Overview

Some important features of electronic structure methods:

- what is the Ansatz for the wavefunction?
- how are exchange and correlation treated?
- can static correlation/multireference problems be treated?
- is the method variational (i.e. is E always ≥ E_{true})?
- is the method size consistent (i.e. is the energy of two noninteracting systems the sum of the single systems?)
- can excited states be treated with the same method?
- what is the scaling of the method (i.e. how does the computational cost grow if I double the system size?)

Method	wavefunction	exchange	correlation	variational?	Size- consistentt?		Excited stat	es? Scaling
HF	1 determinant	exact	none	yes	yes	no	no	N ² -N ⁴
	contributions from excited determinant through perturbation	ts	some	no	yes	CAS-PT2	CAS-PT2	MP2 N ⁵ MP3 N ⁶ MP4 N ⁷
Truncate	ed selected determinants	exact	some	yes	no	no	yes	e.g. CISD N ⁶
CASSCF	selected dets determinants	exact	little	yes	no	yes	yes e	exp, N _{act} *N _{det} ⁴
_	contribution of selected excitations arough infinite order	exact	some	no	yes	no	EOM-CC CC2	CCSD N ⁶ CCSD(T) N ⁷ CCSDT N ⁸ CCSDTQ N ¹⁰
S	exact wf within bas set, linear combinati of all possible excite determinants	on	all	yes	yes	yes	yes	N!/N _{el} !(N-N _{el})!
Exact DF	T electron density	/ exact	exact	yes	yes	no	TDDFT	N
Orbital-fi	ree electron densit	y some	some	no	yes	no	TDDFT	N
KS-DFT	electron densit	y some	some	no	yes	no	TDDFT	N ² -N ³