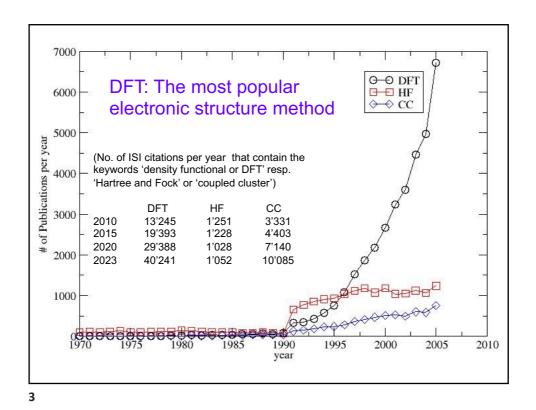
8. Density Functional Theory (DFT)

1

Literature on Density Functional Theory

- 1. R. M. Dreizler and E. K. U. Gross, *Density Functional Theory*, Springer, Berlin, 1990.
 - 2. R. G. Parr and W. Yang, Density-Functional Theory of Atoms and Molecules, Oxford University Press, Oxford, 1989.
 - 3. W. Koch and M. C. Holthausen, A Chemist's Guide to Density Functional Theory, John Wiley & Sons, New York, 2001.
 - 4. R. O. Jones and O. Gunnarsson, Rev. Mod. Phys. 61, 689 (1989).
 - 5. J. M. Seminario (Ed.), Recent Developments and Applications of Modern DFT, Elsevier, Amsterdam, 1996.

Recent review orbital-free DFT: Mi et al. Chem Rev. 123, 12039-21204 (2023)



Walter Kohn and John Pople

Nobelprize in
Chemistry 1998

1923-2016

The Chemistry 1998

1925-2004

The Chemistry 1998

Some idea of the Chemistry 1998

The Chemistry 1998

Schrödingers equations made easy with DFT!

Density Functional Theory (DFT)

An alternative possibility to find an approximate solution of the electronic Schrodinger equation

$$H\Psi = E\Psi$$

Let's choose the electron density $\rho(r)$ as central quantity:

$$\Psi(\vec{r}_{\scriptscriptstyle 1},\vec{r}_{\scriptscriptstyle 2},\vec{r}_{\scriptscriptstyle 3}...\vec{r}_{\scriptscriptstyle N}) \rightarrow \rho(\vec{r})$$

3N variables → 3 variables

Integrate over N-1 variables!

Electron density $\rho(r)$:

$$\rho = \frac{\#electrons}{V}$$

$$\rho(\vec{r}) = M \int ... \int \Psi^*(\vec{r}, \vec{r_2}, \vec{r_3}...\vec{r_N}) \Psi(\vec{r}, \vec{r_2}, \vec{r_3}...\vec{r_N}) \frac{d\vec{r_2}...d\vec{r_N}}{d\vec{r_2}...d\vec{r_N}}$$

M: normalization constant, Ψ is normalized in such a way that

Single particle system:

$$\rho(\vec{r}) = \sum_{i} f_{i} \phi_{i}^{*}(\vec{r}) \phi_{i}(\vec{r})$$

fi: occupation

$$\int \rho(\vec{r})d\vec{r} = N$$

Measure for the probability of finding electrons (i.e. any electron) at a specific location. The electron density is an observable (can be measured in e.g. an x-ray diffraction experiment).

5

Reasons for the Popularity of DFT Methods

Practical Reasons

To store the many-electron wavefunction for an oxygen atom (8 electrons, 24 variables) with only 10 entries per coordinate and 1 byte per entry, we would need: 10^{24} bytes

$$5x10^9$$
 bytes per DVD $\rightarrow 2x10^{14}$ DVDs $10g$ per DVD $\rightarrow 2x10^9$ t DVDs

Whereas to store $\rho(\mathbf{r})$, we only need 10³ bytes!

Physical Reasons

- DFT is computationally very efficient: typical system sizes are 100 1000 atoms
- DFT is fairly accurate (bond lengths typically predicted within 1-2%, energies within few kcal/mol) even for systems with strong electron correlation effects, such as e.g. transition metals!
- many chemical concepts can be directly expressed in terms of $\rho(\mathbf{r})$ (e.g. reactivity indices, hardness, softness etc...)
- can easily be combined with ab initio molecular dynamics

Quiz XVII: Functionals

- 1) What is the difference between a function and a functional?
- 2) Why is the method called Density Functional Theory?
- 3) What is a functional derivative?

