Multiconfigurational methods

...or when static correlation comes into play

Andrej Antalík

Introduction to electronic structure methods 4.12.2023

Hartree-Fock equations

An n-electron problem breaks down to a set of coupled one-electron equations

$$H|\Psi\rangle = E|\Psi\rangle$$

$$f|\varphi_{a}\rangle = \sum_{b=1}^{n} \varepsilon_{ab} |\varphi_{b}\rangle$$

$$H = -\sum_{a} h_{a} + \sum_{ab} r_{ab}^{-1}$$

$$f = h + \sum_{b=1}^{n} (J_{b} - K_{b})$$

$$v_{HF}$$

- Wave function approximated by a single Slater determinant $|\varphi_1\varphi_2...\varphi_n\rangle$
 - mean-field approximation $r_{ab}^{-1} \rightarrow v_{HF}$
 - one Slater determinant = single configuration ground state only

Why multiconfigurational wave functions

- Let's have a look at H₂ dissociation
 - We assume RHF wave function with doubly occupied bonding orbital

$$\sigma = N \left(\psi_{\rm A} + \psi_{\rm B} \right)$$

$$|\Phi_{0}\rangle = |\Phi_{\text{RHF}}\rangle = |\sigma\bar{\sigma}\rangle = \begin{vmatrix} \sigma(1)\alpha(1) & \sigma(1)\beta(1) \\ \sigma(2)\alpha(2) & \sigma(2)\beta(2) \end{vmatrix} = \sigma(1)\sigma(2)\Theta_{2,0}^{-1} \sqrt{\frac{1}{2}} \left(\alpha(1)\beta(2) - \beta(1)\alpha(2)\right)$$

$$= N^2 \left(\psi_{A}(1) \psi_{A}(2) + \psi_{A}(1) \psi_{B}(2) + \psi_{B}(1) \psi_{A}(2) + \psi_{B}(1) \psi_{B}(2) \right) \Theta_{2,0}$$

 $\psi_{A}^{IS_{A}}$

lonic terms present even when $|\mathbf{r}_A - \mathbf{r}_B| \rightarrow \infty$

H2 dissociation MC wave function

 Now we add an excited configuration composed of a doubly occupied antibonding orbital

$$\psi_{A}^{1}$$
 ψ_{B}^{1} S_{B}

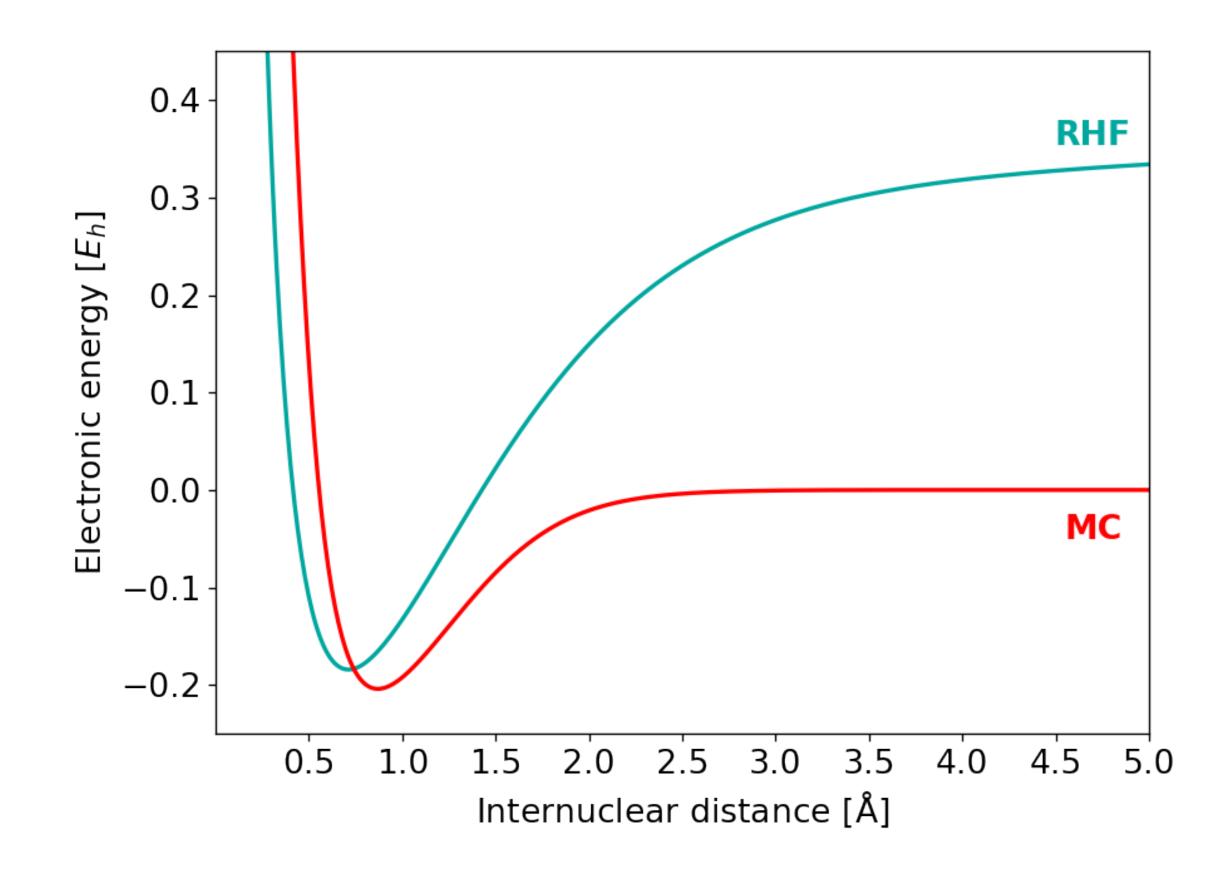
$$\begin{split} \sigma &= N \left(\psi_{\rm A} + \psi_{\rm B} \right) \quad \sigma^* = N \left(\psi_{\rm A} - \psi_{\rm B} \right) \\ |\Phi_0\rangle &= N^2 \left(\psi_{\rm A}(1) \psi_{\rm A}(2) \, + \, \psi_{\rm A}(1) \psi_{\rm B}(2) \, + \, \psi_{\rm B}(1) \psi_{\rm A}(2) \, + \, \psi_{\rm B}(1) \psi_{\rm B}(2) \right) \Theta_{2,0} \\ |\Phi_{1\bar{1}}^{2\bar{2}}\rangle &= N^2 \left(\psi_{\rm A}(1) \psi_{\rm A}(2) \, - \, \psi_{\rm A}(1) \psi_{\rm B}(2) \, - \, \psi_{\rm B}(1) \psi_{\rm A}(2) \, + \, \psi_{\rm B}(1) \psi_{\rm B}(2) \right) \Theta_{2,0} \end{split}$$

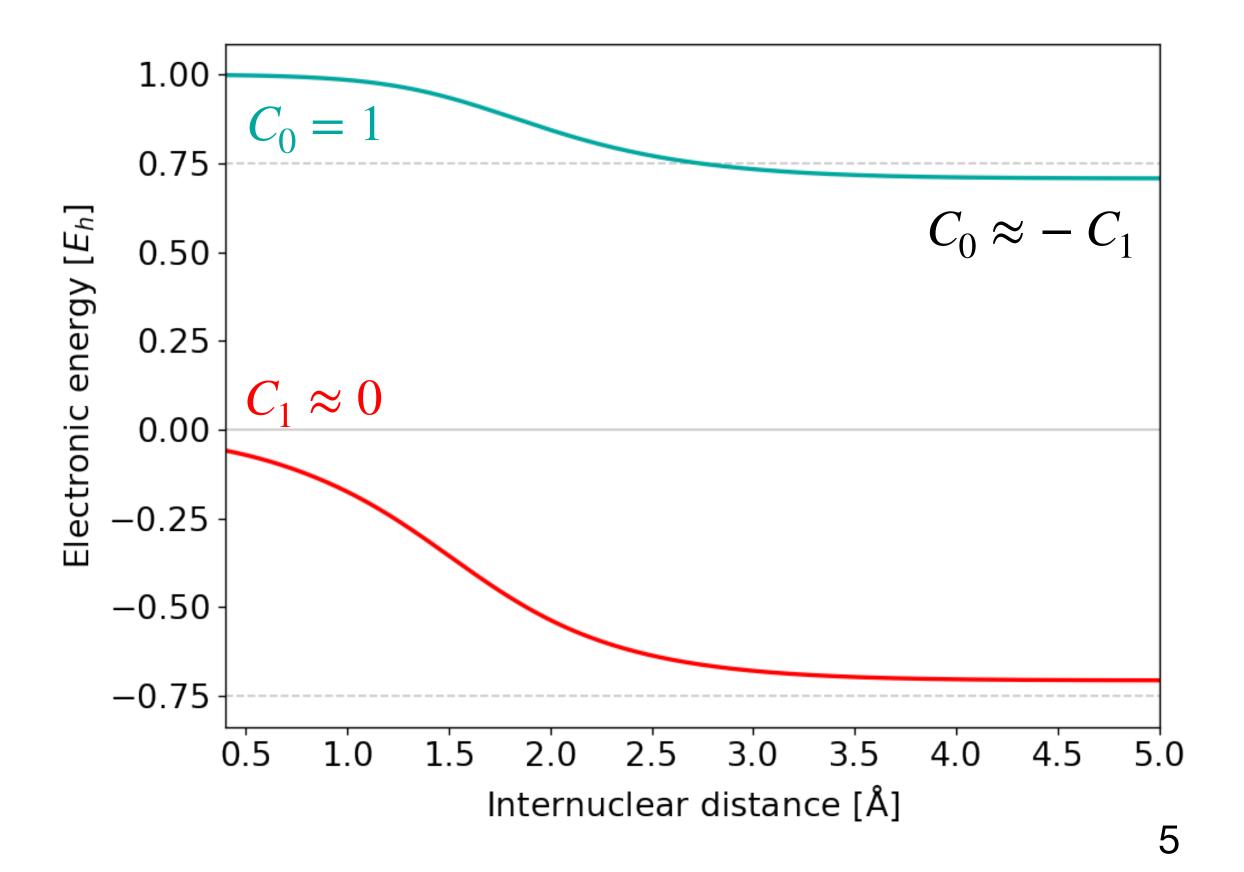
$$|\Psi_{\text{MC}}\rangle = C_0 |\Phi_0\rangle + C_1 |\Phi_{1\bar{1}}^{2\bar{2}}\rangle$$

