for calculated properties,
such as a charge transport or optical gap, to bias the robotic search.
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Methods

Robot specifications

Therobotused was aKUKA Mobile Robot mounted on a KUKA Mobile
Platform base (Fig. 1a; Extended Data Fig. 1). The robot arm has a
maximum payload of 14 kg and a reach of 820 mm. The KUKA Mobile
Platform base can carry payloads of up to 200 kg. The robot arm and
the mobile base have a combined mass of approximately 430 kg. The
movement velocity of the robot was restricted to 0.5 ms™ for safety rea-
sons (section 1.5 of the Supplementary Information,). Amultipurpose
gripper was designed to grasp 10-ml gas chromatographsample vials,
solid dispensing cartridges, and a 16-position sample rack (Extended
Data Fig. 5), thus allowing a single robot to carry out all of the tasks
required for this workflow. This robot was specified to be a flexible
platform for awide range of research tasks beyond those exemplified
here; for example, the 14 kg payload capacity for the arm is not fully
usedinthese experiments (one rack of filled vials has amass of 580 g),
but it could allow for manipulations such as opening and closing the
doors of certainequipment. Likewise, the height and reach of the robot
allows for operations such as direct loading of samples into the gas
chromatographinstrument (Fig.1d). By contrast, asmaller and perhaps
less expensive robot platform might require an additional, dedicated
robot arm to accomplish this, or inconvenient modifications to the
laboratory, such as lowering bench heights.

Robot navigation

In a process analogous to simultaneous localization and mapping
(SLAM)*°, the robot tracks a cloud of possible positions, and updates
its position to the best fit between the output of its laser scanners and
the map for each position in the cloud. The position of the robot is
determined by x and y (its position on the map) and 6 (its orientation
angle). Histograms of the robot position measured over 563 move-
ments are shown in Supplementary Figs. 2-5, which show that the
(x,y) positioning precision was better than +10 mm and the orienta-
tion precision was less than +2.5°, as achieved within a real, working
laboratory environment. This level of precision allows navigationto the
various experimental stations in the laboratory, but it does not allow
fine manipulations, such as placement of sample vials. The precision
was therefore enhanced by using a touch-sensitive 6-point calibration
method. Here, the robot touches six points ona cube thatis associated
with each experimental station to find the position and orientation of
the cuberelative to therobot (Supplementary Figs. 7-11). Thisincreased
the positioning precision to +0.12 mm and the orientation precision to
+0.005°. This makes it possible for the robot to operate instruments
and to carry out delicate manipulations such as vial placements at a
level of precision that is broadly comparable to a human operator.

Experimental stations

The workflow comprised six steps, each with its own station. Solid
dispensing was carried out with a Quantos QS30 instrument (Mettler
Toledo) (Fig. 1c; Supplementary Fig. 11; Extended Data Fig. 3a; Sup-
plementary Video 3). Liquid dispensing was carried out with abespoke
system that used a 200 series Mini Peristaltic Pump (Williamson) and
aPCG 2500-1scale (Kern), to dispense liquids gravimetrically using a
feedbackloop (section2.2in Supplementary Information; Supplemen-
tary Video 5). This system showed excellent precisionand accuracy for
arange of aqueous and non-aqueous liquids over 20,000 dispenses
(Supplementary Figs. 16,17,19, 20). A bespoke instrument was built
(Labman) to allow both for sample inertization (to exclude oxygen)
and cap crimping in one step. It would be straightforward to modify
this platform to allow other gases to be introduced; for example, to
study photocatalytic CO,reduction. The instrument used caps froma
vibratory bowl feeder to cap-crimp 10-ml headspace vials (section 2.2
inSupplementary Information; Supplementary Video 5). If required, a
sonication station was used to disperse the solid photocatalyst in the

aqueoussolution, before reaction (Supplementary Fig. 23). Photolysis
was carried out at abespoke photolysis station (Fig. 1a) that uses vibra-
tion to agitate liquids and a light source that is composed of BL368
tubes and LED panels (Extended Data Fig. 5b; Supplementary Fig. 24;
Supplementary Video 6). Gas chromatograph measurements were per-
formed witha7890B GC and a 7697A Headspace Sampler from Agilent
GC (Supplementary Video 3; Extended Data Fig. 3d). The experimental
stations were controlled by a process management system module,
which contains all of the process logic for controlling the labware.
Communication between the process management system and the
stations was achieved using various communication protocols (TCP/IP
over WIFI/LAN; RS-232), as detailed in section 2.7 inthe Supplementary
Information (Supplementary Fig. 28).

