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Schrodingers equations made easy with DFT /




Density Functional Theory (DFT)

An alternatlve possibility to find an approximate solution of the electronic Schrodinger

equation
HY =EY

Let’ s choose the electron density p(r) as central quantity:

V(7,7 )= p(F)

Integrate over N-1

3N variables — 3 variables variables!
Electron density p(r): \,
#electrons =\_ - = = - = = = =
= p(r)-Mj...J“P (r by, T, rN)‘P(V Vy, 1y 'y JAl e dFy

M: normalization constant, ¥ is normalized in such a way that
Single particle system:

. (N (o r)dr =N
p(r)=2fi¢i (r>¢i (r) fi: occupation .[,0( )

Measure for the probability of finding electrons (i.e. any electron) at a specific location.
The electron density is an observable (can be measured in e.g. an x-ray diffraction experiment).
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Reasons for the Popularity of DFT Methods

Practical Reasons

To store the many-electron wavefunction for an oxygen atom (8 electrons, 24
variables) with only 10 entries per coordinate and 1 byte per entry, we would

need: 102 bytes
5x109 bytes per DVD — 2x10'4 DVDs

10g per DVD — 2x10% DVDs
Whereas to store p(r), we only need 103 bytes !

Physical Reasons

* DFT is computationally very efficient: typical system sizes are 100 — 1000
atoms

» DFT is fairly accurate (bond lengths typically predicted within 1-2%, energies

within few kcal/mol) even for systems with strong electron correlation effects,

such as e.g. transition metals!

* many chemical concepts can be directly expressed in terms of p(r) (e.g.

reactivity indices, hardness, softness etc...)

* can easily be combined with ab initio molecular dynamics




Quiz XVII: Functionals

1) What is the difference between a function and a functional?
2) Why is the method called Density Functional Theory?

3) Whatis a functional derivative?

What is Density Functional Theory?

Solution of the many-electron electronic Schrédinger equation that includes all

(in principle), approximate (in practice) exchange and correlation effects.

Collective variables for all
electronic (r) and all

Electronic Schrédinger equation for fixed nuclear geometry: ~ nuciear (R) position

veyales \

1 2T YA 1 , . )
- vf__ _+§ | E }IIHI-,RJ = E qV(r, R}
| 2 Zi,: ; |Rf = I';.;l | |Rf = le |l'3; — I'_«Iil ’

i=q

In a more compact form:
T.(r) 4+ Van (£, R) + Varw (R)|+|Vee (v} T (r, R) = E4¥(r,R)

| I

kinetic energy  Electron-nuclei Nuclei-nuclei Electron-electron
operator Coulomb Interaction repulsion
potential Potential potential
(constant for fixed R)

Convention:
vir)=v(r,R) R; (R = (Ri.Ry, ..., Ry.)

External potential Vgy




Quiz XVIII: Universal vs system specific terms

1) Given 2 systems with the same total number of electrons N = 10 (e.g.
H,O and NH,):

Which term in the electronic Hamiltonian is different, i.e. which term
determines that we are doing a calculation of a water molecule and not of
an ammonia molecule?
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What is Density Functional Theory?

Conventional (wavefunction based) quantum chemical methods:

SE \ (]| T)
v(r,R) = W(ry,ro,....1,) :[, observable
given externaI potential e.g. electron density p(r)
(determined by geometry of the nuclei)
Density Functional theory:
p(r) = ¥(ry,ry,....1,,) = v(r)

Unique relation between p(r) and v(r), all observables (including the (ground state)
many-electron wavefunction can be calculated from p(r)!!!!)

v(r) is the only system-dependent term,

I and 17 (] areuniversal operators!!
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Theoretical foundations of DFT: Hohenberg-Kohn Theorems

First Hohenberg Kohn Theorem (1964)  FPere

Hohenberg
(Hohenberg&Kohn, Phys.Rev. 136, 864B, 1964) (1934-2017)¢

The ground state energy of a nondegenerate system with N electrons in an
external potential V. is a unique functional of the electron density

E=E|p()]

=> V,, determines ﬁ and ﬁdetermines the exact W determines £, (7)

And vice versa: V. is determined within an additive constant by £, (77)

=>The ground state expectation value of any observable is a unique
functional of the ground state density o, (;7)
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Electron density distributions

P // p(r) has cusp at nuclear positions

0.3

0.2~

H,O

0.1

The X-Y plane shows your location
inside the molecular plane. The p

axis shows how much electron
density there is at this location.

