Post-Hartree-Fock Methods

Methods use a Hartree-Fock calculation as starting point and try to improve the HF results by taking account of electron correlation:

- Configuration Interaction (CI)
- Many Body Perturbation Theory (Møller-Plesset (MPn)

1

Magnitude of Correlation Contributions

Example: Methane CH₄ (6-311G* Basis set)

Total Energy

Hartree-Fock -40.202409 au exact -40.372946 au

E_{corr} -0.170537 au → -107.0 kcal/mol (0.4%)

Typical estimate of electron correlation energies:

~ 100kJ/mol for a localized electron pair

General: < 1% of total energy

Many-Body Perturbation Theory (MBPT)

Idea:

For the case electron correlation effects are relatively small, the Hartree-Fock solutions Φ_i^{HF} and E_i^{HF} are already close approximations to the exact solutions Ψ_i^{lexact} and E_i^{lexact} .

=> correlation effects can be considered as perturbation to the HF solution and treated via perturbation theory

Exact Hamiltonian \hat{H} can be partitioned into:

$$\begin{split} \hat{H} &= \hat{H}^{(0)} + \lambda \hat{H}^{'} = \hat{H}^{(0)} + \lambda V \end{split} \qquad \text{with} \qquad V << \hat{H}^{(0)} \\ &\quad \text{and} \qquad 0 \leq \lambda \leq 1 \end{split}$$

$$\text{for } \lambda = 0 \quad \hat{H} = \hat{H}^{(0)} \quad \text{for } \lambda = 1 \quad \hat{H} = \hat{H}^{(0)}$$

Rayleigh-Schrödinger Perturbation Theory

Let's consider the non-degenerate ground state of a time-independent system:

$$\hat{H} = \hat{H}^{(0)} + \lambda \hat{H}'$$

 $\rightarrow \lambda$ can be varied smoothly from the unperturbed ($\lambda = 0$) to the fully perturbed (λ = 1) case

Schrödinger Equation for the perturbed system:

$$\hat{H}\Psi(\lambda) = E(\lambda)\Psi(\lambda)$$

Special notation for
$$\lambda$$
 = 0 and i = 0:
$$\begin{aligned} \widehat{H}^{(0)} &= H_0 \\ \Psi_0(\lambda=0) &= \Psi_0^{(0)} &= \Phi_0 \\ E_0(\lambda=0) &= E_0^{(0)} &= E_0 \end{aligned}$$

Expansion of Ψ and E in powers of λ

$$\begin{split} E_i &= \lambda^0 E_i^{(o)} + \lambda^1 E_i^{(1)} + \lambda^2 E_i^{(2)} + \dots \\ \left| \Psi_i \right> &= \lambda^0 \left| \Psi_i^{(0)} \right> + \lambda^1 \left| \Psi_i^{(1)} \right> + \lambda^2 \left| \Psi_i^{(2)} \right> + \dots \\ &+ H \left| \Psi_i \right> &= E_i \left| \Psi_i \right> \end{split} \quad \begin{array}{c} \text{Series does not necessarily converge} \\ \end{split}$$

- Indices (0),(1),(2)..(n): refer to the unperturbed system (0th order correction), the 1st order correction, 2nd order correction...nth order correction, respectively → MP2, MP3, MP4 etc...
- Will concentrate on improving ground state wavefunction and energy i = 0
 will leave out index i

Normalization condition: intermediate normalization overlap of perturbed wfc with unperturbed wfc chosen to be 1!

$$\langle \Psi | \Phi \rangle = 1 \\ \langle \Psi^{(0)} + \lambda^1 \Psi^{(1)} + \lambda^2 \Psi^{(2)} \dots | \Phi \rangle = 1 \\ \langle \Psi^{(0)} | \Phi \rangle + \lambda^1 \langle \Psi^{(1)} | \Phi \rangle + \lambda^2 \langle \Psi^{(2)} | \Phi \rangle + \dots = 1 \\ \end{pmatrix} \qquad \begin{array}{c} \langle \Psi^{(i \neq 0)} | \Phi \rangle = 0 \\ \text{All corrections are orthogonal To unperturbed solution} \end{array}$$

