
Q&A Session
10 Dec 2024



Time & Date & Location

● Written exam will take place on Monday December 16th
● We will begin at 10h15 and you will have a full 2 hours to complete the exam
● We’ll be in the room by 10h if you’d like to come in early and settle in
● The exam will be held in our usual exercise room BCH 1103 (where we have interviews)

Materials

● Similar to the first exam you will be allowed written or printed notes on two separate sheets of 
A4 paper each with back and front available

● No calculator will be needed

Content

● Chapters 5, 6, 7, 8, Appendix E (post-HF and DFT methods) and nothing from chapters 9 or 10

Written Exam (December) Details



● Available until 07.01.2025

● How to access the evaluations:
○ Log onto Moodle and stay on the moodle 

home page (i.e. do not enter the course page)
○ Go to the ‘In-depth evaluation’ box on the right 

hand side of the moodle home page
○ Select the course and complete the feedback

● Alternatively, via the EPFL Campus App

● Feedback is useful for improving the 
course especially if the response rate is 
high. If you can, please take few minutes 
to fill this in! Thank you!

Reminder: In depth evaluation for the course

From EPFL Teaching support/Resources for students:

https://www.epfl.ch/education/teaching/teaching-support/resources-for-students/


Feedback Written Exam 1 1. Mostly good answers, but most students got wrong 
answer for d/dx operators

2. Question more difficult, most students couldn’t write the 
correct wavefunction for a) and b). But some good attempts 
at defining boundaries, allowed quantum number, periodicity 
…

3. Overall well answered. Remember: scaling N4 and count 
polarisation functions as CGTO

4. Most answers were partially correct. Share the same 
exponents because exponent determines average distance of 
electron from nuclei

5. Overall well answered. Remember: don’t add a ½ as a 
coefficient to the (J+K) term, and merge 2 terms

6. Heterogeneous. Important to know how to calculate 
multiplicity and <S2> = S(S+1) (singlet, S=0, <S2> = 0)

Bonus. Most answers were very good, but some students 
didn’t explain when counterpoise correction is important



Some important features of electronic structure methods:

● What is the Ansatz for the wavefunction?
● How are exchange and correlation treated?
● Can static correlation/multireference problems be treated?
● Is the method variational (i.e. is E always ≥ E_true)?
● Is the method size consistent (i.e. is the energy of two non-interacting 

systems the sum of the single systems?)
● Can excited states be treated with the same method?
● What is the scaling of the method (i.e. how does the computational cost 

grow if I double the system size?)

Overview Slide





Mock Exam



Mock Exam Question 1 

What is meant by the term correlation hole?
nucleus

electron 1

Ψexact(1,2) – ΨHF(1,2) 

Two electrons repulse themselves due to 
the instantaneous Coulomb interaction

→ their motion is correlated

Example: Helium atom

The surface represents a difference between exact and 
HF wave functions as a function of electron 2 
coordinates while electron 1 is at a fixed position.

A drop around the position of electron 1 represents a 
decrease in probability of finding the electron 2 in its 
vicinity → repulsion



Mock Exam Question 2

Name two ways of how to reduce the number Slater determinants in configuration 
interaction when treating a) dynamic correlation and b) static correlation.



Mock Exam Question 2

Name two ways of how to reduce the number Slater determinants in configuration 
interaction when treating a) dynamic correlation and b) static correlation.

a) →

b) →



Mock Exam Question 3

Q: Which methods do have a possible self-interaction (i.e. an electron interacting with itself) error: a) CISD; b) 
MP2; c) CCSD(T) and d) KS-DFT with approximate exchange-correlation functional.



Mock Exam Question 3

Q: Which methods do have a possible self-interaction (i.e. an electron interacting with itself) error: a) CISD; b) 
MP2; c) CCSD(T) and d) KS-DFT with approximate exchange-correlation functional.

A: Self interaction can arise from energy terms involving two-electron

● In HF, we saw self-interaction cancels out explicitly (for electron a, Jaa=Kaa)
● In the post-HF method listed, there is no term really involving one electron and the interaction with itself, e.g. 

in MP2

● In DFT, on the other side, we always have Coulomb terms where electron density can interact with itself. 
The energy is a functional of the single-particle density, so there is no way to precisely distinguish two-body 
Coulomb interactions from self-interaction. One therefore includes the interaction of each electron with the 
entire electron density (including its own density).