7

What is Density Functional Theory?

Solution of the many-electron electronic Schrödinger equation that includes all (in principle), approximate (in practice) exchange and correlation effects.

Collective variables for all electronic (r) and all nuclear (R) position

Electronic Schrödinger equation for fixed nuclear geometry:

 $\frac{1}{2\sum_{i}\nabla_{i}^{2}} - \sum_{I,i} \frac{Z_{I}}{|\mathbf{R}_{I} - \mathbf{r}_{i}|} + \sum_{I>I} \frac{Z_{I}Z_{J}}{|\mathbf{R}_{I} - \mathbf{R}_{J}|} + \sum_{i>i} \frac{1}{|\mathbf{r}_{i} - \mathbf{r}_{j}|} \Psi(\mathbf{r}, \mathbf{R}) = E_{el}\Psi(\mathbf{r}, \mathbf{R})$

In a more compact form:

$$\begin{bmatrix} \hat{T}_{\varepsilon}(\mathbf{r}) \\ + \end{bmatrix} + \underbrace{\hat{V}_{\varepsilon N}(\mathbf{r},\mathbf{R}) + \hat{V}_{NN}(\mathbf{R})}_{\text{kinetic energy operator}} + \underbrace{\hat{V}_{\varepsilon e}(\mathbf{r})}_{\text{Electron-nuclei Coulomb potential}} + \underbrace{\hat{V}_{\varepsilon e}(\mathbf{r})}_{\text{Nuclei-nuclei Interaction Potential (constant for fixed R)}}_{\text{Potential potential (constant for fixed R)}} + \underbrace{\hat{V}_{\varepsilon e}(\mathbf{r})}_{\text{e}} \Psi(\mathbf{r},\mathbf{R}) = E_{el}\Psi(\mathbf{r},\mathbf{R}) = E_{el}\Psi(\mathbf{r},\mathbf{R}) = E_{el}\Psi(\mathbf{r},\mathbf{R})$$

Convention:

$$v(\mathbf{r}) = v(\mathbf{r}, \mathbf{R})$$
 \mathbf{R}_I $(\mathbf{R} = (\mathbf{R}_1, \mathbf{R}_2, \dots, \mathbf{R}_{Nu})$ External potential V_{ext}

Quiz XVIII: Universal vs system specific terms

1) Given 2 systems with the same total number of electrons N = 10 (e.g. H_2O and NH_3):

Which term in the electronic Hamiltonian is different, i.e. which term determines that we are doing a calculation of a water molecule and not of an ammonia molecule?

10

What is Density Functional Theory?

Conventional (wavefunction based) quantum chemical methods:

$$v(\mathbf{r},\mathbf{R}) \overset{SE}{\Longrightarrow} \Psi(\mathbf{r}_1,\mathbf{r}_2,\ldots,\mathbf{r}_n) \overset{\langle \Psi|\ldots|\Psi\rangle}{\Longrightarrow} \text{observable}$$
 given external potential e.g. electron density $\rho(\mathbf{r})$ (determined by geometry of the nuclei)

Density Functional theory:

$$\rho(\mathbf{r}) \Longrightarrow \Psi(\mathbf{r}_1, \mathbf{r}_2, \dots, \mathbf{r}_n) \Longrightarrow v(\mathbf{r})$$

Unique relation between $\rho(\mathbf{r})$ and $v(\mathbf{r})$, all observables (including the (ground state) many-electron wavefunction can be calculated from $\rho(\mathbf{r})!!!!)$

v(r) is the only system-dependent term,

$$\hat{T}_{arepsilon}$$
 and $\hat{V}_{arepsilonarepsilon}(\mathbf{r})$ are universal operators!!

Theoretical foundations of DFT: Hohenberg-Kohn Theorems

First Hohenberg Kohn Theorem (1964) (Hohenberg&Kohn, Phys.Rev. 136, 864B, 1964)

Pierre Hohenberg (1934-2017)

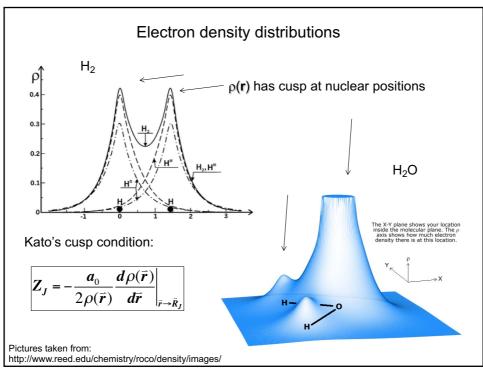
Walter Kohn (1923 -2016)