5

n-th order Perturbation Equations

$$(\mathcal{H}_0 + \lambda \mathcal{H}')(\lambda^0 \Psi^{(0)} + \lambda^1 \Psi^{(1)} + \lambda^2 \Psi^{(2)} + \dots) = (\lambda^0 E^{(0)} + \lambda^1 E^{(1)} + \lambda^2 E^{(2)} + \dots) (\lambda^0 \Psi^{(0)} + \lambda^1 \Psi^{(1)} + \lambda^2 \Psi^{(2)} + \dots)$$

Collect terms with same power in λ :

$$\begin{array}{lll} \lambda^{0} & : & \mathcal{H}_{0} \, \Psi^{(0)} = E^{(0)} \, \Psi^{(0)} \\ \lambda^{1} & : & \mathcal{H}_{0} \, \Psi^{(1)} + \mathcal{H}' \Psi^{(0)} = E^{(0)} \, \Psi^{(1)} + E^{(1)} \, \Psi^{(0)} \\ \lambda^{2} & : & \mathcal{H}_{0} \, \Psi^{(2)} + \mathcal{H}' \Psi^{(1)} = E^{(0)} \, \Psi^{(2)} + E^{(1)} \, \Psi^{(1)} + E^{(2)} \, \Psi^{(0)} \\ & \cdots \\ \lambda^{n} & : & \mathcal{H}_{0} \, \Psi^{(n)} + \mathcal{H}' \Psi^{(n-1)} = \sum_{i=0}^{n} E^{(j)} \Psi^{(n-j)} \end{array}$$

 $\Psi^{(n)}$, $E^{(n)}$: n-th order correction to the wavefunction and to the energy

Rayleigh-Schrödinger Perturbation Formulae

1st order perturbation:

$$(\hat{H}_0 - E^{(0)})\Psi^{(1)} + (\hat{H}' - E^{(1)})\Psi^{(0)} = 0$$

For improving ground-

state solution Φ_0, E_0 :

$$\left[\left(\hat{H}_{0} - E_{0}\right)\Psi^{(1)}\right] + \left(\hat{H}' - E^{(1)}\right)\Phi_{0} = 0$$

Contains 2 unknowns

General solution: expand wavefunction correction in complete set of unperturbed wavefunctions:

$$\Psi^{(1)} = \sum_{i=0}^{\infty} c_i \Phi_i$$

If we introduce this Ansatz for the wavefunction in the equation above, we obtain:

$$E^{(1)} = \langle \Phi_0 | \mathcal{H}' | \Phi_0 \rangle$$

1st order correction to the energy

7

Quiz XIII: 1st order correction

- 1) Derive the expression for the 1st order correction to the energy starting from the equation gathering the λ^1 terms. Hint: multiply from the left with Φ_0 and integrate over all space.
- 2) Determine the expansion coefficients c_j for the first order correction to the wavefunction $\Psi^{(1)}$. Hint: multiply from the left with the basis function Φ_j (j \neq 0) and integrate over all space.
- 3) Why is $c_0 = 0$?

By multiplying on the left with a given Φ_i and integrating, we obtain the coefficients c_i for the 1st order correction to the wavefunction:

$$\Psi^{(1)} = \sum_{i=0}^{\infty} c_i \Phi_i$$

$$\Psi^{(1)} = \sum_{i=0}^{\infty} c_i \Phi_i \qquad \text{with} \qquad c_j = \frac{\langle \Phi_j | \mathcal{H}' | \Phi_0 \rangle}{E_0 - E_j} \qquad \begin{array}{c} \text{1st order correction to} \\ \text{the wavefunction} \end{array}$$

In addition, from the normalization condition we get $c_0 = 0$.