H₂ dissociation MC wave function

 Additional wave function flexibility allows for correct dissociation process

$$|\Psi_{\text{MC}}\rangle = C_0 |\Phi_0\rangle + C_1 |\Phi_{1\bar{1}}^{2\bar{2}}\rangle$$

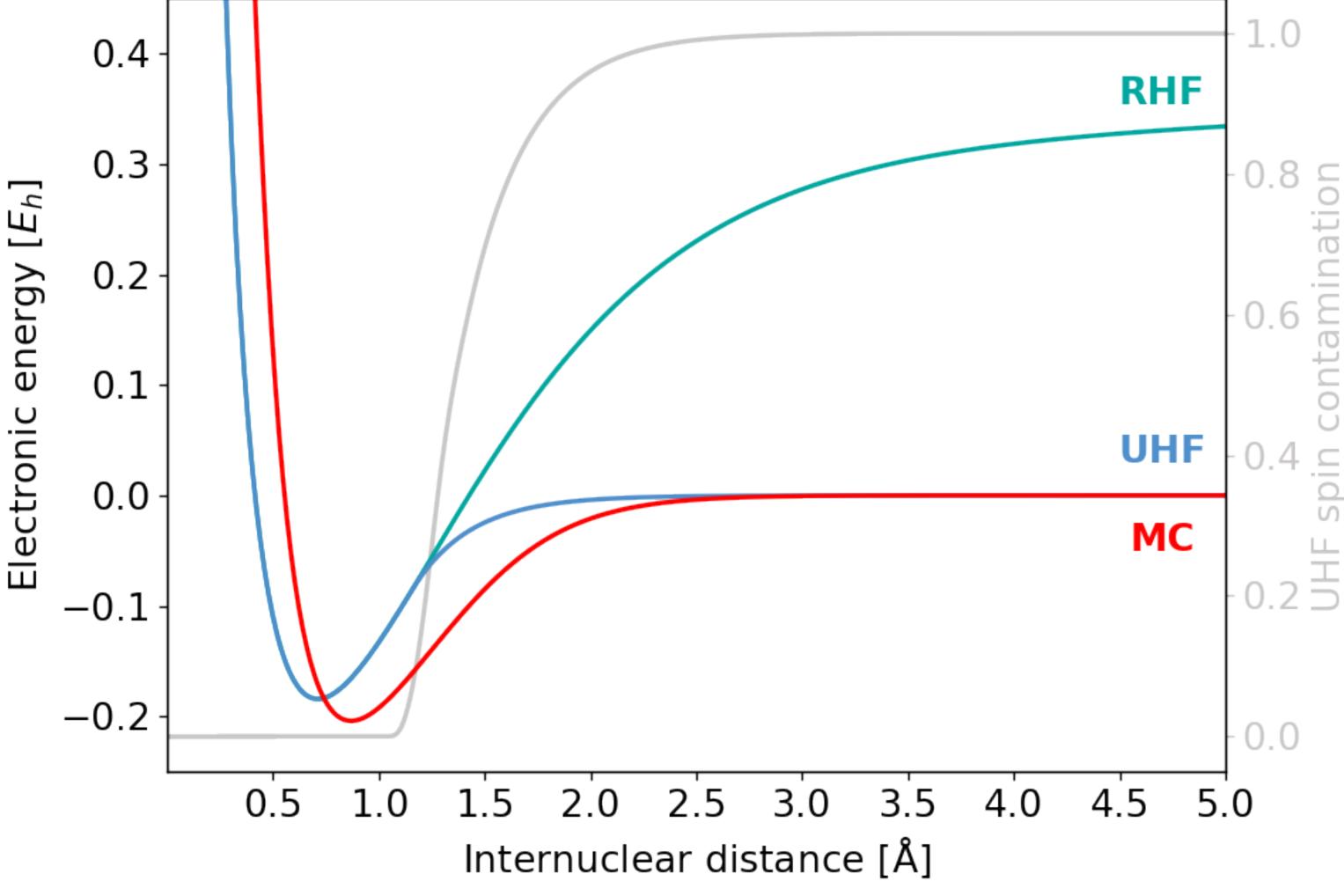




H2 dissociation What about UHF

- Additional flexibility of a UHF wave function allows for correct dissociation process
- ...yet, it suffers from spin-contamination

$$\langle S^2 \rangle - S_{\text{exact}}^2 \neq 0$$



Electron correlation

In electronic structure theory, correlation energy defined as

$$E_{\rm corr} = E_{\rm exact} - E_{\rm HF}$$

HF energy correct within 1% of the exact energy

Not good enough for relative energies!

 Consequence of having the wave function approximated by a single Slater determinant

$$r_{ab}^{-1}
ightharpoonup v_{
m HF}$$
 dynamic correlation always present due to the lack of instantaneous Coulomb repulsion $|\varphi_1 \varphi_2 ... \varphi_n \rangle$ static correlation when there are near-degeneracies present in the ground state

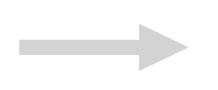
n-electron expansions

Wave function expansion into a basis of excited Slater determinants

$$|\Psi_{\text{FCI}}\rangle = C_0 |\Phi_0\rangle + \sum_{ar} C_a^r |\Phi_a^r\rangle + \frac{1}{2} \sum_{abrs} C_{ab}^{rs} |\Phi_{ab}^{rs}\rangle + \frac{1}{6} \sum_{abcrst} C_{abc}^{rst} |\Phi_{abc}^{rst}\rangle + \cdots$$

$$|\Psi_{\text{CI}}\rangle = (1 + \hat{C}_1 + \dots + \hat{C}_n) |\Phi_0\rangle$$

$$|\Psi_{\text{CC}}\rangle = e^{\hat{T}_1 + \hat{T}_2 + \dots + \hat{T}_n} |\Phi_0\rangle$$

