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Multiconfigurational methods
…or when static correlation comes into play



Hartree-Fock equations
■ An n-electron problem breaks down to a set of coupled one-electron 

equations
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H |Ψ⟩ = E |Ψ⟩ f |φa⟩ =
n

∑
b=1

εab |φb⟩

f = h +
n

∑
b=1

(Jb − Kb)

vHF

H = − ∑
a

ha + ∑
ab

r−1
ab

■ Wave function approximated by a single Slater determinant


▪︎ mean-field approximation


▪︎ one Slater determinant = single configuration ground state only

r−1
ab → vHF

|φ1φ2…φn⟩



Why multiconfigurational wave functions
■ Let’s have a look at H2 dissociation


▪︎ We assume RHF wave function with 
doubly occupied bonding orbital
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|ΦRHF⟩ = |σσ̄⟩ =
σ(1)α(1) σ(1)β(1)
σ(2)α(2) σ(2)β(2)

= σ(1)σ(2)Θ2,0

σ = N (ψA + ψB)

= N2 (ψA(1)ψA(2) + ψA(1)ψB(2) + ψB(1)ψA(2) + ψB(1)ψB(2)) Θ2,0

Ionic terms present even when |rA—rB|  → ∞ 

B

ψB
1sB

A

ψA
1sA

1

2
(α(1)β(2) − β(1)α(2))

|Φ0⟩ =



H2 dissociation  MC wave function
■ Now we add an excited configuration 

composed of a doubly occupied 
antibonding orbital
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|Φ0⟩ = N2 (ψA(1)ψA(2) + ψA(1)ψB(2) + ψB(1)ψA(2) + ψB(1)ψB(2)) Θ2,0

σ = N (ψA + ψB) σ* = N (ψA − ψB)

|Φ22̄
11̄⟩ = N2 (ψA(1)ψA(2) − ψA(1)ψB(2) − ψB(1)ψA(2) + ψB(1)ψB(2)) Θ2,0

|ΨMC⟩ = C0 |Φ0⟩ + C1 |Φ22̄
11̄⟩

B

ψB
1sB

A

ψA
1sA



H2 dissociation  MC wave function
■ Additional wave function flexibility allows for 

correct dissociation process
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|ΨMC⟩ = |Φ0⟩ + |Φ22̄
11̄⟩C0 C1

C1 ≈ 0

C0 = 1

C0 ≈ − C1



H2 dissociation  What about UHF

■ Additional flexibility of a 
UHF wave function allows 
for correct dissociation 
process


■ …yet, it suffers from     
spin-contamination
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⟨S2⟩ − S2
exact ≠ 0



Electron correlation
■ In electronic structure theory, correlation energy defined as 


■ HF energy correct within 1% of the exact energy
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Not good enough for relative energies!

Ecorr = Eexact − EHF

■ Consequence of having the wave function approximated by a single 
Slater determinant

static correlation|φ1φ2…φn⟩ when there are near-degeneracies

present in the ground state

r−1
ab → vHF dynamic correlation always present due to the lack of 

instantaneous Coulomb repulsion 



n-electron expansions
■ Wave function expansion into a basis of excited Slater determinants
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|ΨCI⟩ = (1 + Ĉ1 + ⋯ + Ĉn) |Φ0⟩

|ΨCC⟩ = e ̂T1+ ̂T2 + ⋯ + ̂Tn |Φ0⟩

|ΨFCI⟩ = C0 |Φ0⟩ + ∑
ar

Cr
a |Φr

a⟩ +
1
2 ∑

abrs

Crs
ab |Φrs

ab⟩ +
1
6 ∑

abcrst

Crst
abc |Φrst

abc⟩ + ⋯

All             roads lead

to the exact energy

n → ∞

Ĉ1 |Φ0⟩ = ∑
ar

Cr
a |Φr

a⟩



FCI wave function and correlation
■ Weights of a FCI wave function reflect the dominant type of electron 

correlation for a particular system
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|ΨFCI⟩ = C0 |Φ0⟩ + Crs
ab |Φrs

ab⟩ + Crt
ab |Φrt

ab⟩ + Cr
a |Φr

a⟩ + Cs
a |Φs

a⟩ + Ct
a |Φt

a⟩ + ⋯

purely

dynamic ■ dominant HF determinant


■ many low-weight determinants

static ■ a few high-weight determinants



Cutting the FCI costs
■ We can limit the maximum excitation rank… → e.g. CISD

|ΨCISD⟩ = C0 |Φ0⟩ + ∑
ar

Cr
a |Φr

a⟩ +
1
2 ∑

abrs

Crs
ab |Φrs

ab⟩ +
1
6 ∑

abcrst

Crst
abc |Φrst

abc⟩ + ⋯
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|ΨCAS-CI⟩ = C0 |Φ0⟩ + Cr
a |Φr