Kato’s cusp condition:

a, dp(r)

! 2p(F) dr

F—R,

Pictures taken from:
http://www.reed.edu/chemistry/roco/density/images/
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18t HK Theorem (cont’d)

In other words: the relation

plr) =M /.../\D(r.rg ..... ry) U (r,ry, ..., ry)dry. .. dry

can be inverted, i.e. if the ground state density (o (I‘) is known, it is possible to
calculate the ground state many-electron wavefunction .

‘-DU(I‘]_, I's..., I‘N:
‘-IID is a functional of IJU(TJ U= [/’:

— any ground state observable is a functional of o (I'J

The ground state wavefunction () is the one that minimizes the ground state
energy and reproduces the ground state density /), (rJ

Eyvo = min (V|T + Vee + Ven | W)

‘I’—>Jo0
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Theoretical foundations of DFT: Hohenberg-Kohn Theorems

Second Hohenberg and Kohn Theorem:

« Variational principle:

The total energy is minimal for the ground state density
of the system (,‘;

E[p(F)l.. = £, = E[p, (")

16



2"d HK Theorem (cont’'d)

For an arbitrary density p(r)
E,[p] = min':::\I/|T + Vo + \,;.j\.r\\ll}

\IJ_,p

If p(r) # po(r) then W # Wyand E, > E,. Variational principle for the
ground state density!
One can write the total energy also as:

E,p] = ,ﬁnnw— V| ) + / &r p(r)v(r)
\| —.p .
=: Flp| +V[p]
} PR . Internal energy functional,
Flp] = min{(V|T+Vee| ) Independent of v(r), universall!!

‘If—r,o
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Some (subtle) remarks about the HK theorems

V-Representability of p(r)

Can all electron density distributions be associated with a Hamiltonian with
an external potential Vg(r) (V-representability)? => not necessarily: e.g.
electron density distribution in an electronically excited state

=> HK1 valid for v-representable densities

=> HK2: The minimization of the total energy with respect to the density
has to be performed under the condition that p(r) remains V-representable
(i.e. that there is a corresponding Vgy(r)).

N-Representability p(r)

Can all electron densities be derived from an antisymmetric wavefunction
(N-representability)?

=> The minimization of the total energy with respect to the density has to
be performed under the condition that p(r) remains N-representable

=> Lieb&Levy constrained search
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Quiz IXX: Total Energy as a functional of p(r)

1) Try to find expressions for the different terms of the total energy in
terms of the electron density distribution p(r):
a) The kinetic energy
b) The electron-nuclei interaction
c) The classical part of the electron-electron interaction
d) The exchange and correlation energy?
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Precursors of Kohn-Sham DFT:
The ‘true’ (orbital-free) Density Functional Methods

The total energy of the system (and any other observable) is expressed as a functional
of the density only:

E, |p| = [pl-|Veelpl +|Ven lpl |= F'lp] +Venp)

Some of these terms are easy to calculate, e.g. Ven[p]:

UeN (I‘) — 'f'e-r.f.(r) v (1) = Z Z Classical electrostatic potential
ert - Ir — Ry| energy:
U(7)=q2(7)
Vear[p] = / &1 p(r)Veni(r) U =q did(7)
7| : electrostatic potential at 7
Classical electrostatic energy of a charge distribution q>(r) bl

p(r) in a potential vex(r).

What is the form of the universal terms T[p] and Vee[p]?
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Llewellyn Enrico

nien  Precursors of Kohn-Sham DFT: remm
W ohemee The Thomas-Fermi Model (1927) (o

The electron-electron interaction is approximated by the classical Coulomb energy of a
charge distribution p(r) (analogous to the Hartree term in the Hartree-Fock method):

, Thomas-Fermi Approximation:
Vo ~ Vigp = l/(/:‘z' /(]3],/ p(x)p(r’) |  Exchange and correlation effects
“ 2 . v — /| neglected

It turns out that the most difficult term to express as a functional of the density, is the
kinetic energy T[p].