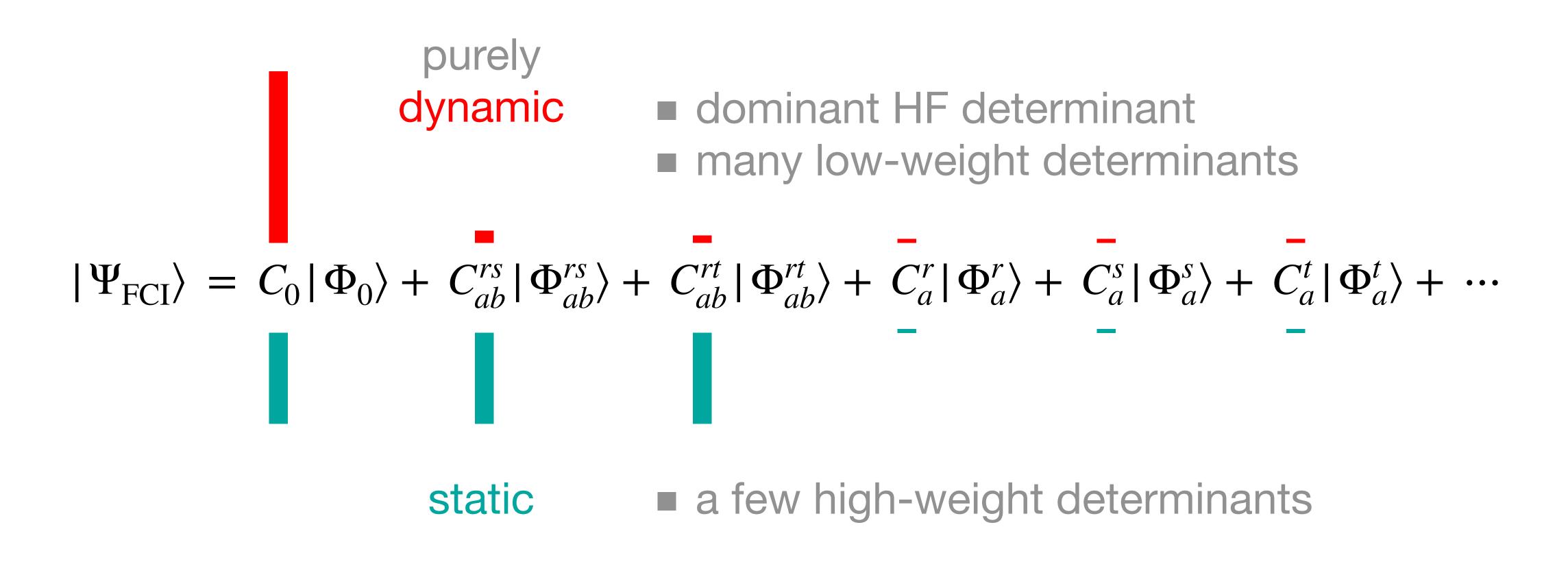


All $n \to \infty$ roads lead to the exact energy

$$\hat{C}_1 | \Phi_0 \rangle = \sum_{a} C_a^r | \Phi_a^r \rangle$$

FCI wave function and correlation

 Weights of a FCI wave function reflect the dominant type of electron correlation for a particular system



Cutting the FCI costs

■ We can limit the maximum excitation rank... → e.g. CISD

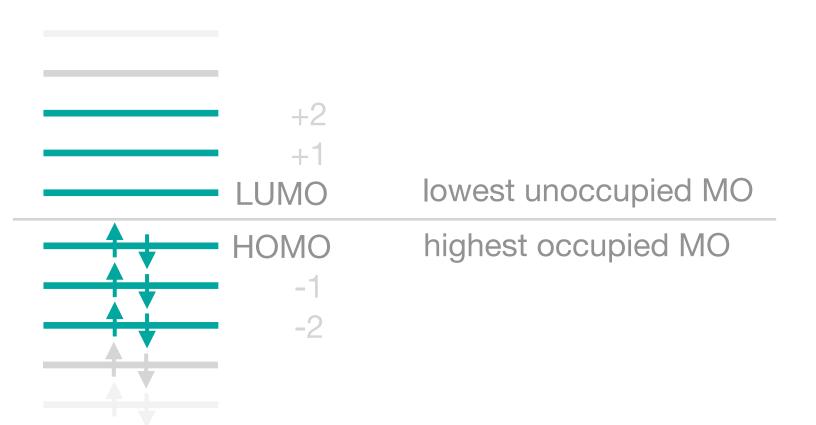
$$|\Psi_{\text{CISD}}\rangle = C_0 |\Phi_0\rangle + \sum_{ar} C_a^r |\Phi_a^r\rangle + \frac{1}{2} \sum_{abrs} C_{ab}^{rs} |\Phi_{ab}^{rs}\rangle + \frac{1}{6} \sum_{abcrst} C_{abc}^{rst} |\Phi_{abc}^{rst}\rangle + \cdots$$

■ ...or the orbital space in which we perform excitations → CAS-CI

$$|\Psi_{\text{CAS-CI}}\rangle = C_0 |\Phi_0\rangle + \sum_{ar} C_a^r |\Phi_a^r\rangle + \frac{1}{2} \sum_{abrs} C_{ab}^{rs} |\Phi_{ab}^{rs}\rangle + \frac{1}{6} \sum_{abcrst} C_{abc}^{rst} |\Phi_{abc}^{rst}\rangle + \cdots$$

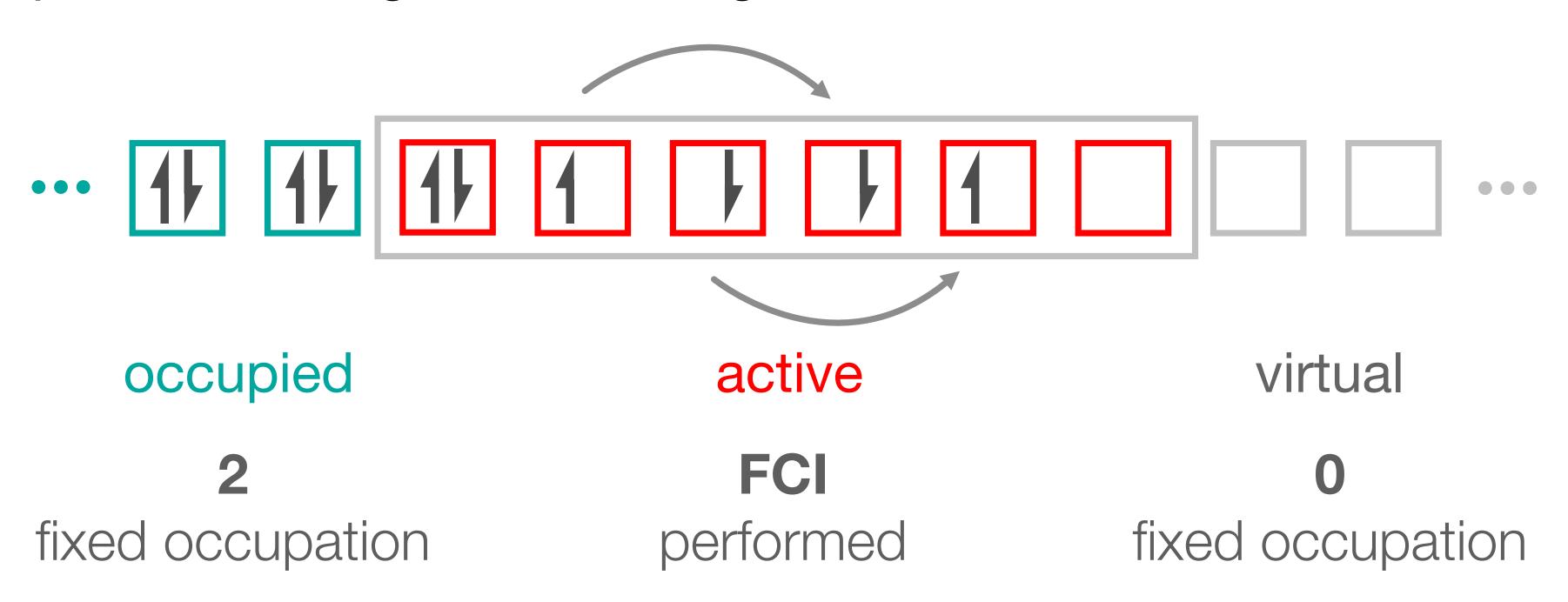
$$a, b, c... \in \{1, 2..., | H-2, H-1, H \}$$

$$r, s, t... \in \{L, L+1, L+2, | ...N-1, N \}$$



Complete active space

- Complete active space CAS(n, k)
 - all possible configurations using n electrons in k orbitals



still FCI scaling! $\binom{2k}{n}$

CAS-CI = FCI restricted to a CAS!