a⟩ +
1
2

Crs
ab |Φrs

ab⟩ +
1
6

Crst
abc |Φrst

abc⟩ + ⋯∑
ar

∑
abrs

∑
abcrst

■ …or the orbital space in which we perform excitations → CAS-CI

∈ { H−2, H−1, H}1, 2…,
r, s, t…

HOMO

LUMO

∈ {L, L+1, L+2, }…N−1, N

a, b, c…
HOMO
LUMO

-1
-2

+1
+2

highest occupied MO
lowest unoccupied MO



■ Complete active space CAS(n, k)


▪︎ all possible configurations using n electrons in k orbitals

activeoccupied virtual

Complete active space
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2 
fixed occupation

0 
fixed occupation

FCI 
performed

(2k
n )

still FCI

scaling!

CAS-CI = FCI restricted to a CAS!



Multiconfigurational SCF
■ MCSCF wave function for the state I
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C
c

CI coefficients
orbitals coefficients

■ This wave function is then optimized variationally


▪︎ …but w.r.t. to two sets of variational parameters:

|ΨMC⟩ = ∑
I

CI |ΦI(c)⟩ |ΦI(c)⟩ = |φ1(c1) φ2(c2)…⟩where Slater determinants

EMCSCF = min
c, C

E(c, C) = min
c, C

⟨Ψ(c, C) |H |Ψ(c, C)⟩
⟨Ψ(c, C) |Ψ(c, C)⟩

with the

constraint ∑

I

|CI |
2 = 1



MCSCF Solution
■ Varying parameters    and     so that             becomes stationary…


■ …might be decoupled into a two-step procedure
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∇c E(c, C)
Build orbital gradientsSolve CAS-CI

c → E(c, C)
Optimize orbitals

∇c E(c, C) → c

■ Compared to SCF, where only the occupied orbitals are optimized, now we 
optimize all orbitals contained within the active space

OR

E(c, C)Cc



Multireference methods
■ MRCI — Multireference configuration interaction

▪︎ Linear excitation operator applied to a MC(SCF) wave function

▪︎ Each reference determinant has its own set of CI coefficients 
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■ CASPT2 — CAS perturbation theory through second order


▪︎ Rayleigh-Schrödinger PT applied to a CASSCF wave function

= ∑
I (C(I) |ΦI⟩ + ∑

ar

Cr
a(I) | (ΦI)r

a⟩ +
1
2 ∑

abrs

Crs
ab(I) | (ΦI)rs

ab⟩ + ⋯)
|ΨMRCI⟩ = (1 + Ĉ1 + Ĉ2 + ⋯) |ΨMC⟩ ∑

I

CI |ΦI⟩ C(I) ≡ CI



■ What active space composition would you choose for the study of N2 
dissociation? How many electrons in how many orbitals? Which ones?


■ Consider a degenerate ground state described by a wave function  
comprising two Slater determinants         and         . If we only take        as a 
reference for a CID calculation instead of        , how many configurations 
would be missing in the CID expansion?

Quiz

|Φ0⟩ = |Φ1⟩ =

|Ψ0⟩ = |Φ0⟩ + |Φ1⟩

|Ψ0⟩
|Φ0⟩ |Φ1⟩ |Φ0⟩

|Ψ0⟩
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Why SR methods fail? N2 dissociation
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σ*

π1 π2

π1 π2

σ

* *

■ Singlet N2 dissociates into two quartet nitrogen atoms



N2 dissociation  A single-reference catastrophe
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t1 =
| t1|

n
< 0.02

■ CCSD  →  t1 diagnostic


▪︎ calculation reliable if



N2 dissociation  MBPT and CC
■ Let’s have a look at the energy corresponding to the         amplitude
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trs
ab =

⟨ab |rs⟩
εa + εb − εr − εs

δEMP2 = trs
ab (2⟨ab |rs⟩ − ⟨ab |sr⟩)

tπ*1 π*2
π1π2

|⟨ab |rs⟩|

δEMP2

| trs
ab |

εrs
ab

εrs
ab



N2 dissociation  CASSCF
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CASPT2