Thomas and Fermi suggested a first approximation for this term in the form of a local
density approximation for the kinetic energy functional: /_\V\

N electrons Homogeneous
; homogeneus electron gas
T[/) ~ TLDA [/} — / thom (/)(I') )(].3,, compensating - p = N/V = const
- - positive charge:
- jellium

Where th°™(p(r) is the kinetic energy density (kinetic energy per unit volume) of a
homogeneous electron gas with constant density p(r).

g ()=o)

Inhomogeneous
system
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Precursors of Kohn-Sham DFT:
The Thomas-Fermi Method

Unfortunately, it turns out that this approximation is not very useful in chemistry: atoms
have no shell structure, molecules are not bound !!!!

Many, more sophisticated approximations have been suggested for T[p] but so far no
sufficiently accurate pure ” density functional expression of T has been found!

e.g. Weizsacker correction 2 |Vp(F ’
(1935): gradient expansion T = :— udf ®
o] = t(p(r):70(r)) m”_plF)

How can we calculate the kinetic energy of an interacting many electron system?

And in the case of noninteracting

This is very easy in a wavefunction electrons, T is simply the sum of the

formulation: kinetic energy of each electron:
__LYrgwe 1
T=-2{¥V¥) T=-(¢V¢)

23
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-2016) (Kohn&Sham, Phys. Rev. 1140, 1133A, 1965)

@g&; Kohn and Sham Formulation of DFT L
"=/ (1938) )
e

- re-introduce some wavefunctions (single particle orbitals)
- The many-electron problem can be mapped exactly onto:

* an auxiliary noninteracting reference system with the same density (i.e. the exact

ground state density)
p(F)=212¢f(?)¢i A [fare(F)-n

kinetic energy of the noninteracting single-

kineti f the i ti
particle system Tu[p] is inetic energy of the interacting

system T[p] is

[ S 3. bk 2
b= 530 [ et Tl = 7l

« each electron moves in an effective 1-particle-potential due to all the other electrons

vs(?) = vext(?)+vee (F)

Us(r) - vez‘.f(r) + UH(I‘) -+ Umc(r)

25
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KS Energy Functional

£ {a} =12 [ dre (7)o, (7) V(7)o (F) dr

i

+

A p2O0) e e o] (2)

exchange-correlation energy functional
External potential due to ionic cores (includes also Tc)
Hartree-term ~ classical Coulomb energy core -core interaction

Find po(r), ¢i: minimize EM [{¢i}}under orthonormality constraints for ¢i’s

5

J ¢i 8¢: J

D R I T Qi

¢i: Lagrange multipliers associated with
N orthogonality constraints
=> N single particle equations
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Kohn-Sham equations

N coupled Schrédinger equations (1 for each effective one-particle orbital):

ViV ()4, (F)+ v (7) |0, (F) = e, (7)

=> Solved self-consistently

V(r) =—————| Potential is the functional derivative of the energy

Initial ¢is

o0l

Vy: Hartree potential ap(?) |17 _ ’7,| Calculate p(r) <
Vxc: exchange-correlation potential Calculate VHf) and Vie(r)
o 9E [p(7)] . 9, P Solve KS
an(l")=T(r_) Vxﬂ(r)=gxc[p]+p(r)% 0V1 egs
€xc. exchange-correlation energy per particle New ¢i(r) <——

We have to find suitable approximations for Exc!