Multiconfigurational SCF

MCSCF wave function for the state I

$$|\Psi_{\text{MC}}\rangle = \sum_{I} C_{I} |\Phi_{I}(\mathbf{c})\rangle$$
 where $|\Phi_{I}(\mathbf{c})\rangle = |\varphi_{1}(\mathbf{c_{1}}) \varphi_{2}(\mathbf{c_{2}})...\rangle$ Slater determinants

- This wave function is then optimized variationally
 - ...but w.r.t. to two sets of variational parameters: C CI coefficients
 - c orbitals coefficients

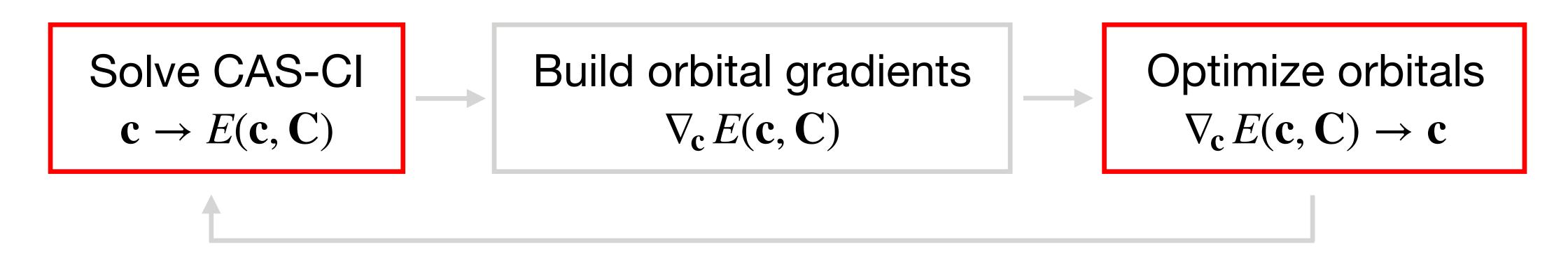
$$E_{\text{MCSCF}} = \min_{\mathbf{c}, \mathbf{C}} E(\mathbf{c}, \mathbf{C}) = \min_{\mathbf{c}, \mathbf{C}} \frac{\langle \Psi(\mathbf{c}, \mathbf{C}) | H | \Psi(\mathbf{c}, \mathbf{C}) \rangle}{\langle \Psi(\mathbf{c}, \mathbf{C}) | \Psi(\mathbf{c}, \mathbf{C}) \rangle} \quad \text{with the constraint} \quad \sum_{I} |C_{I}|^{2} = 1$$

MCSCF Solution

■ Varying parameters c and C so that E(c, C) becomes stationary...

OR

...might be decoupled into a two-step procedure



 Compared to SCF, where only the occupied orbitals are optimized, now we optimize all orbitals contained within the active space

Multireference methods

- MRCI Multireference configuration interaction
 - Linear excitation operator applied to a MC(SCF) wave function
 - Each reference determinant has its own set of CI coefficients

$$|\Psi_{\text{MRCI}}\rangle = (1 + \hat{C}_1 + \hat{C}_2 + \cdots)|\Psi_{\text{MC}}\rangle \leftarrow \sum_{I} C_I |\Phi_I\rangle \qquad C(I) \equiv C_I$$

$$= \sum_{I} \left(C(I) |\Phi_I\rangle + \sum_{ar} C_a^r(I) |(\Phi_I)_a^r\rangle + \frac{1}{2} \sum_{abrs} C_{ab}^{rs}(I) |(\Phi_I)_{ab}^{rs}\rangle + \cdots \right)$$

- CASPT2 CAS perturbation theory through second order
 - Rayleigh-Schrödinger PT applied to a CASSCF wave function

Quiz

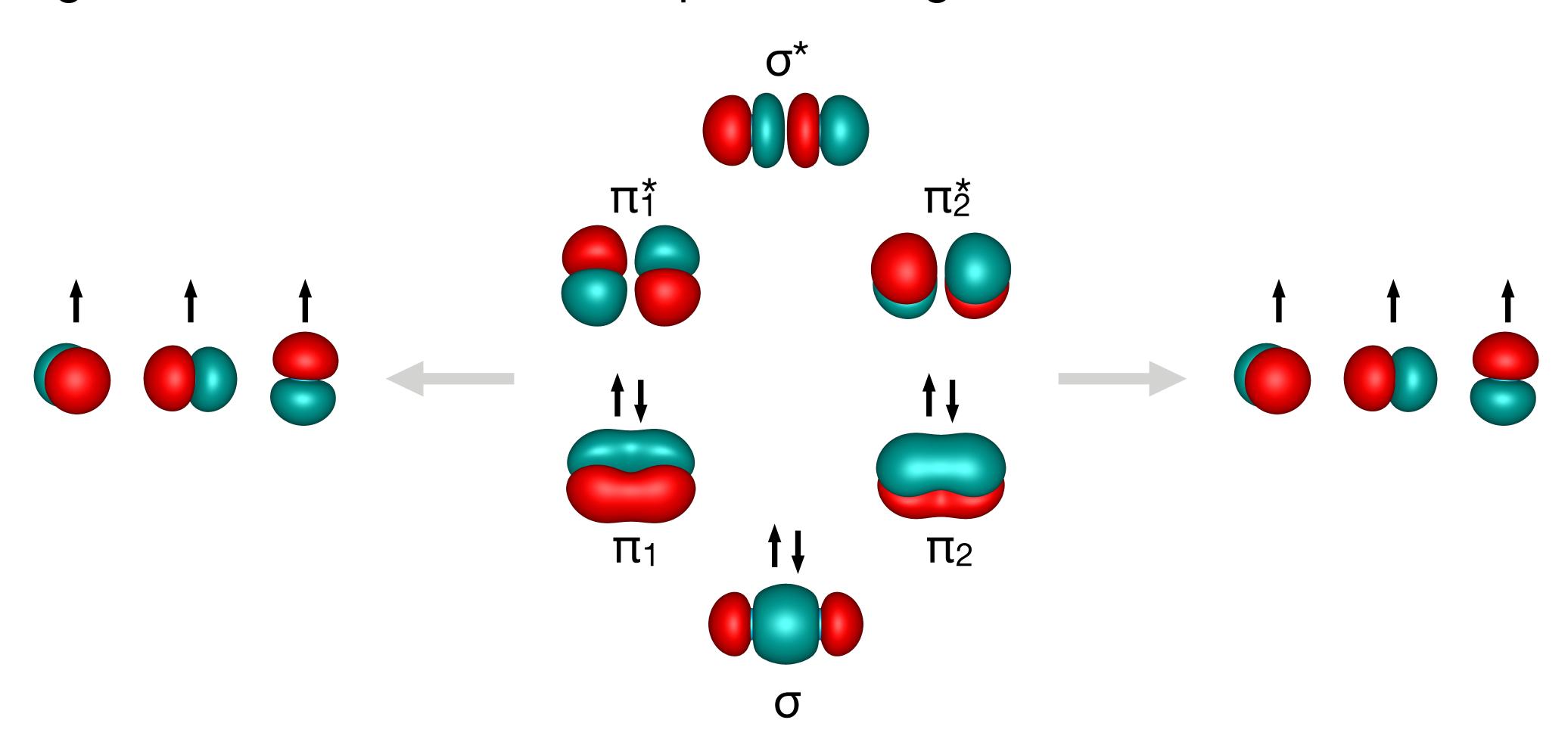
- What active space composition would you choose for the study of N₂ dissociation? How many electrons in how many orbitals? Which ones?
- Consider a degenerate ground state described by a wave function $|\Psi_0\rangle$ comprising two Slater determinants $|\Phi_0\rangle$ and $|\Phi_1\rangle$. If we only take $|\Phi_0\rangle$ as a reference for a CID calculation instead of $|\Psi_0\rangle$, how many configurations would be missing in the CID expansion?

