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Post-Hartree-Fock Methods

Methods  use a Hartree-Fock calculation as starting point and try to 
improve the HF results by taking account of electron correlation: 

• Many Body Perturbation Theory
  (Møller-Plesset (MPn)
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Magnitude of Correlation Contributions

Example:    Methane  CH4    (6-311G* Basis set)

Total Energy

Hartree-Fock             -40.202409 au
    exact                      -40.372946 au
    Ecorr                                       -0.170537 au      
                                          (0.4%)

-107.0 kcal/mol

Typical estimate of electron correlation energies:

       ~ 100kJ/mol for a localized electron pair
           
      General:  < 1% of total energy
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Idea: 
For the case electron correlation effects are relatively small, the Hartree-
Fock solutions           and          are  already close approximations to the 
exact solutions           and         . 

=> correlation effects can be considered as perturbation to the HF solution 
and treated via perturbation theory

Many-Body Perturbation Theory (MBPT) 

Φi
HF Ei

HF

Ψi
exact Ei

exact

                       zeroth order Hamiltonian with
                      eigenfunctions  and
                       eigenvalues

Φi
(0)
Ĥ (0)

Ei
(0)

Exact Hamiltonian       can be partitioned into:Ĥ

Ĥ = Ĥ (0) +λĤ ' = Ĥ (0) +λV V << Ĥ (0)with
0 ≤ λ ≤1and

for l = 0  Ĥ = Ĥ (0) for l = 1  Ĥ = Ĥ

Given:

complete set of orthonormal (eigen)functions

Ĥ (0)Φi
(0) = Ei

(0)Φi
(0)

i = 0,1,2,3,...,∞'
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Let’s consider the non-degenerate ground state of a time-independent system:

Schrödinger Equation for the perturbed system:

→ l can be varied smoothly from the unperturbed (l = 0) to the fully 
      perturbed (l = 1) case

Ĥ = Ĥ (0) +λĤ '

ĤΨ λ( ) = E λ( )Ψ λ( )

Special notation for l = 0 and i = 0: 

Rayleigh-Schrödinger Perturbation Theory

!H ! = H!
Ψ! λ = 0 = Ψ!

! = Φ!

E! λ = 0 = E!
! = E!
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H Ψi = Ei Ψi

Ei = λ
0Ei

(o) +λ1Ei
(1) +λ 2Ei

(2) + ...

Ψi = λ
0 Ψi

(0) +λ1 Ψi
(1) +λ 2 Ψi

(2) + ...

- Indices (0),(1),(2)..(n): refer to the unperturbed system (0th order correction), the 
1st order correction, 2nd order correction…nth order correction, respectively → 
MP2, MP3, MP4 etc...

- Will concentrate on improving ground state wavefunction and energy  i = 0
=> will leave out index i

Series does not 
necessarily converge!

Normalization condition: intermediate normalization
overlap of perturbed wfc with unperturbed wfc chosen to be 1!

All  corrections are orthogonal
To unperturbed solution 

Expansion of Y and E in powers of l
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Collect terms with same power in l:

Ψ(n), E(n): n-th order correction to the wavefunction and to the energy
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1st order perturbation:

General solution: expand wavefunction correction in complete set of 
unperturbed wavefunctions:

If we introduce this Ansatz for the wavefunction in the equation above,
we obtain:

1st order correction to 
the energy

Rayleigh-Schrödinger Perturbation Formulae

Ĥ0 − E
(0)( )Ψ(1) + Ĥ ' − E (1)( )Ψ(0) = 0

For improving ground-

state solution F0,E0: Ĥ0 − E0( )Ψ(1) + Ĥ ' − E (1)( )Φ0 = 0

Contains 2 unknowns
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1) Derive the expression for the 1st order correction to the energy starting 
from the equation gathering the l1 terms. Hint: multiply from the left 
with F0 and integrate over all space.

2) Determine the expansion coefficients cj for the first order correction to 
the wavefunction Y(1). Hint: multiply from the left with the basis function 
Fj (j ≠ 0) and integrate over all space.

3) Why is c0 = 0?

Quiz XIII: 1st order correction

8



5

By multiplying on the left with a given Фj and integrating, we obtain the
coefficients cj for the 1st order correction to the wavefunction:

1st order correction to 
the wavefunctionwith

In addition, from the normalization condition we get c0 = 0.

2nd order perturbation:

2 unknowns

Expansion of the 2nd order correction to the wavefunction:

c0 = d0 = 0

Ĥ0Ψ
(2) + Ĥ 'Ψ(1) = E0Ψ

(2) + E (1)Ψ(1) + E (2)Φ0
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2nd order correction to the energy:

2nd order correction to the wfct:

nth order correction to the energy:

)1(
0

)2( ' YF= HE

)1(
0

)( ' -YF= nn HE
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Difference between 
instantaneous and 

average e-e 
interaction:

‘fluctuation potential’

f̂ (i) = ĥ(i)+ Ĵ j − K̂ j
j

N

∑

Christian Møller Milton S.Plesset
(1904-1980)         (1908-1991)
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1) What are the basis functions Fi in Moller-Plesset theory?

2) What is the 0th order energy?

3) What is the 1st order correction to the energy? 

Quiz XIV: MØller-Plesset
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Note: First nontrivial energy correction at second order MP2 !

Note that:  

(the sum of the Fock operators counts the electron-electron repulsion twice!)  

0th order energy:
(sum of HF eigenvalues)

1st order 
energy:
(correction for 
double counting 
electron-electron 
interaction)
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2nd order correction to 
the energy:

Expansion of the perturbed wavefunction in doubly excited Slater determinants: 
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Slater-Condon Rules
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2nd order correction to 
the energy:

Expansion of the perturbed wavefunction in doubly excited Slater determinants: 

→ similar expressions can be derived for the nth order correction to the
     energy and to the wavefunction
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