The ground state energy of a nondegenerate system with N electrons in an external potential V_{ext} is a unique functional of the electron density

$$E = E[\rho(\vec{r})]$$

- => $V_{\rm ext}$ determines $\hat{\pmb{H}}$ and $\hat{\pmb{H}}$ determines the exact $\Psi_{_0}$ determines $P_{_0}(\vec{r})$ And vice versa: $V_{\rm ext}$ is determined within an additive constant by $P_{_0}(\vec{r})$
- =>The ground state expectation value of any observable is a unique functional of the ground state density $\,\rho_0(\vec{r})\,$

13



1st HK Theorem (cont'd)

In other words: the relation

$$\rho(\mathbf{r}) = M \int \dots \int \Psi(\mathbf{r}, \mathbf{r}_2, \dots, \mathbf{r}_N) \, \Psi^*(\mathbf{r}, \mathbf{r}_2, \dots, \mathbf{r}_N) \, d\mathbf{r}_2 \dots d\mathbf{r}_N$$

can be inverted, i.e. if the ground state density $\rho_0(\mathbf{r})$ is known, it is possible to calculate the ground state many-electron wavefunction .

$$\Psi_0(\mathbf{r}_1, \mathbf{r}_2..., \mathbf{r}_N)$$

 Ψ_0 is a functional of $\;
ho_0({f r}) \qquad \Psi = \Psi[
ho]$

ightarrow any ground state observable is a functional of ho_0

 $\rho_0(\mathbf{r})$

The ground state wavefunction Ψ_0 is the one that minimizes the ground state energy and reproduces the ground state density $ho_0({f r})$

$$E_{v,0} = \min_{\Psi \to \rho_0} \langle \Psi | \hat{T} + \hat{V}_{ee} + \hat{V}_{eN} | \Psi \rangle$$

15

Theoretical foundations of DFT: Hohenberg-Kohn Theorems

Second Hohenberg and Kohn Theorem:

Variational principle:

The total energy is minimal for the ground state density of the system $\rho_0(\vec{r})$

$$E[
ho(\vec{r})]_{\scriptscriptstyle{ ext{min}}} = E_{\scriptscriptstyle{0}} = E[
ho_{\scriptscriptstyle{0}}(\vec{r})]$$

2nd HK Theorem (cont'd)

For an arbitrary density $\rho(\mathbf{r})$

$$E_v[\rho] = \min_{\Psi \to \rho} \langle \Psi | \hat{T} + \hat{V}_{ee} + \hat{V}_{eN} | \Psi \rangle$$

If $\rho(\mathbf{r}) \neq \rho_0(\mathbf{r})$ then $\Psi \neq \Psi_0$ and $E_v > E_0$. Variational principle for the ground state density!

One can write the total energy also as:

$$E_v[\rho] = \min_{\Psi \to \rho} \Psi |\hat{T} + \hat{V}_{ee}|\Psi\rangle + \int d^3r \, \rho(\mathbf{r}) v(\mathbf{r})$$

=: $F[\rho] + V[\rho]$

$$F[\rho] = \min_{\Psi \to \rho} \langle \Psi | \hat{T} + \hat{V}_{ee} | \Psi \rangle \quad \text{Internal energy functional,} \quad \text{Independent of v(r), universal!!!}$$

17

Some (subtle) remarks about the HK theorems

V-Representability of $\rho(\mathbf{r})$

Can all electron density distributions be associated with a Hamiltonian with an external potential $V_{\text{ext}}(\mathbf{r})$ (V-representability)? => not necessarily: e.g. electron density distribution in an electronically excited state

- => HK1 valid for v-representable densities
- => HK2: The minimization of the total energy with respect to the density has to be performed under the condition that $\rho(\mathbf{r})$ remains V-representable (i.e. that there is a corresponding $V_{ext}(\mathbf{r})$).

N-Representability $\rho(\mathbf{r})$

Can all electron densities be derived from an antisymmetric wavefunction (N-representability)?

- => The minimization of the total energy with respect to the density has to be performed under the condition that $\rho({\bf r})$ remains N-representable
- => Lieb&Levy constrained search

Quiz IXX: Total Energy as a functional of $\rho(r)$

- 1) Try to find expressions for the different terms of the total energy in terms of the electron density distribution $\rho(\mathbf{r})$:
 - a) The kinetic energy
 - b) The electron-nuclei interaction
 - c) The classical part of the electron-electron interaction
 - d) The exchange and correlation energy?