Note: if a and b could be equal (even if this 
would not correspond to a self-interaction as 
in HF), those terms would cancel out

self-interaction-corrected 
correlation functional exist !



Mock Exam Question 4

What is the energy correction due to electron correlation at a) first-order (MP1)? b) 
Derive the expression for the energy correction at 2nd order (MP2). 



Mock Exam Question 4

What is the energy correction due to electron correlation at a) first-order (MP1)? b) 
Derive the expression for the energy correction at 2nd order (MP2).

unperturbed
Hamiltonian

perturbation

time-independent Schrödinger equation



Mock Exam Question 4

What is the energy correction due to electron correlation at a) first-order (MP1)? b) 
Derive the expression for the energy correction at 2nd order (MP2).

a)  

b)

,

the first meaningful correction 
appears at MP2 energy.



Mock Exam Question 4
the first meaningful correction 
appears at MP2 energy.

What is the energy correction due to electron correlation at a) first-order (MP1)? b) 
Derive the expression for the energy correction at 2nd order (MP2). 

Hartree-Fock energy

correlation energy 

MP2 energy



Mock Exam Question 5

What is the wavefunction Ansatz in coupled cluster theory?  Using the same 
one-electron basis set e.g. 6-3111+G**, which method is more accurate: CISD or 
CCSD? Why?



Mock Exam Question 5

What is the wavefunction Ansatz in coupled cluster theory?  Using the same 
one-electron basis set e.g. 6-3111+G**, which method is more accurate: CISD or 
CCSD? Why?

CCSD accounts for some triple and quadruple excitations by approximating them 
as products of single and double excitation.

https://doi.org/10.1016/S0065-3276(08)60532-8 

https://doi.org/10.1016/S0065-3276(08)60532-8


Mock Exam Question 6
Write down the relation between the many-electron wavefunction and the electron 
density. Can you determine the ground state electron density via a variational principle 
in a) exact DFT? b) DFT with an approximate exchange-correlation functional? Why? Is 
the resulting ground state energy above or below the exact value?



Mock Exam Question 6
Write down the relation between the many-electron wavefunction and the electron 
density. Can you determine the ground state electron density via a variational principle 
in a) exact DFT? b) DFT with an approximate exchange-correlation functional? Why? Is 
the resulting ground state energy above or below the exact value?

a) Yes. We can look at the second HK (Hohenberg-Kohn) theorem: it defines an energy functional 
for the system and proves that the ground-state electron density minimizes this energy functional. 

If ⍴(r) ≠⍴0(r) then Ψ ≠ Ψ0 and Ev > E0

b) No guarantee. The expression of the energy based on electron-density introduces 
approximations for the exchange-correlation energy term. In this way, the use of the approximate 
functional could result in an energy limit which is below the exact ground state energy value. 



Mock Exam Bonus

Bonus: What are generalized gradient approximations (GGAs)? Why are they 
called ‘generalized’? Give a few examples of frequently used GGA.



Mock Exam Bonus

Bonus: What are generalized gradient approximations (GGAs)? Why are they 
called ‘generalized’? Give a few examples of frequently used GGA.

where function, f, can take different forms. Instead of power-series-like systematic 
gradient expansions one could experiment with more general functions of both 
the electron density and its gradient.  For example from the slides here’s one such 
function:

PBE, BLYP, and B88 are common GGA functionals.

The GGA add a term reflecting a gradient of electron density at a given 
point, accounting in part for an inhomogeneous distribution of electron 
density and some non-local effects.



Mock Exam Bonus
Bonus: What are generalized gradient approximations (GGAs)? Why are they 
called ‘generalized’? Give a few examples of frequently used GGA.

Jacob's ladder for the five 
generation of DFT functionals



Question from Student

One question regarding the way 
Löwdin expressed the electron 
correlation on slide - could you clarify 
the signs of the energy values? 



Question from Student

One question regarding the way 
Löwdin expressed the electron 
correlation on slide - could you clarify 
the signs of the energy values? 

When correlation energy is included, 
the total calculated energy of the 
system is lower (more negative) than 
just the energy recovered from HF. 

Ecorr = Eexact – EHF



Question from Student

One question regarding the way 
Löwdin expressed the electron 
correlation on slide - could you clarify 
the signs of the energy values? 