$$|\Psi_0\rangle = |\Phi_0\rangle + |\Phi_1\rangle$$

$$|\Phi_0\rangle = \frac{1}{1}$$
 $|\Phi_1\rangle = \frac{1}{1}$

Why SR methods fail? N₂ dissociation

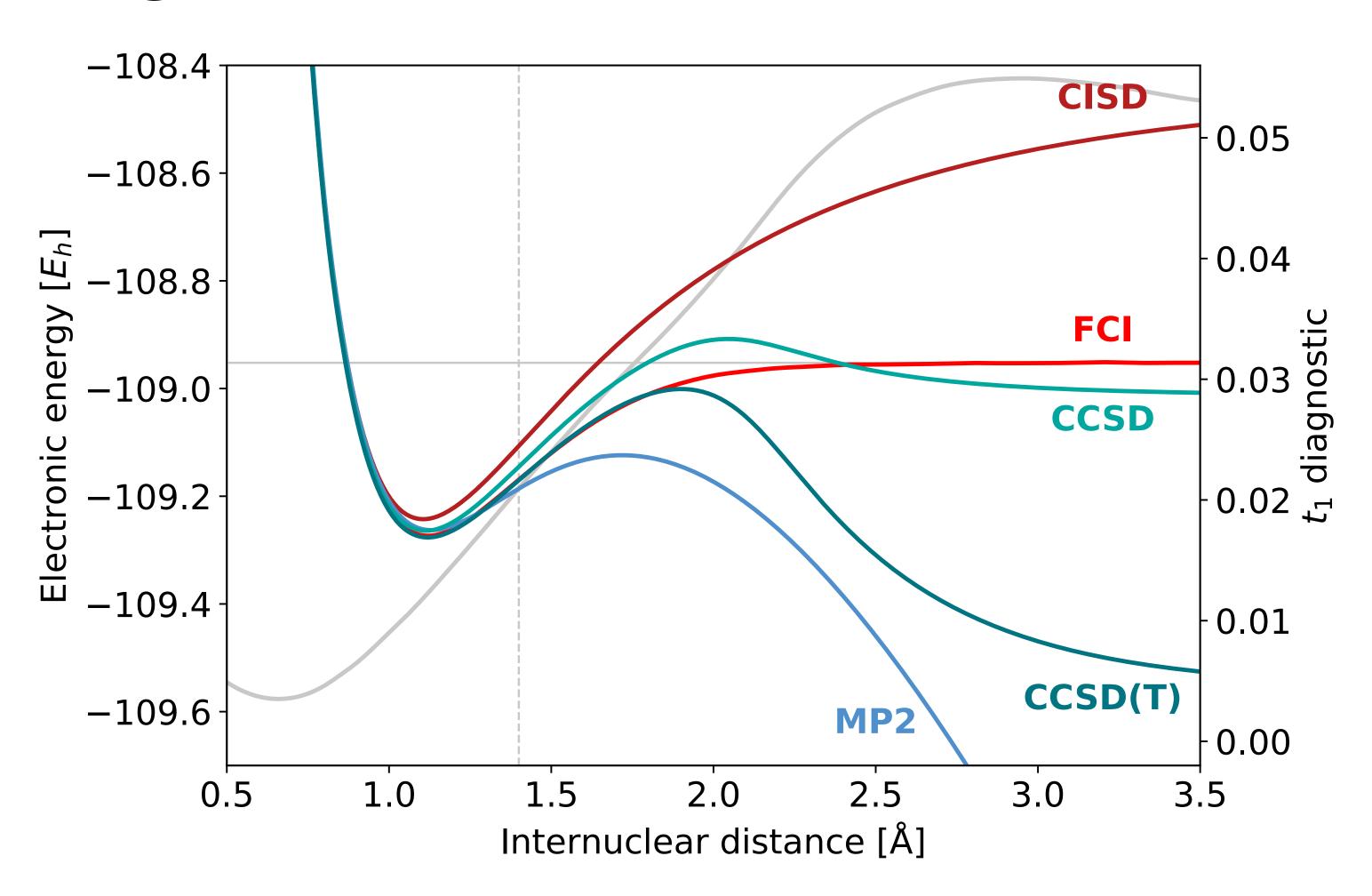
Singlet N₂ dissociates into two quartet nitrogen atoms



No dissociation A single-reference catastrophe

- CCSD \rightarrow t_1 diagnostic
 - calculation reliable if

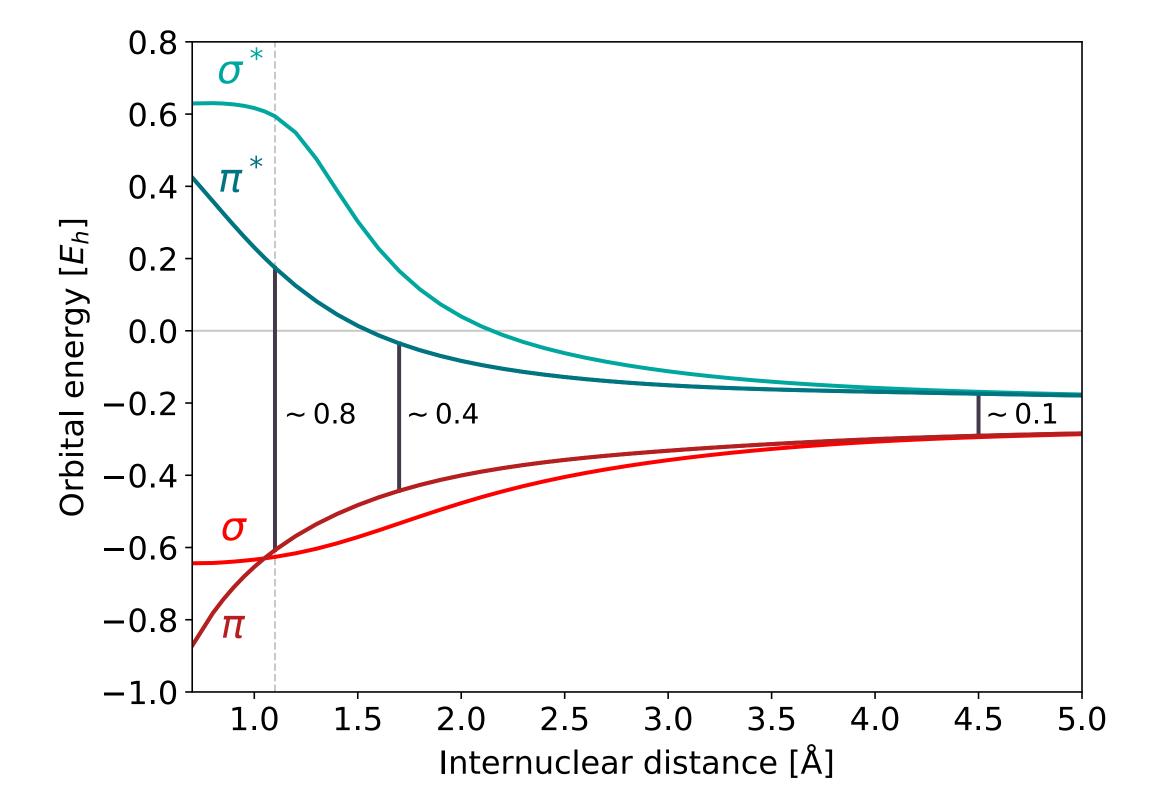
$$t_1 = \frac{|\mathbf{t}_1|}{\sqrt{n}} < 0.02$$



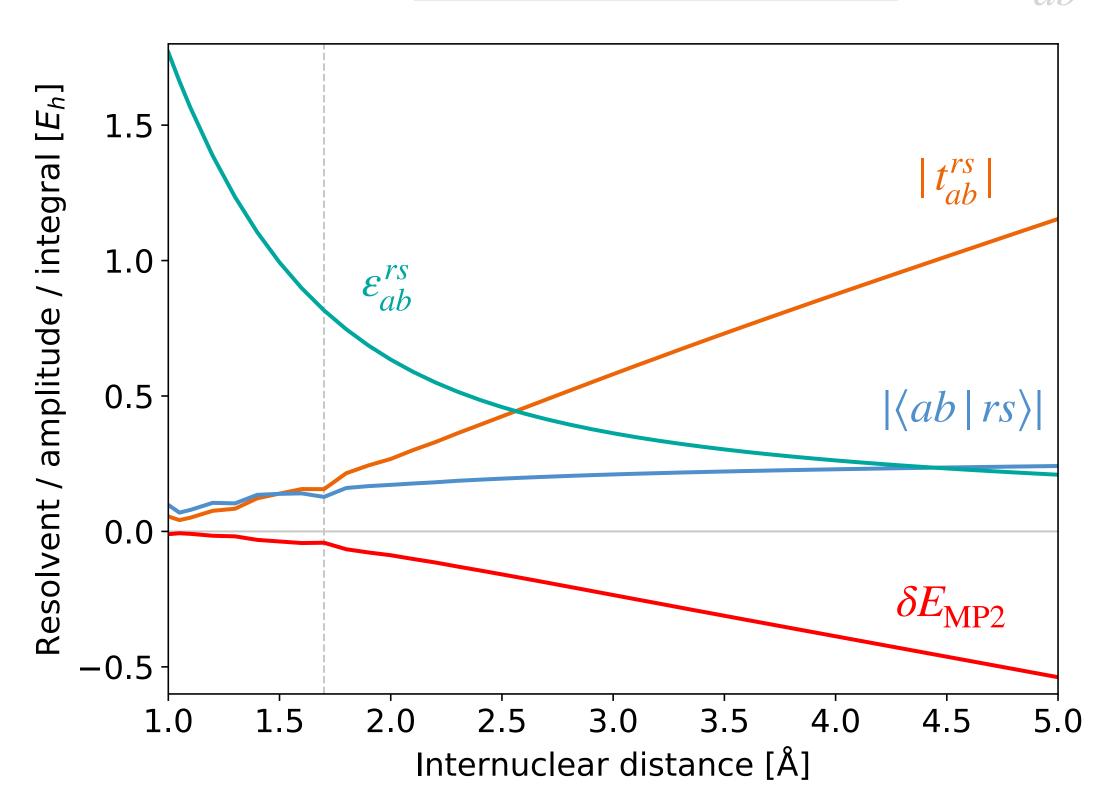
N₂ dissociation MBPT and CC

• Let's have a look at the energy corresponding to the $t_{\pi_1\pi_2}^{\pi_1^*\pi_2^*}$ amplitude

$$\delta E_{\text{MP2}} = t_{ab}^{rs} \left(2\langle ab | rs \rangle - \langle ab | sr \rangle \right)$$



$$t_{ab}^{rs} = \frac{\langle ab | rs \rangle}{\varepsilon_a + \varepsilon_b - \varepsilon_r - \varepsilon_s}$$