19

Precursors of Kohn-Sham DFT: The 'true' (orbital-free) Density Functional Methods

The total energy of the system (and any other observable) is expressed as a functional of the density only:

$$E_v[\rho] = \frac{T[\rho]}{V_{ee}[\rho]} + \frac{V_{ee}[\rho]}{V_{eN}[\rho]} = F[\rho] + \frac{V_{eN}[\rho]}{V_{eN}[\rho]}$$

Some of these terms are easy to calculate, e.g. $V_{eN}[\rho]$:

$$v_{eN}(\mathbf{r}) = v_{ext}(\mathbf{r})$$
 $\hat{V}_{ext}(\mathbf{r}) = \sum_{I} \frac{Z_{I}}{|\mathbf{r} - \mathbf{R}_{I}|}$

$$V_{ext}[\rho] = \int d^3r \, \rho(\mathbf{r}) v_{ext}(\mathbf{r})$$

Classical electrostatic energy of a charge distribution $\rho(\mathbf{r})$ in a potential $v_{\text{ext}}(\mathbf{r})$.

Classical electrostatic potential energy:

$$U(\vec{r}) = q\Phi(\vec{r})$$
$$U = q\int d\vec{r}\Phi(\vec{r})$$

 $\Phi(\vec{r})$: electrostatic potential at \vec{r}

What is the form of the universal terms $T[\rho]$ and $V_{ee}[\rho]$?

Llewellyn Hilleth 1903-1992)

Precursors of Kohn-Sham DFT: The Thomas-Fermi Model (1927)

Fermi (1901-1953)

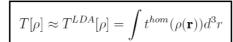
The electron-electron interaction is approximated by the classical Coulomb energy of a charge distribution $\rho(\mathbf{r})$ (analogous to the Hartree term in the Hartree-Fock method):

$$V_{ee} pprox V_{HF} = rac{1}{2} \int d^3r \int d^3r' rac{
ho({f r})
ho({f r'})}{|{f r}-{f r'}|} egin{dcases} {
m Thomas-Fermi Approximation:} & {
m Exchange and correlation effects} & {
m neglected} \end{cases}$$

Thomas-Fermi Approximation:

It turns out that the most difficult term to express as a functional of the density, is the kinetic energy T[ρ].

Thomas and Fermi suggested a first approximation for this term in the form of a local density approximation for the kinetic energy functional:



homogeneus compensating positive charge Homogeneous electron gas $\rho = N/V = const$

Where $t^{hom}(\rho(\mathbf{r}))$ is the kinetic energy density (kinetic energy per unit volume) of a homogeneous electron gas with constant density $\rho(\mathbf{r})$.

$$t = \frac{T}{V}$$

$$t = \frac{T}{V} \qquad t^{\text{hom}} \left(\rho(\vec{r}) \right) = C^F \rho(\vec{r})^{5/3} \qquad C^F = \frac{3\hbar}{10m} \left(3\pi^2 \right)$$

22

Precursors of Kohn-Sham DFT: The Thomas-Fermi Method

Unfortunately, it turns out that this approximation is not very useful in chemistry: atoms have no shell structure, molecules are not bound !!!! Many, more sophisticated approximations have been suggested for $T[\rho]$ but so far no sufficiently accurate 'pure' density functional expression of T has been found!

e.g. Weizsäcker correction (1935): gradient expansion $T[\rho] = t(\rho(\mathbf{r}), \nabla \rho(\mathbf{r}))$

$$T^{W} = \frac{\hbar^{2}}{8m} \int \frac{\left|\nabla \rho(\bar{r})\right|^{2}}{\rho(\bar{r})} d\bar{r}$$

How can we calculate the kinetic energy of an interacting many electron system?

This is very easy in a wavefunction formulation:

$$T = -\frac{1}{2} \langle \Psi | \nabla^2 | \Psi \rangle$$

And in the case of noninteracting electrons, T is simply the sum of the kinetic energy of each electron:

$$T = -\frac{1}{2} \sum_{i} \left\langle \phi_{i} \middle| \nabla^{2} \middle| \phi_{i} \right\rangle$$

Literature on Density Functional Theory

- 1. R. M. Dreizler and E. K. U. Gross, *Density Functional Theory*, Springer, Berlin, 1990.
 - R. G. Parr and W. Yang, Density-Functional Theory of Atoms and Molecules, Oxford University Press, Oxford, 1989.
 - 3. W. Koch and M. C. Holthausen, A Chemist's Guide to Density Functional Theory, John Wiley & Sons, New York, 2001.
 - 4. R. O. Jones and O. Gunnarsson, Rev. Mod. Phys. 61, 689 (1989).
 - 5. J. M. Seminario (Ed.), Recent Developments and Applications of Modern DFT, Elsevier, Amsterdam, 1996.