2nd order perturbation:

$$\hat{H}_{0}\Psi^{(2)} + \hat{H}'\Psi^{(1)} = E_{0}\Psi^{(2)} + E^{(1)}\Psi^{(1)} + E^{(2)}\Phi_{0}$$
2 unknowns

Expansion of the 2nd order correction to the wavefunction:

$$\Psi^{(2)} = \sum_{i} d_i \Phi_i$$

$$c_0 = d_0 = 0$$

11

2nd order correction to the energy:

$$E^{(2)} = \langle \Phi_0 | H' | \Psi^{(1)} \rangle$$

$$E^{(2)} = \sum_{i} c_{i} \langle \Phi | \mathcal{H}' | \Phi_{i} \rangle = \sum_{i \neq 0} \frac{\langle \Phi_{0} | \mathcal{H}' | \Phi_{i} \rangle \langle \Phi_{i} | \mathcal{H}' | \Phi_{0} \rangle}{E_{0} - E_{i}}$$

2nd order correction to the wfct:

$$d_{j} = \sum_{i \neq 0} \frac{\langle \Phi_{j} | \mathcal{H}' | \Phi_{i} \rangle \langle \Phi_{i} | \mathcal{H}' | \Phi_{0} \rangle}{(E_{0} - E_{j})(E_{0} - E_{i})} - \frac{\langle \Phi_{j} | \mathcal{H}' | \Phi_{0} \rangle \langle \Phi_{0} | \mathcal{H}' | \Phi_{j} \rangle}{(E_{0} - E_{j})^{2}}$$

nth order correction to the energy:

$$E^{(n)} = \langle \Phi_0 | H' | \Psi^{(n-1)} \rangle$$

Møller-Plesset Perturbation Theory

unperturbed system:

$${\cal H}^0|\Psi^{(0)}>=E_0^{(0)}|\Psi^{(0)}>$$

 \mathcal{H}^0 : Hartree-Fock Hamiltonian

$$\mathcal{H}^0 = \sum_{i=1}^{N} \hat{f}(i)$$
 $\hat{f}(i) = \hat{h}(i) + \sum_{j=1}^{N} \hat{J}_{j} - \hat{K}_{j}$

$$\begin{aligned} \mathcal{V}^{'} &= \mathcal{H} - \mathcal{H}^{0} = (\sum_{i}^{N} \hat{h}(i) + \sum_{i=1}^{N} \sum_{j>i}^{N} \frac{1}{r_{ij}}) - \sum_{i}^{N} \hat{f}(i) \\ &= (\sum_{i}^{N} \hat{h}(i) + \sum_{i=1}^{N} \sum_{j>i}^{N} \frac{1}{r_{ij}}) - (\sum_{i}^{N} \hat{h}(i) + \sum_{i}^{N} \hat{v}_{HF}(i)) \end{aligned}$$
 Difference between instantaneous and average e-e interaction:
$$= \sum_{i=1}^{N} \sum_{j>i}^{N} \frac{1}{r_{ij}} - \sum_{i}^{N} \hat{v}_{HF}(i)$$
 'fluctuation potential

'fluctuation potential'

 \rightarrow total e-e repulsion minus Hartree-Fock e-repulsion

13

Quiz XIV: Møller-Plesset

- 1) What are the basis functions Φ_i in Moller-Plesset theory?
- 2) What is the 0th order energy?
- 3) What is the 1st order correction to the energy?

Note that:

$$\langle \Phi_0 | \sum_{i < j}^{N} \hat{v}_{ij} | \Phi_0 \rangle = \frac{1}{2} \langle \Phi_0 | \sum_{i,j}^{N'} \hat{v}_{ij}^{HF} | \Phi_0 \rangle \equiv \langle \mathbf{V}_{ee} \rangle$$

(the sum of the Fock operators counts the electron-electron repulsion twice!)