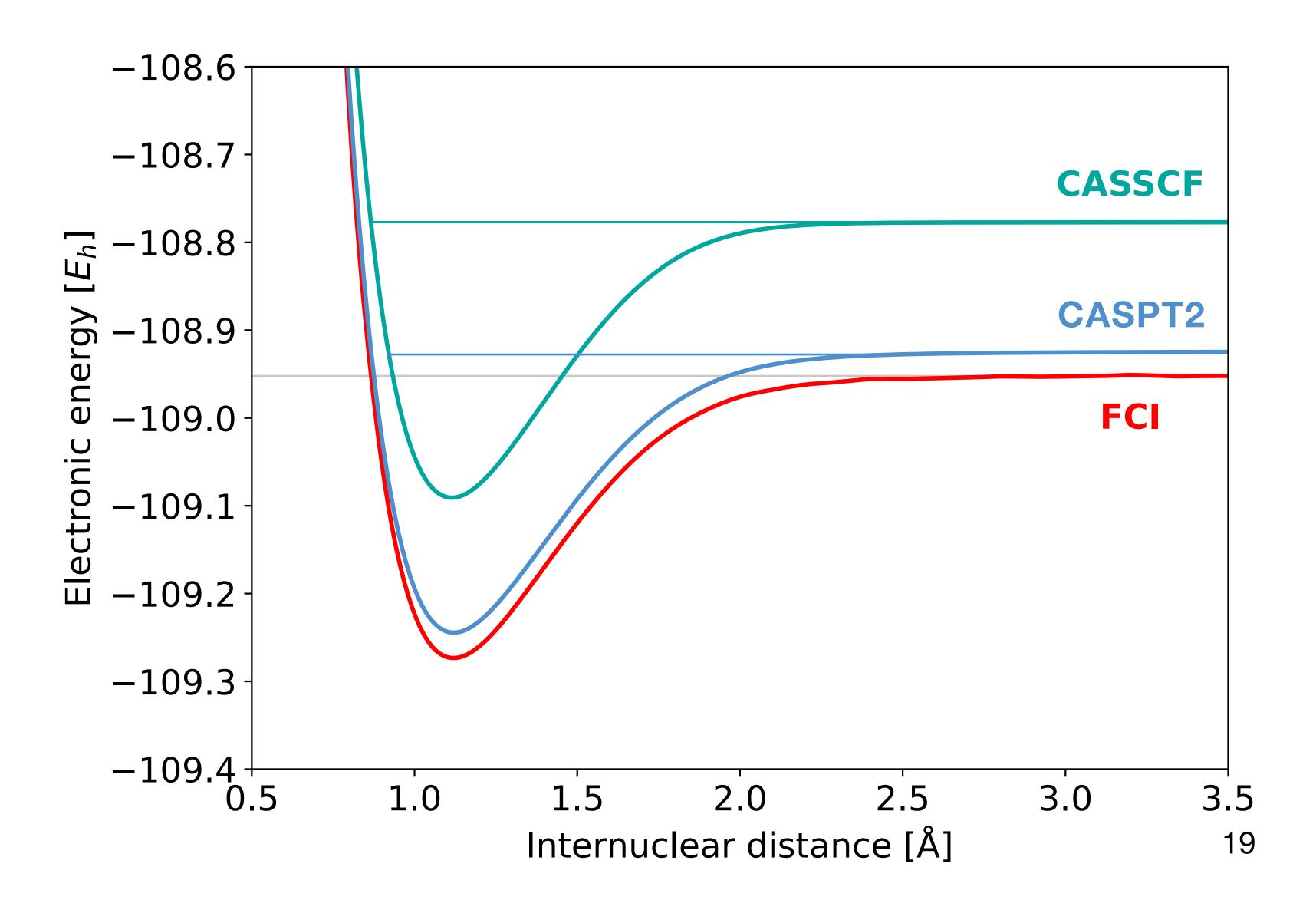
N₂ dissociation CASSCF

difference in bond energy

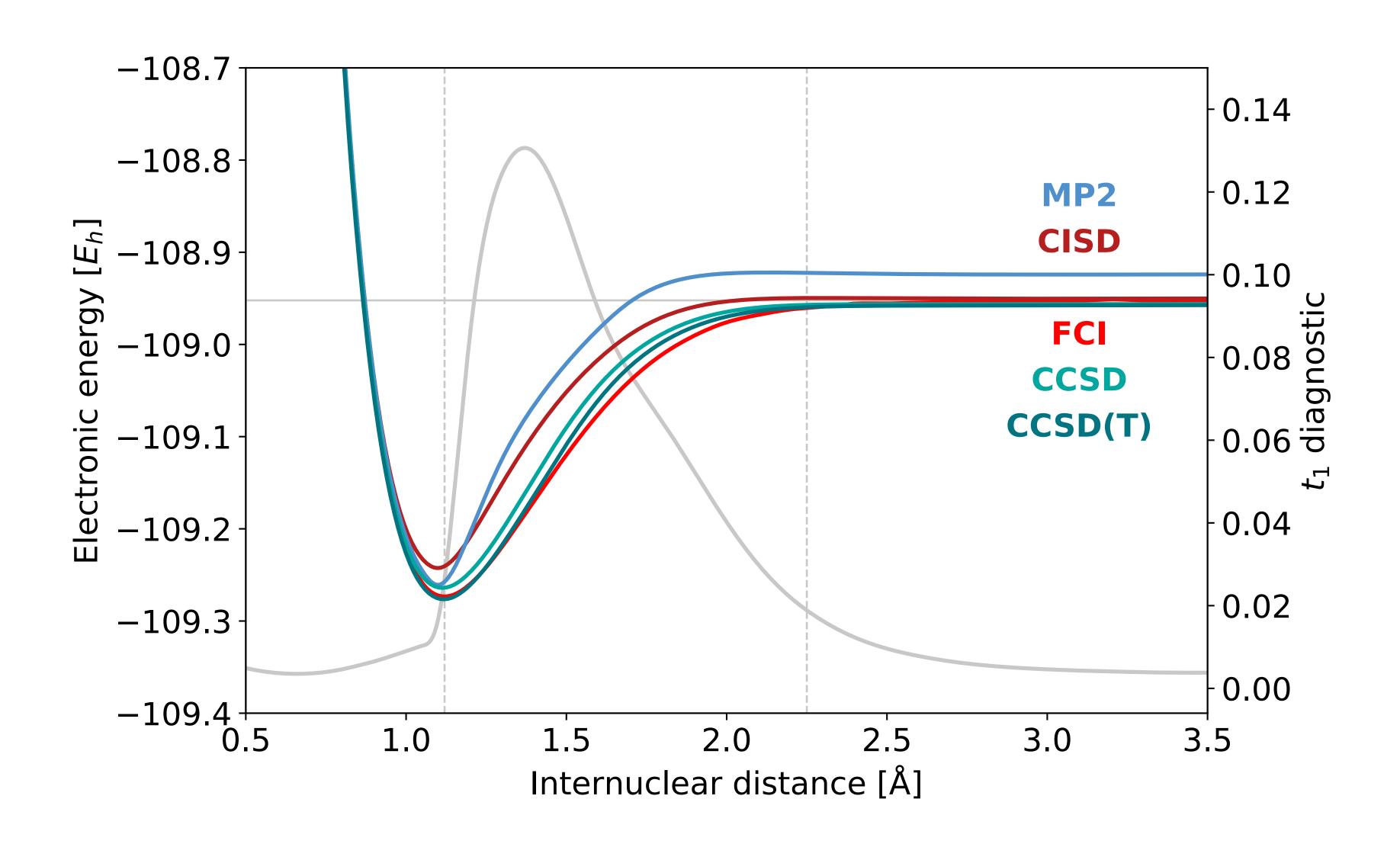
CASPT2 – CASSCF $\Delta D_{\rho} \approx 4 \text{ kcal/mol}$