Autonomous search procedure and scheduling

The robot worked with batches of 16 samples per sample rack and ran
43 batches (688 experiments) during the search. Of these 688 experi-
ments, 11 results were discarded because of workflow errors or because
the system flagged that the oxygen level was too high (faulty vial seal).
It took, on average, 183 min to prepare and photolyse each batch of
samples and then232 min per batch to complete the gas chromatograph
analysis. The detailed timescales for each of the step in the workflow
are shown in Extended Data Fig. 6. The work was heuristically sched-
uledin parallel, with the robot starting the oldest available scheduled
job. While the robot was working on one job, other instruments, such
as the solid dispenser, the photolysis station and the gas chromato-
graph, worked in parallel. This system can process up to six batches
atonce, but given the timescales for this specific workflow, where the
preparation/reaction time is approximately equal to the analysis time,
the robot processed two batches simultaneously. That is, it prepared
samples and ran photolysis for one batch while analysing the hydrogen
produced for the second batch using the gas chromatograph. The robot
recharged its battery automatically in between two jobs when the bat-
tery charge reached a 25% threshold. The robot was charged but idle
for approximately 32% of the time in this experiment, largely because
of time spent waiting for the gas chromatograph analysis, whichis the
slow step. In principle, this time could be used to run other experiments
in parallel. The autonomous workflow was programmed to alert the
operator automatically when the systemis out of stock (if, for example,
itran out of sample vials or stock solutions were low), orif a part of the
workflow failed (section 8 of the Supplementary Information). Most
errorscould bereset remotely withoutbeinginthelaboratory because
all stations were equipped with 24/7 closed-circuit television cameras
(Supplementary Fig. 39).

Bayesian search algorithm

The Alguidance for the autonomous mobile robot was a batched, con-
strained, discrete Bayesian optimization algorithm. Traditionally,
Bayesian optimization is a serial algorithm tasked with finding the
global maximum of an unknown objective function®. Here, this equates
to finding the optimal set of concentrations in amulticomponent mix-
ture for photocatalytic hydrogen generation. The algorithm builds a
model that canbe updated and queried for the most promising points
to inform subsequent experiments. This surrogate model is con-
structed by first choosing a functional prior ¢ (o) informed by exist-
ing chemical knowledge (if any). Given data D and a likelihood model
Drielinooa(DIO) , this yields a posterior distribution of models using
Bayes’ theorem:

¢Iike|ihood(D|6)¢prior(6)
(D)

(61D) = @®

¢posterior

The Gaussian process prior used a Matern similarity kernel, constant
scalingand homoscedastic noise*. This composite kernel allows for var-
iable smoothness, catalytic activity and experimental noise. The form



and respective hyperparameters were refined using cross-validation
onother, historical photocatalysis datasets (350 experiments). Other
alternatives for afunctional prior included Bayesian neural networks";
but Gaussian processes were selected here for robustness and flexibil-
ity*2. An acquisition function, a,c,, was assembled from the posterior
distribution by considering the posterior mean, z(x), and uncertainty,
o(x). Themaximum of this function was then used as the next suggested
experiment. To balance exploitation (prioritizing areas where the mean
isexpected tobe largest) and exploration (prioritizing areas where the
model is most uncertain), we used an upper confidence bound that
is dependent on a single hyperparameter, §, to govern how ‘greedy’
(exploitative) the searchis:

aycplX; D) 1= pu(x) + fo(x) (2)

The portfolio of acquisition functions for different values of 3,
which we call markets, was used to generate abatch. This ‘capitalist’
approach has the advantage of simple parallelization and is robust
across variable batch sizes*. Our method allowed us to constrain
the sum of all liquid components to 5 ml to allow a constant gas
headspace volume for gas chromatograph analysis. The sum total
volume constraint was handled during the market searches; dis-
cretization, which was determined by instrument resolution, was
handled after the market searches. The market search was completed
using alarge initial random sampling followed by abatch of seeded
local maximizations using a sequential least-squares programming
(SLSQP) algorithm as implemented in the scipy.optimize package.
This maximization occurs in a continuous space, and the results
are placedinto discrete bins following the experimental precision.
The explored space is tracked as a continuous variable for model
building and as a discrete variable for acquisition function maximi-
zation. The algorithm was implemented using the scikit-learn and
in scipy packages*.