Recent review orbital-free DFT: Mi et al. Chem Rev. 123, 12039-21204 (2023)

24

Kohn and Sham Formulation of DFT

(Kohn&Sham, Phys. Rev. 1140, 1133A, 1965)

Lu Jeu Sham (1938**)**

- re-introduce some wavefunctions (single particle orbitals)
- The many-electron problem can be mapped exactly onto:
- an auxiliary *noninteracting* reference system with the same density (i.e. the exact ground state density)

$$\rho(\vec{r}) = 2\sum_{i} \phi_{i}^{*}(\vec{r})\phi_{i}(\vec{r})$$

$$\int d\vec{r} \rho(\vec{r}) = N$$

kinetic energy of the noninteracting single-particle system $T_s[\rho]\,$ is

kinetic energy of the interacting system $T[\rho]$ is

$$T_s[\rho] = -\frac{1}{2} \sum_{i}^{N} \int d^3r \, \phi_i^*(\mathbf{r}) \nabla^2 \phi_i(\mathbf{r})$$

$$T[\rho] = T_s[\rho] + T_c[\rho]$$

• each electron moves in an effective 1-particle-potential due to all the other electrons

$$v_s(\vec{r}) = v_{ext}(\vec{r}) + v_{ee}(\vec{r})$$

$$v_s(\mathbf{r}) = v_{ext}(\mathbf{r}) + v_H(\mathbf{r}) + v_{xc}(\mathbf{r})$$

KS Energy Functional

$$E^{KS}\left[\left\{\phi_{i}\right\}\right] = -\sum_{i} \int d\vec{r} \phi_{i}^{*}(\vec{r}) \nabla^{2} \phi_{i}(\vec{r}) - \int V_{ext}(\vec{r}) \rho(\vec{r}) d\vec{r}$$

$$+ \frac{1}{2} \int \frac{\rho(\vec{r}) \rho(\vec{r}')}{\vec{r} - \vec{r}'} d\vec{r} d\vec{r}' + \frac{E_{xc}\left[\rho(\vec{r})\right]}{E_{ton}\left(\left\{\vec{R}_{I}\right\}\right)}$$

Kinetic energy of the non interacting system

External potential due to ionic cores Hartree-term ~ classical Coulomb energy exchange-correlation energy functional (includes also T_c) core -core interaction

Find $\rho_0(\mathbf{r})$, ϕ_i : minimize $E^{KS}[\{\phi_i\}]$ under orthonormality constraints for ϕ_i 's

$$L = E^{KS} \left[\left\{ \phi_i \right\} \right] + \sum_i \sum_j \varepsilon_{ij} \left(\int d\vec{r} \phi_i^* (\vec{r}) \phi_j (\vec{r}) - \partial_{ij} \right)$$

 $\epsilon_{\text{i}} :$ Lagrange multipliers associated with N orthogonality constraints

$$\frac{\partial L}{\partial \boldsymbol{\phi}_{i}^{*}} = \frac{\partial E^{KS} \left[\left\{ \boldsymbol{\phi}_{i} \right\} \right]}{\partial \boldsymbol{\phi}_{i}^{*}} - \sum_{j} \boldsymbol{\varepsilon}_{ij} \boldsymbol{\phi}_{j}$$

=> N single particle equations

26

Kohn-Sham equations

N coupled Schrödinger equations (1 for each effective one-particle orbital):

$$\left[-\frac{1}{2} \nabla^2 + V_{ext}(\vec{r}) + V_H(\vec{r}) + V_{xc}(\vec{r}) \right] \phi_i(\vec{r}) = \varepsilon_i \phi_i(\vec{r})$$

=> Solved self-consistently

$$V(\vec{r}) = \frac{\partial E[\rho(\vec{r})]}{\partial \rho(\vec{r})}$$

Potential is the functional derivative of the energy

V_H: Hartree potential

$$V^{H}(\vec{r}) = \frac{\partial E^{H}[\rho(\vec{r})]}{\partial \rho(\vec{r})} = \int d\vec{r} \cdot \frac{\rho(\vec{r})}{|\vec{r} - \vec{r}'|}$$