27
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Types of E,;[p] Approximations

S A
! } A

L'\ DFT

%) :
virtual ¢ ————— Double hybrids
Exact HF hybrids

h

gﬁiﬁgﬁ o meta hybrids

p(F),Vp(F),7(F) = %E\W% (7 )\2

meta

p(r),Vp(r)

GAs

p(r)
—— DA

Perdew’s Jacob’s Ladder

Exchange-Correlation Functionals

Usually split into separate contributions from exchange and correlation

e o]=e[p] v 1]

Rung 1: Local Density Approximation (LDA)
Purely local density functional ! (i.e. only dependent on the local position)
exchange-correlation energy per

EchDA [/O] = fd?p(’_;)giljm :p(’_;): & [p(?)] particle of a homogeneous

electron gas with uniform density

Exchange contribution
(P.A.M. Dirac, Proc. Cambridge Phil. Soc. 26, 376 (1930), E.P. Wigner, Trans. Faraday Soc. 34,

678 (1987)) - :
can be determined nom [ (V] _ _ 3 Cc - 3[3)5
exactly ! Ex [p(r )] =—Cwp T A\=m

. . . hom -
Correlation contribution & [o(F)]
(D.M. Ceperly, B.J. Alder, Phys. Rev. Lett. 45, 566 (1980), G.Ortiz, P. Ballone, Phys. Rev. B 50,

1391 (1994))
Accurate (numerical) results available from Quantum Monte Carlo simulations for

discrete values of the density Parameterized analytic forms that interpolate between
different density regimes are available: e.g. J.P. Perdew, A. Zunger, Phys. Rev. B. 23, 5084 (1981)
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ron density region

Low electron density region
s = (47tp/3)_1/3

0 50

- 0.02 - « = Perdew-Wang 1992 Fit

g = =241+ a;75) In (1 +

b b
= Chachiyo 2016 ¢, =aln (1 + - +—2>
S
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® Ceperley-Alder 1980 Quantum Monte Carlo simulation

Ts
Function

= === \Josko-Wilk-Nusair 1980 Fit Function

Correlation Energy Density (Hartree)

- 0.047 In——~+ z atan Q__ bx
X(x) Q 2x+b  X(xg)
x =T,

1
24 (Bur} + Bory + By + mrs””))
| (x —x9)%  2(b+ 2xp) . Q
"X (xo) R EY
X(x)=x2+bx+c, Q=+4c—Db?

From wikipedia
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Performance of LDA

In principle LDA is a very crude approximation! Molecules do not have a homogeneous electron
density!!!

E. of a non uniform system locally approximated by results of the uniform electron gas results,
should ‘work’ only for systems with almost constant or slowly varying density!

But: atoms and molecules are highly inhomogeneous systems Crs

However LDA works remarkably well in practice:

© in general good structural properties: Re [A] De (eV)
bond lengths up to 1-2% g(FDSD :llzé%% _1_3";
bond angles ~ 1-2 degrees ) ’
torsional angles ~ a few degrees gg_?D(T) 1231 (1)2

© vibrational frequencies exp 1 :679 1 :4

~ 10% (phonon modes up to few %)

© cheap and good method for transition metals !
e.g. Cry, Mo, in good agreement with experiment ( not bound in HF, UHF!)
© F;, re within 3% (not bound in HF)
® atomization, dissociation energies over estimated (mainly due to errors for atoms), typically by
10-20%
® hydrogen-bonding overestimated

® van der Waals-complexes: strongly overestimated binding (e.g. noble gas dimers, Mg, Be,:
factor 2-4

31
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Generalized Gradient Approximations (GGAS)

£ [p]= [arf, (p(F)-Vo(7))

fxc : @analytic function that contains a number of adjustable parameters

Determination of parameters:

» fully non empirical
« fit to exact Ex-Corr energies for atoms
« fit to experimental data (empirical)

= many different forms (B88, P86, LYP, PW91, PBE, BLYP, BP86 etc..)

EM[p]=C, [ drp* (7)F.(s) F™(s)=1+ 1+6yc]’/§2sjif'l(c )
1 1

s=% Reduced gradient enhancement factor
_ /3
v =0.0042 C =3/43/xm)
25\1/3
Fitted to exchange of 6 noble gases ¢ =2(67")

= (2”3Cx )‘1
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Meta-GGAs, Hybrids and Double Hybrids

Rung 3: Meta functionals

] e 2l Kinetic
£ [p]-fare. (p(7) Vo)) [(F)=3 ZVo ()| eney
e.g. TPSS, SCAN, M06-L etc.

Rung 4: Hybrid functionals use a fraction of exact exchange

E:iybrid _p- - aE:JXX _¢i +(1_a)ExGGA -p- E,fxx[qbf]:_%iffq)‘(?)qj’ (7')(]); (7')¢/ (F)dfdf'

=

-

e.g. B3LYP, PBEO, HSE, M06 etc.