but only

FCI — CASPT2 $\Delta D_{\rho} \approx 0.75 \, \text{kcal/mol}$



N₂ dissociation UHF reference



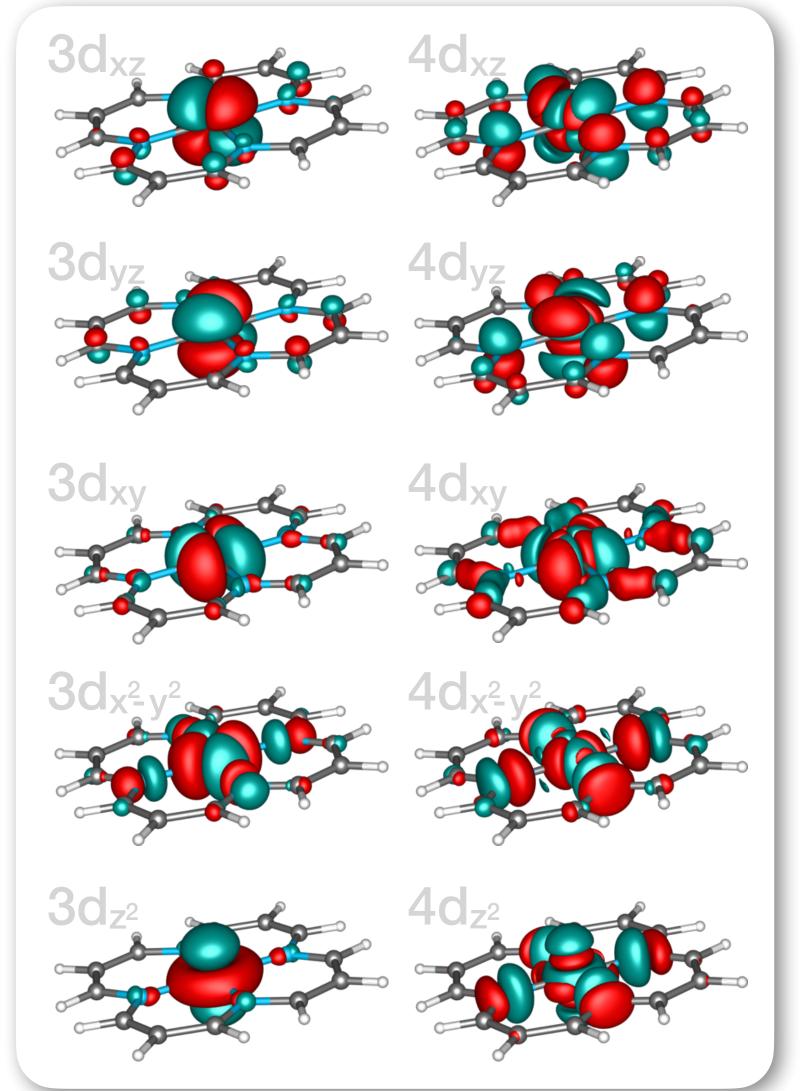
Active space selection

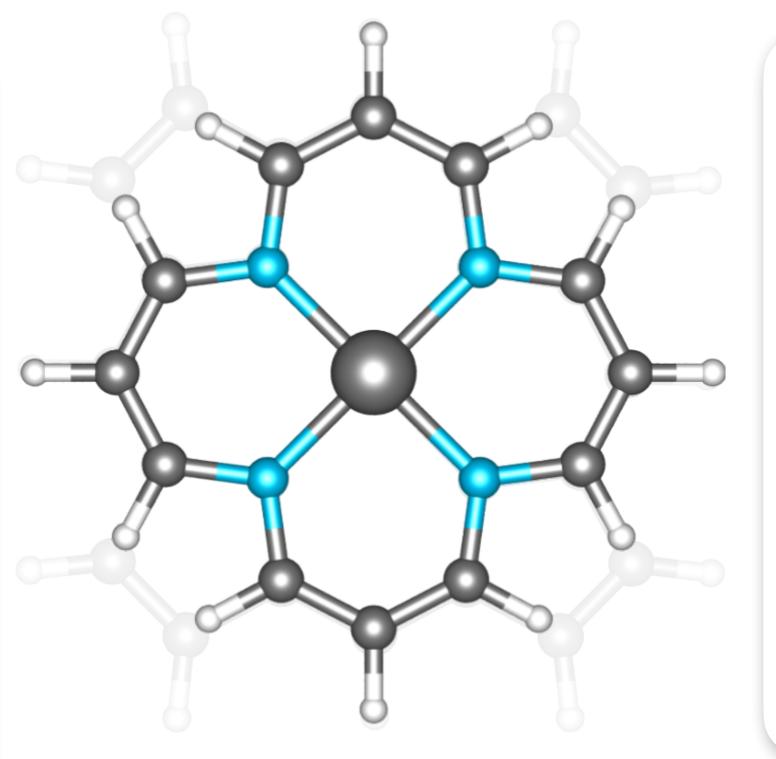
- Ideal: all valence orbitals usually not an option
- Bond formation/dissociation: Correlating pairs σ - σ * and π - π *
- Electron spectroscopy: All potential excitation sites
 - All planar unsaturated π, π*
- Double-shell effect important for first-row transition metals starting from Cr
 - Ideal: inclusion of all 3d + all 4d orbitals

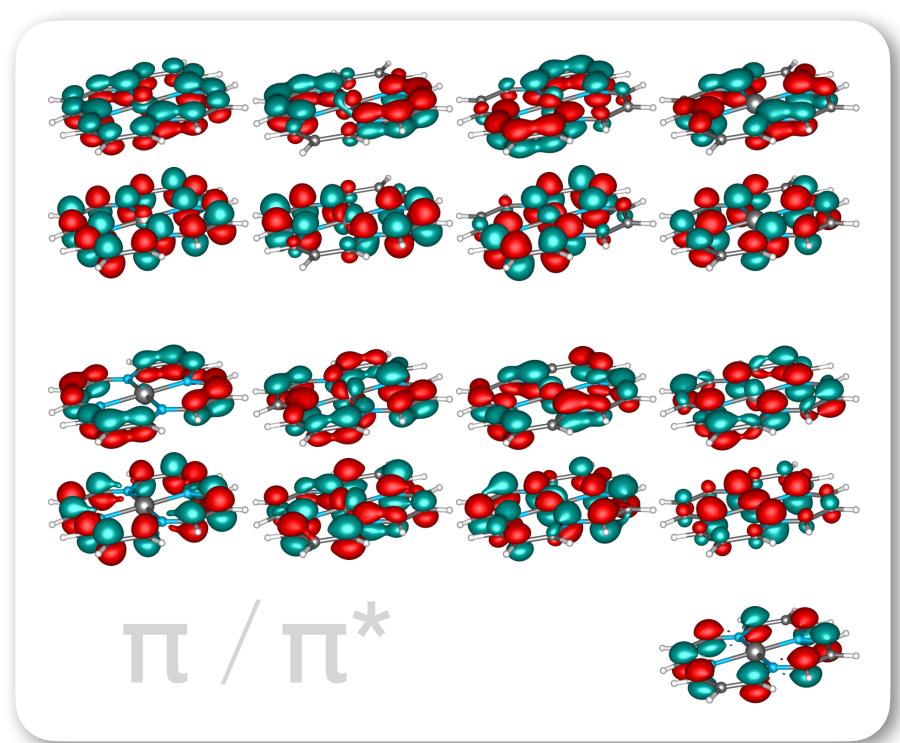
If you want to compare CASSCF energies,

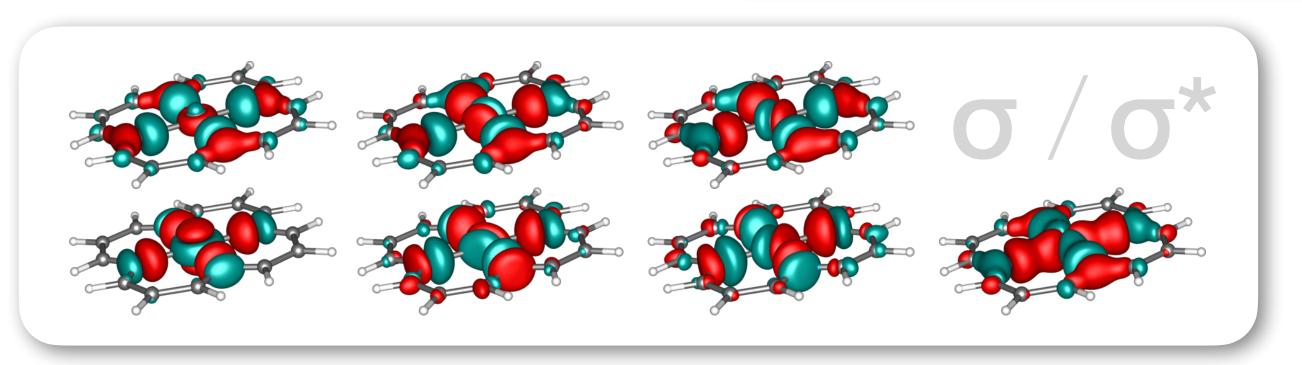
CAS has to be consistent along the entire studied process!