Oth order energy: (sum of HF eigenvalues)

$$E^{(0)} = \sum_{i}^{N} \langle \phi_i | \hat{\mathcal{F}}_i | \phi_i \rangle = \sum_{i}^{N} \varepsilon_i^{\text{HF}}$$

1st order energy:

(correction for double counting electron-electron interaction)

$$E^{(1)} = \langle \Phi_0 | \hat{\mathcal{H}}' | \Phi_0 \rangle = \langle \Phi_0 | \sum_{i < j}^N \hat{v}_{ij} | \Phi_0 \rangle - \langle \Phi_0 | \sum_{i,j=1}^{N}' \hat{v}_{ij}^{HF} | \Phi_0 \rangle$$
$$= \langle \mathbf{V}_{ee} \rangle - 2 \langle \mathbf{V}_{ee} \rangle = -\langle \mathbf{V}_{ee} \rangle$$

MP0: $E(MP0) = \sum_{a}^{N} \varepsilon_{a}^{HF}$

MP1: E(MP0) + E(MP1) = E(HF)

Note: First nontrivial energy correction at second order MP2!

16

Expansion of the perturbed wavefunction in doubly excited Slater determinants:

2nd order correction to the energy:

$$E^{(2)} = \sum_{a < b}^{\text{occ.}} \sum_{r < s}^{\text{virt.}} \frac{\langle \Phi_0 | \hat{\mathcal{H}}' | \Phi_{ab}^{rs} \rangle \langle \Phi_{ab}^{rs} | \hat{\mathcal{H}}' | \Phi_0 \rangle}{E_0 - E_{ab}^{rs}}$$

Slater-Condon Rules

1. Identical Determinants: If the determinants are identical, then

$$\langle \Phi_1 | \hat{H} | \Phi_1 \rangle = \sum_{m}^{N} \langle m | \hat{h} | m \rangle + \sum_{m>n}^{N} \langle m n | | m n \rangle$$
 (5.9)

2. Determinants that Differ by One Spin Orbital:

$$|\Phi_{1}\rangle = |\cdots mn \cdots\rangle$$

$$|\Phi_{2}\rangle = |\cdots pn \cdots\rangle$$

$$\langle \Phi_{1}|\hat{H}|\Phi_{2}\rangle = \langle m|\hat{h}|p\rangle + \sum_{n}^{N}\langle mn||pn\rangle$$
(5.10)

3. Determinants that Differ by Two Spin Orbitals:

$$|\Phi_{1}\rangle = |\cdots mn \cdots\rangle |\Phi_{2}\rangle = |\cdots pq \cdots\rangle \langle \Phi_{1}|\hat{H}|\Phi_{2}\rangle = \langle mn||pq\rangle$$
 (5.11)

4. Determinants that Differ by More than Two Spin Orbitals:

$$|\Phi_{1}\rangle = |\cdots mno \cdots\rangle |\Phi_{2}\rangle = |\cdots pqr \cdots\rangle \langle \Phi_{1}|\hat{H}|\Phi_{2}\rangle = 0$$
 (5.12)

18

Expansion of the perturbed wavefunction in doubly excited Slater determinants:

2nd order correction to the energy:
$$E^{(2)} = \sum_{a < b}^{\text{occ.}} \sum_{r < s}^{\text{virt.}} \frac{\langle \Phi_0 | \hat{\mathcal{H}}' | \Phi_{ab}^{rs} \rangle \langle \Phi_{ab}^{rs} | \hat{\mathcal{H}}' | \Phi_0 \rangle}{E_0 - E_{ab}^{rs}}$$

$$E(\text{MP2}) = \sum_{a < b}^{\text{occ.}} \sum_{r < s}^{\text{virt.}} \frac{\left[\langle \phi_a \phi_b | \hat{v} | \phi_r \phi_s \rangle - \langle \phi_a \phi_b | \hat{v} | \phi_s \phi_r \rangle \right]^2}{(\varepsilon_a + \varepsilon_b - \varepsilon_r - \varepsilon_s)}$$

→ similar expressions can be derived for the nth order correction to the energy and to the wavefunction