EBYP _ pLDA | (EEXX _ELDA)+a (EGGA _ELDA)+a (EGGA _E‘LDA)
X X 0 X X x X x c c c

ap=0.2,a,=0.72, a.= 0.81

Rung 5: make use of unoccupied orbitals

e.g. RPA, double hybrids =>mix in a fraction of exact HF exchange and a
fraction of MP2 correlation energy
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9. First-Principles

Molecular Dynamics

34

When the nuclei start to move:
Ab initio Molecular Dynamics

in principle => time-dependent Schrddinger eq.

Within Born-Oppenheimer approximation: solve time-independent electronic SE at

each nuclear configuration during dynamics
Nuclei move classically => semiclassical methods

Classical dynamics of nuclei (M, >>> m,):

Newton’s equations:

MR, =——

2) Calculate forces acting on every nuclei | as dEXS/dR,

3) Integrate equations of motion to get new positions of
nuclei at time t = {,+At

4)Goto 1)

P
A4 -
) i Water”
G A\ -/
. /\ L S [

7

Born-
Oppenheimer
Molecular
Dynamics

35
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10. Mixed Quantum

Mechanical/Molecular

Mechanical (QM/MM)
Simulations

39

Nobelprize in Chemistry 2013

Martin Karplus Michael Levitt  Arieh Warshel

. .‘-
A bl il
(3N . R
X = A ’
ak "
g / \ 2
e s A
#L5

"for the development of multiscale models for complex
chemical systems”: mixed quantum mechanical/molecular
mechancial (QM/MM) simulations

40

17



Mixed Quantum Mechanical /
Molecular (QM/MM) Mechanical Methods

M part
~ 80 atoms

~ 400 electrons

QM/MM coupling monovalent
pseudo
potential

* Bonded and van der Waals interactions: MM level

U(R) = Z K (1 —reg)® + Z Kg(0 — 6,)*

bonds angles
‘;l / \] -‘!:_j B!’j qid
+ Z T[l+'.“x“m_ﬁ‘"+ZR12 _R_?.+ZF »
dihedralsn i<j Y 1 i<j <
* bonded interaction in which at least 1 MM atom involved Iq° ’
= via classical force field
_ _ included
(bonds across QM/MM interface saturated via monovalent in Voxt
ex

pseudopotentials)

* van der Waals interactions:
- within MM and between QM and MM = via classical force field
parameters
- within QM:
- none
- via addition of empirical Cs term
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M Watch Enzymes in
Action..

HIV- | Protease
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Overview

Some important features of electronic structure methods:
» what is the Ansatz for the wavefunction?
» how are exchange and correlation treated?
* can static correlation/multireference problems be treated?
* is the method variational (i.e. is E always = E,0)?

+ is the method size consistent (i.e. is the energy of two noninteracting
systems the sum of the single systems?)

« can excited states be treated with the same method?

» what is the scaling of the method (i.e. how does the computational cost
grow if | double the system size?)

a4
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Method wavefunction exchange

correlation variational?

multi-ref? Excited states? Scaling

HF 1 determinant exact

MPn contributions from  exact
excited determinants
through perturbation

Truncated  selected exact
Cl determinants

CASSCF selected dets exact
determinants

cC contribution of exact
selected excitations

through infinite order

Full CI  exact wf within basis  exact
set, linear combination
of all possible excited
determinants

Exact DFT electron density ~ exact

Orbital-free electron density some
DFT
KS-DFT electron density some

none

some

some

little

some

all

exact

some

some

yes

no

yes

yes

no

yes

yes
no

no

no no N2-N4

CAS-PT2 CAS-PT2 MP2 N5

MP3 N6
MP4 N7
no yes e.g. CISD
N6
yes ves  exp, Nao"Naet*
no EOM-CC  CCSD N¢
cc2 CCSD(T) N7
CCSDT N8
CCSDTQ N10
yes yes  NIU/Ng!(N-Ng)!
no TDDFT N
no TDDFT N
no TDDFT N2-N3
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