Initial ϕ_i s \downarrow Calculate $\rho(\mathbf{r}) \leftarrow$ \downarrow Calculate $V^{\mu}(\mathbf{r})$ and $V_{xc}(\mathbf{r})$

Solve KS eqs

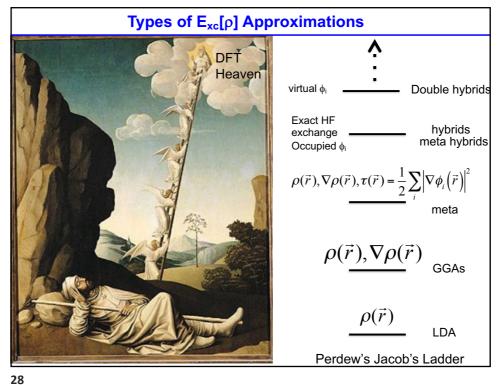
V_{XC}: exchange-correlation potential

$$V_{xc}(\vec{r}) = \frac{\partial E_{xc}[\rho(\vec{r})]}{\partial \rho(\vec{r})}$$

$$V_{xc}(\vec{r}) = \varepsilon_{xc}[\rho] + \rho(\vec{r}) \frac{\partial \varepsilon_{xc}[\rho]}{\partial \rho}$$

 ϵ_{xc} : exchange-correlation energy per particle

We have to find suitable approximations for Exc!



Exchange-Correlation Functionals

Usually split into separate contributions from exchange and correlation

$$\varepsilon_{xc}[\rho] = \varepsilon_{x}[\rho] + \varepsilon_{c}[\rho]$$

Rung 1: Local Density Approximation (LDA)

Purely local density functional! (i.e. only dependent on the local position)

$$E_{xc}^{LDA} \Big[\rho \Big] = \int d\vec{r} \, \rho \Big(\vec{r} \Big) \varepsilon_{xc}^{\text{hom}} \Big[\rho \Big(\vec{r} \Big) \Big] \quad \varepsilon_{xc}^{\text{hom}} \Big[\rho \Big(\vec{r} \Big) \Big] \quad \text{exchange-correlation energy per particle of a homogeneous electron gas with uniform density}$$

Exchange contribution

(P.A.M. Dirac, Proc. Cambridge Phil. Soc. 26, 376 (1930), E.P. Wigner, Trans. Faraday Soc. 34, 678 (1987))

can be determined exactly!

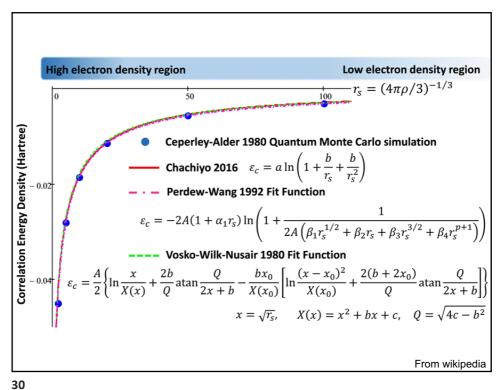
$$\varepsilon_x^{\text{hom}} \left[\rho(\vec{r}) \right] = -C_x \rho^{\frac{1}{3}}$$

$$C_x = \frac{3}{4} \left(\frac{3}{\pi} \right)^{\frac{1}{3}}$$

Correlation contribution $\varepsilon_c^{\text{hom}}[\rho(\vec{r})]$

(D.M. Ceperly, B.J. Alder, Phys. Rev. Lett. 45, 566 (1980), G.Ortiz, P. Ballone, Phys. Rev. B 50, 1391 (1994))

Accurate (numerical) results available from Quantum Monte Carlo simulations for discrete values of the density Parameterized analytic forms that interpolate between different density regimes are available: e.g. J.P. Perdew, A. Zunger, Phys. Rev. B. 23, 5084 (1981)



Performance of LDA

In principle LDA is a very crude approximation! Molecules do not have a homogeneous electron density!!!

 E_{xc} of a non uniform system locally approximated by results of the uniform electron gas results, should 'work' only for systems with almost constant or slowly varying density!