Materials and synthetic procedures

The polymeric photocatalyst P10 was synthesized and purified accord-
ing toamodification onaliterature procedure* (section 10 of the Sup-
plementary Information). For solid dispensing, the polymer was ground
withmortar and pestle before use. Sodium disilicate was obtained as a
free sample from Silmaco. Tap water was purified with PURELAB Ultra
System. All other materials were purchased from Sigma-Aldrich and
used as received.

Data availability

The implementation of the liquid-dispensing station, photolysis sta-
tion and the workflow, along with three-dimensional designs for lab-
ware developed in the project, are available at https://bitbucket.org/
ben_burger/kuka_workflow, the code for the robot at and the Bayes-
ian optimizer is available at https://github.com/Taurnist/kuka_work-
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kuka_optimizer. Additional design details can be obtained from the
authors upon request.
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Extended DataFig.1|Mobile robotic chemist. The mobile robot used for this
project, shown here performing asix-point calibration withrespect to the black
location cube thatisattached tothe bench, in this case associated with the
solid cartridge station (see also Supplementary Fig.11and Extended Data
Fig.3a).



Extended DataFig.2|Laboratory space used for the autonomous experiments. The key locationsin the workflow are labelled. Other than the black location
cubesthat are fixed to the benches to allow positioning (see also Extended Data Fig. 1), the laboratory is otherwise unmodified.



Article

a
/ N\
5 BIELE: 4 quantos By alibration cube
\nm\\\ \ quantos samples -

calibration cube
liquid modules  §

liquid module

Extended DataFig. 3 |Stationsinthe workflow. a, Photograph showingthe
robotat thesolid dispensing/cartridge station. The two cartridge hotels can
hold up to 20 different solids; here, four cartridges are located in the hotel on
theleft. The door of the Quantos dispenseris opened using custom workflow
software thatinterfaces with the command software that is supplied with the
instrumentbefore loading the correct solid dispensing cartridge into the
instrument (Supplementary Video 3). Since the KUKA Mobile Robot is
free-roaming and has an 820 mm reach, it would be simple to extend this
modular approach to hundreds or even thousands of different solids given
sufficientlaboratoryspace. b, Photograph showing the KUKA Mobile Robot at

/ . calibration cube
: /

the photolysis station (see also Supplementary Videos 3, 6). ¢, Photograph
showing the KUKA Mobile Robot at the combined liquid handling/capping
station. The robot canreach both theliquid stations and the Liverpool
Inertization Capper-Crimper (LICC) station after six-point positioning, such
thatliquid addition, headspaceinertization and capping canbe carried outina
single coordinated process (see Supplementary Videos 3, 5), without any
positionrecalibration. d, Photograph of the KUKA Mobile Robot parked at the
headspace gas chromatography (GC) station. The gas chromatography
instrumentisastandard commercial instrument and was unmodified in this
workflow.
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triethanolamine. Scavengers are labelled with the concentration of the stock

solution that was used (5 ml volume

standard deviation.

Extended DataFig.4|Hydrogen evolutionrates for candidate bioderived
sacrificial hole scavengers. Results of arobotic screen for sacrificial hole

5mgP10). The error barsshow the

;

scavengers using the mobile robot workflow. Of the 30 bioderived molecules
trialed, only cysteine was found to compete with the petrochemical amine,
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Extended DataFig. 5| Multipurpose gripper used in the workflow. The e, gripper holding a full sample rack using an outwards grasp thatlocksinto
gripperisshown grasping various objects. a, The empty gripper; b, gripper recessesintherack. Thesamegripper was also used to activate the gas
holding acapped sample vial (top grasp); ¢, gripper holding an uncapped chromatography instrument using a physical button press (see Supplementary

sample vial (side grasp); d, gripper holding a solid-dispensing cartridge; and Video 3;1min52s).
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Extended DataFig. 6| Timescales for stepsin the workflow. Average taken for theloading and unloading steps (for example, the photolysis time
timescales for the various stepsin the workflow (sample preparation, itselfwas 60 min; loading and unloading takes an average of 28 min per batch).
photolysis and analysis) for abatch of 16 experiments. These averages were Theslowest stepinthe workflow is the gas chromatography analysis.

calculated over 46 separate batches. These average times include the time
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