■ difference in bond 
energy 

ΔDe ≈ 4 kcal/mol
CASPT2 — CASSCF

ΔDe ≈ 0.75 kcal/mol
FCI — CASPT2

but only



N2 dissociation  UHF reference
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Active space selection
■ Ideal: all valence orbitals    —   usually not an option 


■ Bond formation/dissociation:


■ Electron spectroscopy:


■ Double-shell effect — important for first-row transition metals starting from Cr


▪︎ Ideal: inclusion of all 3d + all 4d orbitals 

21Veryazov, Malmquist, Roos; Int. J. Quantum Chem. 111, 3329 (2011) 

▪︎ Correlating pairs σ-σ* and π-π*

▪︎ All potential excitation sites


▪︎ All planar unsaturated π, π*

If you want to compare CASSCF energies,
CAS has to be consistent along the entire studied process!

https://doi.org/10.1002/qua.23068


CAS selection  Fe(II)-porphyrin model

22

CAS(32,34)

π /π*

σ /σ*

3dxz 4dxz

3dyz 4dyz

3dxy 4dxy

4dz23dz2

4dx-y2 23dx-y2 2



Going large scale with approximate FCI
■ Contemporary FCI: maximum CAS(24,24), practical possibly CAS(19,19)
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Selected CI

FCI Quantum Monte Carlo

Density Matrix Renormalization Group

▪︎ Systematically include determinants based on their coupling to the 
reference determinant(s) 

▪︎ Numerical variational approximation to FCI — keeps maximum number 
of parameters capped while minimizes the loss of information

▪︎ Stochastic approach, walkers sample the determinant space 



When to be cautious 
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Competing

valence structures

O
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Transition metals

dns2   dn+1s1   dn+2

spin multiplets

Excited states

Bond breaking/formation



The following slides are just FYI

Roos et al.:  Multiconfigurational Quantum Chemistry (2016)

…and if you are more interested in MC 

https://doi.org/10.1002/9781119126171


Approximate FCI:  Selected CI
■ Determinants selected iteratively


■ Example: CIPSI Algorithm
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SDTQ5678 0

Reference WF |Ψ0⟩ = ∑
i

ci |Φi⟩ → E0

Generate SD |Ψ0⟩ → |α⟩ ∈ { |Ψa
i ⟩ , |Ψab

ij ⟩}

Evaluate PT2 
contributions ΔEα =

⟨Ψ0 |H |α⟩⟨α |H |Ψ0⟩
E0 − ⟨α |H |α⟩

Add dets. if ΔEα > Thr → |Ψ0⟩ += |α⟩

Solve HC = EC → |Ψnew⟩ , Enew

1.

2.

3.

4.

5.

If NOT CONVERGED
Huron, Malrieu, Rancurel; J. Chem. Phys. 58, 5745 (1973)

https://doi.org/10.1063/1.1679199


Approximate FCI:  FCIQMC
■ Stochastic approach to FCI — determinant space sampled by walkers


■ Rules: 
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dNi

dτ
= (Hii − S)Ni + ∑

j≠i

HijNj

▪︎ Signed walkers spawn, die, and annihilate


▪︎ Population dynamics governed by

Ni
τ
S

number of walkers on

imaginary time

population control parameter

|Φi⟩

Booth, Thom, Alavi; J. Chem. Phys. 131, 054106 (2009)

ci ∝ NiIn the long time limit andE0 = lim
τ→∞

E(τ)

https://doi.org/10.1063/1.3193710


Approximate FCI:  DMRG
■ FCI wave function in occupation number representation
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Chan, Sharma; Annu. Rev. Phys. Chem. 62, 465 (2011)

|ΨFCI⟩ = ∑
{α}

Cα1α2⋯ αk |α1α2⋯αk⟩ |αi ⟩ ∈ { |−⟩, |↓⟩, |↑⟩, |↓↑⟩}where

■ Repeated application of SVD — matrix product state

4k# parameters

𝒪(kM2)# parameters

|ΨMPS⟩ = ∑
{α}

Aα1Aα2⋯Aαk−1Aαk |α1α2⋯αk−1αk⟩
M ← bond dimension

Wouters, Van Neck; Eur. Phys. J. D 68, 272 (2014)

■ Iteratively optimized, with dimension of matrices        kept at      by truncation 
using SVD

MAαi

https://doi.org/10.1146/annurev-physchem-032210-103338
https://doi.org/10.1140/epjd/e2014-50500-1