But: atoms and molecules are highly inhomogeneous systems

Cr₂

De (eV)

-19.4

-2.9

0.5

1.5

1.4

Re [Å]

1.465

1.560

1.621

1.59

1.679

HF

CCSD

DFT

exp

CCSD(T)

However LDA works remarkably well in practice:

in general good structural properties:

bond lengths up to 1-2%

bond angles ~ 1-2 degrees torsional angles ~ a few degrees

© vibrational frequencies

~ 10% (phonon modes up to few %)

- © cheap and good method for transition metals!
- e.g. Cr₂, Mo₂ in good agreement with experiment (not bound in HF, UHF!)
- $\ensuremath{\mbox{\ensuremath{\mbox{\scriptsize 0}}}}\xspace \ensuremath{\mbox{\scriptsize F}_2}\xspace \ensuremath{\mbox{\scriptsize r}_e}\xspace$ within 3% (not bound in HF)
- $\ \, \odot$ atomization, dissociation energies over estimated (mainly due to errors for atoms), typically by 10-20%
- ® hydrogen-bonding overestimated
- ⊗ van der Waals-complexes: strongly overestimated binding (e.g. noble gas dimers, Mg₂, Be₂: factor 2-4

Generalized Gradient Approximations (GGAs)

$$E_{xc}^{GGA}[\rho] = \int d\vec{r} f_{xc}(\rho(\vec{r}), \nabla \rho(\vec{r}))$$

fxc: analytic function that contains a number of adjustable parameters

Determination of parameters:

- fully non empirical
- fit to exact Ex-Corr energies for atoms
- fit to experimental data (empirical)

⇒ many different forms (B88, P86, LYP, PW91, PBE, BLYP, BP86 etc..)

$$E_x^{B88} \left[\rho \right] = C_x \int d\vec{r} \, \rho^{4/3} \left(\vec{r} \right) F_x \left(s \right)$$

$$F_x^{B88} \left(s \right) = 1 + \frac{\gamma c_2 c_1^2 s^2}{1 + 6\gamma c_1 s \sinh^{-1} \left(c_1 s \right)}$$

$$F_x^{B88} \left(s \right) = 1 + \frac{\gamma c_2 c_1^2 s^2}{1 + 6\gamma c_1 s \sinh^{-1} \left(c_1 s \right)}$$
enhancement factor

Fitted to exchange of 6 noble gases $\gamma = 0.0042$ $C_x = 3/4(3/\pi)^{1/3}$ $c_1 = 2(6\pi^2)^{1/3}$ $c_2 = (2^{1/3}C_x)^{-1}$

32

Meta-GGAs, Hybrids and Double Hybrids

Rung 3: Meta functionals

$$E_{xc}^{meta}[\rho] = \int d\vec{r} g_{xc}(\rho(\vec{r}), \nabla \rho(\vec{r}), \tau(\vec{r}))$$

$$\tau(\vec{r}) = \frac{1}{2} \sum_{i=1}^{occ} \left| \nabla \phi_i(\vec{r}) \right|^2$$

Kinetic energy density

e.g. TPSS, SCAN, M06-L etc.

Rung 4: Hybrid functionals

use a fraction of exact exchange

$$E_{x}^{hybrid}\left[\rho\right] = aE_{x}^{EXX}\left[\phi_{i}\right] + (1-a)E_{x}^{GGA}\left[\rho\right]$$

$$E_{x}^{EXX}\left[\phi_{i}\right] = -\frac{1}{2}\sum_{i,j}^{occ}\int\int\frac{\phi_{i}(\vec{r})\phi_{i}^{*}(\vec{r}')\phi_{j}(\vec{r}')\phi_{j}^{*}(\vec{r})}{|\vec{r}-\vec{r}'|}d\vec{r}$$

e.g. B3LYP, PBE0, HSE, M06 etc.

$$E_x^{B3LYP} = E_x^{LDA} + a_0 \left(E_x^{EXX} - E_x^{LDA} \right) + a_x \left(E_x^{GGA} - E_x^{LDA} \right) + a_c \left(E_c^{GGA} - E_c^{LDA} \right)$$

$$a_0 = 0.2, a_x = 0.72, a_c = 0.81$$

Rung 5: make use of unoccupied orbitals

e.g. RPA, double hybrids =>mix in a fraction of exact HF exchange and a fraction of MP2 correlation energy

9. First-Principles Molecular Dynamics

34

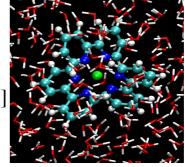
When the nuclei start to move: Ab initio Molecular Dynamics

- in principle => time-dependent Schrödinger eq.
- Within Born-Oppenheimer approximation: solve time-independent electronic SE at
- each nuclear configuration during dynamics
- Nuclei move classically => semiclassical methods

Classical dynamics of nuclei ($M_l >>> m_e$):