Question from Student

Q: What is the difference between exchange energy and correlation energy?



Question from Student

Q: What is the difference between exchange energy and correlation energy?

A: In the context of DFT, the exchange-correlation energy term is often 
decomposed into exchange energy and correlation energy

This distinction is quite arbitrary, but the idea to include in the exchange term (Ex) 
effects due to the Pauli principle, and in the correlation term (Ec) effects due to 
electron-correlation.

In KS DFT with approximated functionals, different functional forms are assumed 
for Exc, or for Ex and Ec.



Question from Student

Could you clarify which post-HF methods, including DFT, recover dynamic and/or 
static correlation?



Question from Student

Could you clarify which post-HF methods, including DFT, recover dynamic and/or 
static correlation?

● All of the post-HF methods+DFT capture some electron correlation.
 

● FCI is exact thus it will recover all correlation same as untruncated CC. Exact 
DFT also recovers all correlation as the exact ground state energy depends 
only on the ground state electron density. 

● As dynamic correlation is present in all systems, each of these methods will 
aid in recovering dynamic correlation.

● Multiconfigurational methods like CASSCF explicitly account for 
static correlation unlike truncated, single reference methods like CISD





 Review Material

Ch 5 - Configuration Interaction 

Ch 6 - Perturbation Theory 

Ch 7 - Coupled Cluster

Ch 8 - Density Functional Theory

Appendix E - Multiconfigurational Methods 

(Ch 9 & Ch 10 - Not tested!)



Ch 5 - Configuration Interaction (5.1-5.2)

From here on out we’re hoping to improve on the HF calculations:

● CI improves on HF by providing a set of “infinite” Slater determinants instead 
of just one. We expand our wavefunction into a complete basis set {𝚽i}

● If we have a true complete basis set of one-electron spin orbitals, then we will 
have infinite possible N-electron basis functions which can be written as 
excitations from the HF “reference” Slater determinant:

● Every N-electron Slater determinant is a configuration and therefore the 
configuration interaction is the matrix solution of contributing configurations

● Incomplete 1-e basis means complete CI impossible. Full CI (FCI) is the 
solution exactly within space of specific basis, but usually we do a truncated 
CI, like CISD, or active space CI, like CASCI. 



Ch 5 - Configuration Interaction (5.3) - Correlation Energy

● With CI we see a recovery of correlation energy absent in HF:
○ Ecorr = Eexact– EHF 

● Electron correlation is customarily divided into dynamic and static 
(non-dynamic). There is no strict definition of these terms, but…
○ Dynamic: 

Electrons experience instantaneous repulsions from other electrons as they move

○ Static: 
Near-degeneracies at the ground state → a single reference configuration is 
inadequate to describe the ground state



Ch 5 - Configuration Interaction (5.6)

● Slater-Condon rules or how to build a CI Hamiltonian matrix
○ Recall H matrix is the matrix representation of the Hamiltonian operator in a given N-electron 

basis with the element Hij being equal to〈𝚽i 
 |H  | 𝚽j 〉

○ Read section 5.4 and understand these are all 1 or 2 electron integrals which form H matrix
○ We have to arrange 2 Slater det in maximum coincidence, getting them to look similar 
○ Four Rules: Identical, One Difference, Two Differences, 3+ Differences (zero)

● Matrix elements of single excitations from reference are zero (Brillouin’s 
theorem). The matrix element between 2 Slater determinants differing by 1 
spin orbital is an off-diagonal Fock matrix element in HF (zero by definition).

https://en.wikipedia.org/wiki/Brillouin%27s_theorem
https://en.wikipedia.org/wiki/Brillouin%27s_theorem


Ch 5 - Configuration Interaction 

CI is usually truncated to single and double excitations (CISD). Double excitations make biggest CI contributions. 

The size of the N-electron basis (Slater determinants) depends on
the size of the 1-electron basis (basis functions (e.g. 6-311G*)). 

Pros

● Can apply CI to excited states, open shell, non-equilibrium states
● Can provide the exact matrix solution of the time-independent non-relativistic electronic Schrödinger equation
● CISD can capture ~95% correlation energy for small molecules near equilibrium
● Is variational  

Cons

● Computationally intractable to perform FCI for anything but tiny systems because of the number of slater 
determinants 

● Not size extensive or size consistent for truncated CI (but it is for CASCI if you define your active space properly)

#SD =
Nbas!