CAS selection Fe(II)-porphyrin model CAS(32,34)









Going large scale with approximate FCI

Contemporary FCI: maximum CAS(24,24), practical possibly CAS(19,19)

Selected CI

 Systematically include determinants based on their coupling to the reference determinant(s)

FCI Quantum Monte Carlo

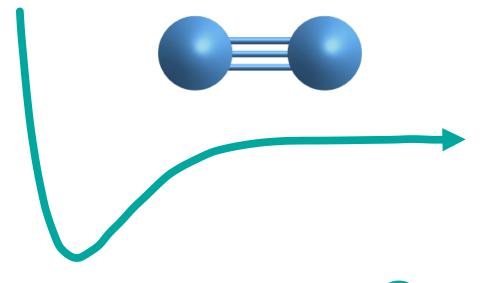
Stochastic approach, walkers sample the determinant space

Density Matrix Renormalization Group

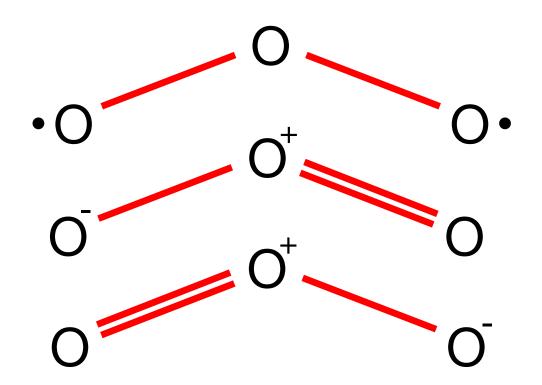
 Numerical variational approximation to FCI — keeps maximum number of parameters capped while minimizes the loss of information

When to be cautious

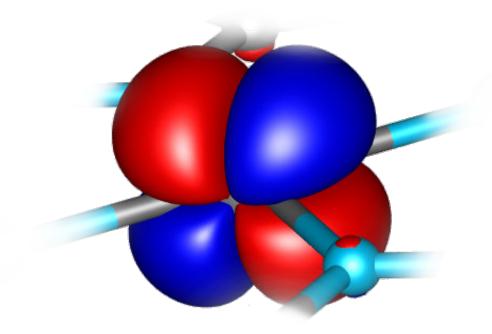
Bond breaking/formation



Competing valence structures

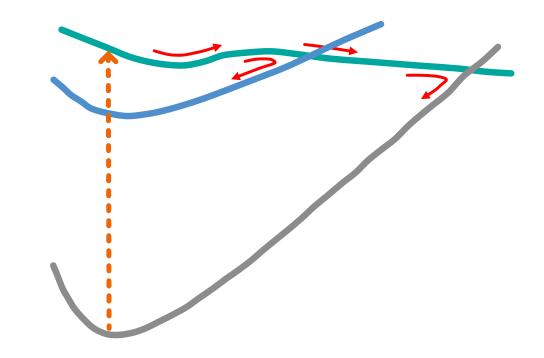


Transition metals



dⁿs² dⁿ⁺¹s¹ dⁿ⁺² spin multiplets

Excited states



The following slides are just FYI

...and if you are more interested in MC

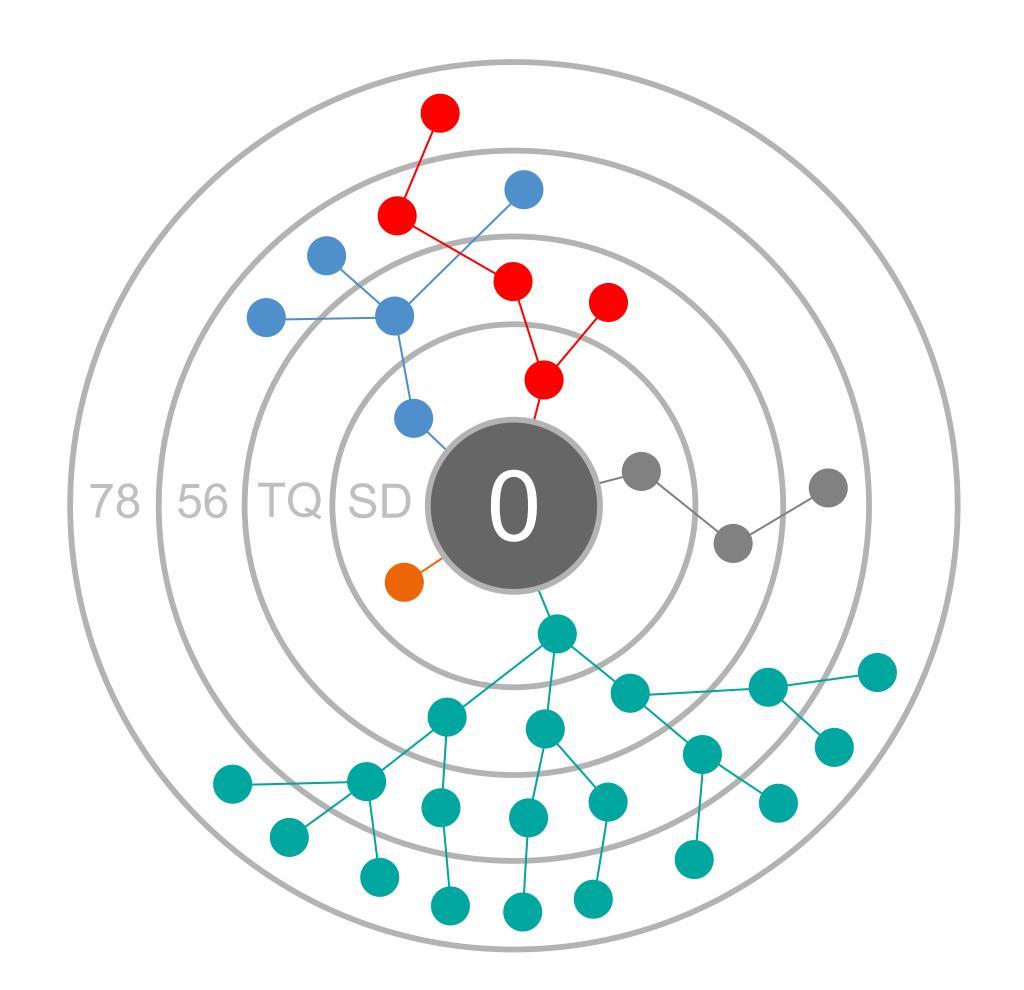
Roos et al.: Multiconfigurational Quantum Chemistry (2016)

Approximate FCI: Selected CI

- Determinants selected iteratively
- Example: CIPSI Algorithm

1. Reference WF
$$|\Psi_0\rangle = \sum_i c_i |\Phi_i\rangle \rightarrow E_0$$

- 2. Generate SD $|\Psi_0\rangle \rightarrow |\alpha\rangle \in \{|\Psi_i^a\rangle, |\Psi_{ij}^{ab}\rangle\}$
- 3. Evaluate PT2 contributions $\Delta E_{\alpha} = \frac{\langle \Psi_0 | H | \alpha \rangle \langle \alpha | H | \Psi_0 \rangle}{E_0 \langle \alpha | H | \alpha \rangle}$
- 4. Add dets. if $\Delta E_{\alpha} > \text{Thr} \rightarrow |\Psi_0\rangle += |\alpha\rangle$
- 5. Solve $\mathbf{HC} = E\mathbf{C} \rightarrow |\Psi_{\text{new}}\rangle$, E_{new}



If NOT CONVERGED

Approximate FCI: FCIQMC

- Stochastic approach to FCI determinant space sampled by walkers
- Rules: Signed walkers spawn, die, and annihilate
 - Population dynamics governed by

$$\frac{\mathrm{d}N_i}{\mathrm{d}\tau} = (H_{ii} - S)N_i + \sum_{j \neq i} H_{ij}N_j \qquad N_i \quad \text{number of walkers on } |\Phi_i\rangle$$

$$\tau \quad \text{imaginary time}$$

population control parameter

In the long time limit $E_0 = \lim E(\tau)$ and $c_i \propto N_i$ $\tau \rightarrow \infty$

Approximate FCI: DMRG

FCI wave function in occupation number representation # parameters 4k

$$|\Psi_{\text{FCI}}\rangle = \sum_{\{\alpha\}} C^{\alpha_1 \alpha_2 \cdots \alpha_k} |\alpha_1 \alpha_2 \cdots \alpha_k\rangle$$
 where $|\alpha_i\rangle \in \{|-\rangle, |\downarrow\rangle, |\uparrow\rangle, |\downarrow\uparrow\rangle\}$

Repeated application of SVD — matrix product state

parameters $\mathcal{O}(kM^2)$

$$|\Psi_{\mathrm{MPS}}\rangle = \sum_{\{\alpha\}} \mathbf{A}^{\alpha_1} \mathbf{A}^{\alpha_2} \cdots \mathbf{A}^{\alpha_{k-1}} \mathbf{A}^{\alpha_k} | \alpha_1 \alpha_2 \cdots \alpha_{k-1} \alpha_k \rangle$$
 $\{\alpha\} \qquad \qquad M \leftarrow \text{bond dimension}$

• Iteratively optimized, with dimension of matrices \mathbf{A}^{α_i} kept at M by truncation using SVD