Newton's equations:

$$M_I \ddot{R}_I = -\frac{\partial E}{\partial R_I} \qquad E^{KS}[\rho(r)]$$



- 1) Do DFT calculation for a given geometry {R}-> E^{KS} {R}
- 2) Calculate forces acting on every nuclei I as dEKS/dRI
- 3) Integrate equations of motion to get new positions of nuclei at time $t = t_o + \Delta t$
- 4) Go to 1)

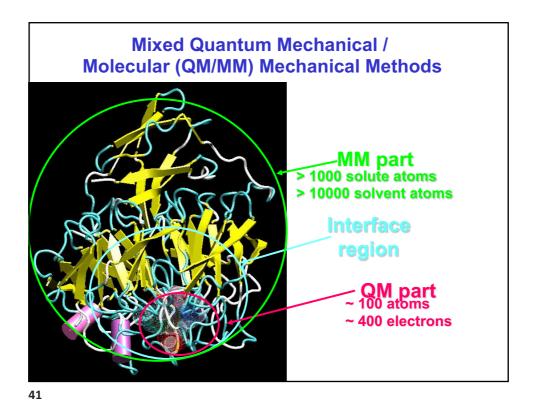
Born-Oppenheimer Molecular Dynamics

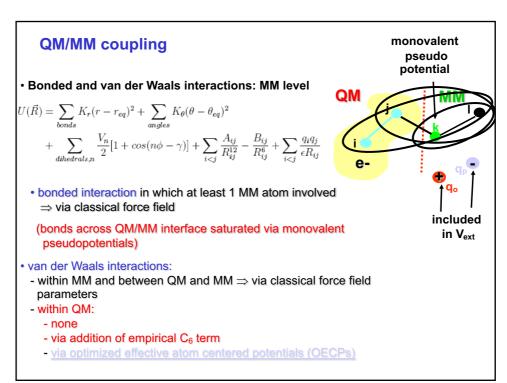
10. Mixed Quantum Mechanical/Molecular Mechanical (QM/MM) Simulations

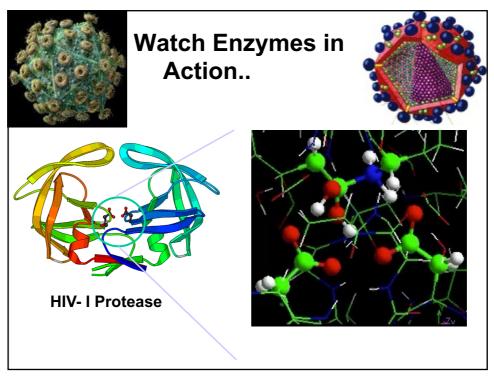
39

Nobelprize in Chemistry 2013

"for the development of multiscale models for complex chemical systems": mixed quantum mechanical/molecular mechancial (QM/MM) simulations







Overview

Some important features of electronic structure methods:

- what is the Ansatz for the wavefunction?
- how are exchange and correlation treated?
- can static correlation/multireference problems be treated?
- is the method variational (i.e. is E always ≥ E_{true})?
- is the method size consistent (i.e. is the energy of two noninteracting systems the sum of the single systems?)
- can excited states be treated with the same method?
- what is the scaling of the method (i.e. how does the computational cost grow if I double the system size?)

Method	wavefunction	exchange	correlation	variational?	Size- consistentt?		Excited stat	es? Scaling
HF	1 determinant	exact	none	yes	yes	no	no	N ² -N ⁴
	contributions from excited determinan through perturbation	ts	some	no	yes	CAS-PT2	CAS-PT2	MP2 N ⁵ MP3 N ⁶ MP4 N ⁷
Truncate CI	ed selected determinants	exact	some	yes	no	no	yes	e.g. CISD N ⁶
CASSCE	selected dets determinants	exact	little	yes	no	yes	yes e	exp, N _{act} *N _{det} ⁴
	contribution of selected excitations nrough infinite order		some	no	yes	no	EOM-CC CC2	CCSD N ⁶ CCSD(T) N ⁷ CCSDT N ⁸ CCSDTQ N ¹⁰
(exact wf within bas set, linear combinati of all possible excited determinants	ion	all	yes	yes	yes	yes	N!/N _{el} !(N-N _{el})!
	electron density	y exact	exact	yes	yes	no	TDDFT	N
Orbital-f	ree electron densit	ty some	some	no	yes	no	TDDFT	N
KS-DFT	electron densit	y some	some	no	yes	no	TDDFT	N ² -N ³