Nel! (Nbas– Nel)!



Ch 6 - Perturbation Theory (6.1 - 6.1.2)
● General perturbation theory

       Ĥ =Ĥ(0)+ λĤ’  → λ parameter determining strength of perturbation, between 0-1

● Zero-order (unperturbed): λ0 = 1;  Ĥ = Ĥ(0); 𝚿(0)= 𝚽0 ; 
 E(0) = E0 

● First-order → nth order (perturbed): 
○ Expand into power series around λ 
○ Define the first, second…nth order *correction* values for energy and wavefunctions E(1), E(2)...E(n)

● Normalize: correction terms orthogonal to 𝚿(0) meaning 〈𝚿(i ≠ 0) | 𝚽〉= 0
● Apply correction terms to Schrodinger’s Equation

(Ĥ(0)+ λĤ’)(λ0𝚿(0)+λ1𝚿(1)+ λ2𝚿(2)+...) = (λ0E(0)+λ1E(1)+ λ2E(2)+...) (λ0𝚿(0)+λ1𝚿(1)+ λ2𝚿(2)+...)
○ Collect terms of similar powers in perturbation equations:

■ For λ2 →  Ĥ (0)𝚿(2)+ Ĥ’𝚿(1) = E(0)𝚿(2) + E(1)𝚿(1)+ E(2)𝚿(0)

■ For λn →  Ĥ(0)𝚿(n)+ Ĥ ’𝚿(n-1) = ∑ E(j)𝚿(n-j) from j = 1 to j = n 



Ch 6 - Perturbation Theory (6.1.3 - 6.2)

● Expand wavefunction corrections into complete set of orthogonal functions 
(Rayleigh-Schrödinger perturbation theory). Example: First order Perturbation

(Ĥ(0) – E(0))𝚿(1) + (Ĥ ’ –  E(1))𝚽(0) = 0 where 𝚿(1) = ∑ ci𝚽i   from i = 0 to i = ∞

For a given i = j → cj  =〈𝚽j 
 |Ĥ’ | 𝚽0〉

                                  (E0 - Ej)

● Expansion coefficients determine corrections to perturbed wavefunction
● Corrections are expressed in matrix elements of perturbation Hamiltonian, Ĥ’, 

over the unperturbed wavefunctions and energies
● Ok, so how do we actually perform perturbation theory? Møller-Plesset!

Ĥ(0): Sum of single particle Fock Operators (HF) 
Ĥ’: Difference between full Hamiltonian and HF Hamiltonian r 

-1 – vHF



Ch 6 - Perturbation Theory (6.2 continued)

● Ĥ(0) requires use of Fock Operators (i and j are electron indices):

F i = h i + ∑ (Ĵ i – K i ) from j to N   where we know   FiΦi(xi)= ɛiΦi(xi )

● Take Fock operator for an unperturbed Hamiltonian, Ĥ(0)

Ĥ(0) = ∑N
i=1  F i  = ∑N

i=1 h i +∑N
i=1 ∑

N
j=1 (Ĵ ij – K ij )

● Rearrange to find the Ĥ’ operator: Ĥ’= ĤFULL – Ĥ(0) = ∑N
i<j vij – ∑N

i , j=1 vij
HF 

● If you do the math, you’ll see we’re double counting e-e repulsion at zero 
order BUT the first order energy (E(0)+E(1)) is exactly the HF energy!

● Therefore, so in MPn, correlation energy matters at orders of 2+

^ ^

^ ^ ^

^ ^



Ch 6 - Perturbation Theory (6.2 continued)

● Solutions to unperturbed problem should be infinite, but truncated in practice
○ Unperturbed state = HF wavefunction. Higher energy solutions = excited Slater determinants

● Singly excited Slater determinants don’t contribute to energy (Brillouin)
● Doubled excited Slater determinants → promote 2 electrons from occ orbitals 

to unocc. Organize summation so only counting each excited state once:

https://en.wikipedia.org/wiki/Brillouin%27s_theorem


Ch 6 - Perturbation Theory (6.2 continued)

Pros

● MP2 is a N5 method because it’s the sum of two 2-election integrals plus 
transformation integrals from AO to MO. Still decently cheap and gets 80-90% 
correlation energy typically. 

Cons

● Must have a good zeroth-order wavefunction so the assumption that the 
perturbation is small is a good one. HF needs to be a decent starting point.

● Difficult to prove perturbation expansion is convergent (basis set 
dependence). So in practice only low orders of perturbation are carried out, 
usually landing on MP2 even though it often overshoots correlation energy. 



Ch 7 - Coupled Clusters (7.1)

Key Points to Note From Extra Textbook Info

● Size Extensivity vs. Size Consistency
○ Extensivity: energy should scale linearly with system size
○ Consistency: can break up the Hamiltonian per system part E(AB) = E(A) + E(B) 

● CC includes all corrections of a given type (S,D,T, etc) to infinite order
● Comprised of an exponential ansatz with a cluster operator T.  The T  

operator produces a linear combination of excited state Slater determinants

|𝚿 〉= eT |𝚽0〉where  T =  T1 +T2 +…  and T1 → operator for all single excitations

● T  operators are composed of creation and annihilation operators between 
occupied and unoccupied orbitals

● We must solve for unknown t coefficients

https://lcbc-epfl.github.io/iesm-public/Lecture/CC.html


Ch 7 - Coupled Clusters (7.2-7.4)

● We can define an expression for energy depending on our choice of where to 
truncate excitations. Example with singles and doubles

● If we use HF orbitals for the Slater determinant then the contributions from 
singly excited determinants are zero (Brillouin)

● There are formulas to solve for t coefficients → amplitude equations 
● CCSDT vs CCSD(T)

○ CCSDT includes T operators for single, double, and triple excitations
○ CCSD(T) includes T operators for single and double excitations. Triples are treated with 

perturbation theory like we observed in MPn methods

https://en.wikipedia.org/wiki/Brillouin%27s_theorem


Ch 7 - Coupled Clusters

Pros - CC theory preferred over the CI and MP methods for the following reasons:

● It is size-extensive
● It can be size-consistent if the reference wavefunction is size-consistent
● It provides fast and systematic convergence to the full CI solutions
● When truncated, CC usually recovers more correlation energy than CI 

because of the inclusion of higher excitations 

Cons

● CC energy is not variational 
● Computational cost scales steeply with the size of the system



Appendix E - Multiconfigurational methods

Systems with static correlation → single determinantal wave functions inadequate

● dissociations, transition metals, excited states…

Complete active space (CAS) methods provide a 
cheaper alternative to Full CI and capture static corr.

We can optimize the wave function using the MCSCF
methods such as CASSCF

Dynamic correlation is still important!!! →  multireference CI, MBPT, CC…

CAS selection is non-trivial and requires a certain insight into the investigated 
problem → bonding/antibonding pairs for dissociation, unsaturated planar π/π*, ...

N2



Ch 8 - Density Functional Theory (DFT)

Hohenberg–Kohn theorems:

1) The ground state wavefunction is a unique functional of ground state density

●

●

2)  Variational principle: for any density ⍴’

                             where == ONLY IF ⍴’=⍴0



Ch 8 - Exact DFT 
From HK theorems we have a recipe to calculate all the ground state properties, 
by performing a 3 dimensional minimization (the wavefunction analogue requires 
3N dimensional minimization!)

                                           ,                    →      ⇒            and any  

BUT expressions for T, Vee, and VeN are needed ⇒ approximations

● Thomas-Fermi approach: example of exact DFT (KS DFT precursor)

homogeneous 
system 

noninteracting 
system

known exactly:



Ch 8 - Kohn-Sham DFT

TF approximation for T is not accurate. It is possible to separate T[⍴]

                              , expression for Ts for not known as a functional of ⍴, but known 

exactly for single-particle orbitals of a noninteracting system with density ⍴
                                                  ⇒ 

Indirect minimization considering an auxiliary noninteracting system with same 
density, under the influence of an external potential            
⇒                        by solving (SCF!) Kohn-Sham equations:

● So far theory is exact, BUT expression for           not known ⇒ approximations
●  “Koopman’s theorem” for KS DFT, for exact case:



Ch 8 - Functionals

QMCknown

different f, ex: PBE (physics), BLYP (chemistry)

fraction of HF exchange energy

KS kinetic energy


