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8. Density Functional 
Theory (DFT)
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Literature on Density Functional Theory

Recent review orbital-free DFT:  Mi et al. Chem Rev. 123, 12039-21204 (2023) 
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DFT: The most popular 
electronic structure method

(No. of ISI citations per year  that contain the 
keywords ‘density functional or DFT’ resp. 
‘Hartree and Fock’ or ‘coupled cluster’) 

                  DFT              HF              CC
2010         13’245          1’251           3’331
2015         19’393          1’228           4’403
2020         29’388          1’028           7’140 
2023         40’241          1’052          10’085
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Walter Kohn and John Pople
Nobelprize in

 Chemistry 1998

Schrödingers equations made easy with DFT !

1923-2016 1925-2004
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Density Functional Theory (DFT)
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Electron density r(r):
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Let’s choose the electron density r(r) as central quantity:

Y=Y EH

3N variables  →  3 variables  

V
electrons#

=r

Measure for the probability of finding electrons (i.e. any electron) at a specific location. 
The electron density is an observable (can be measured in e.g. an x-ray diffraction experiment).

M: normalization constant, Ψ is normalized in such a way that

ò = Nrdr


)(r

Integrate over N-1 
variables! 

Single particle system:

ρ
!r( ) = fiφi

* !r( )φi
!r( )

i
∑ fi: occupation

An alternative possibility to find an approximate solution of the electronic Schrodinger 
equation
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Reasons for the Popularity of DFT Methods
Practical Reasons
To store the many-electron wavefunction for an oxygen atom (8 electrons, 24 
variables) with only 10 entries per coordinate and 1 byte per entry, we would 
need: 1024 bytes

5x109 bytes per DVD → 2x1014 DVDs
10g per DVD →  2x109t DVDs

Whereas to store r(r), we only need 103 bytes !

Physical Reasons
• DFT is computationally very efficient: typical system sizes are 100 – 1000 
   atoms
• DFT is fairly accurate (bond lengths typically predicted within 1-2%, energies
within few kcal/mol) even for systems with strong electron correlation effects, 
such as e.g. transition metals!
• many chemical concepts can be directly expressed in terms of r(r) (e.g. 
reactivity indices, hardness, softness etc…)
• can easily be combined with ab initio molecular dynamics
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1) What is the difference between a function and a functional?

2) Why is the method called Density Functional Theory?

3) What is a functional derivative?

Quiz XVII: Functionals
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What is Density Functional Theory?
Solution of the many-electron electronic Schrödinger equation that includes all 
(in principle), approximate (in practice) exchange and correlation effects.

Electronic Schrödinger equation for fixed nuclear geometry:

In a more compact form:

kinetic energy
operator

Electron-nuclei
Coulomb 
potential

Electron-electron 
repulsion
potential

Nuclei-nuclei
Interaction
Potential
(constant for fixed R)

Convention:

External potential  Vext

Collective variables for all 
electronic (r) and all 
nuclear (R) position 
variables
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1) Given 2 systems with the same total number of electrons N = 10 (e.g. 
H2O and NH3):

Which term in the electronic Hamiltonian is different, i.e. which term 
determines that we are doing  a calculation of a water molecule and not of 
an ammonia molecule?

Quiz XVIII: Universal vs system specific terms
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What is Density Functional Theory?

Conventional (wavefunction based) quantum chemical methods:

given external potential                                                 e.g. electron density r(r)
(determined by geometry of the nuclei)

Density Functional theory:

Unique relation between r(r) and v(r), all observables (including the (ground state) 
many-electron wavefunction can be calculated from r(r)!!!!)

v(r) is the only system-dependent term,

and are universal operators!!
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First Hohenberg Kohn Theorem (1964)
(Hohenberg&Kohn, Phys.Rev. 136, 864B, 1964)

The ground state energy of a nondegenerate system with N electrons in an 
external potential Vext is a unique functional of the electron density 

=> Vext determines       and     determines the exact determines

And vice versa: Vext is determined within an additive constant by
 
=>The ground state expectation value of any observable is a unique 
functional of the ground state density

( )[ ]rEE


r=

ρ0
!r( )Ĥ

Theoretical foundations of DFT: Hohenberg-Kohn Theorems

ρ0
!r( )

ρ0
!r( )

Ĥ Ψ0

Pierre 
Hohenberg
(1934-2017)

Walter 
Kohn
(1923
-2016)
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Electron density distributions

r(r) has cusp at nuclear positions

Pictures taken from:
http://www.reed.edu/chemistry/roco/density/images/

Kato’s cusp condition:

ZJ = −
a0

2ρ(!r )
dρ(!r )
d!r !r→

!
RJ

H2

H2O
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1st HK Theorem (cont’d)

In other words: the relation

can be inverted, i.e. if the ground state density            is known, it is possible to 
calculate the ground state many-electron wavefunction                                  .

is a functional of              : 

→ any ground state observable is a functional of 

The ground state wavefunction         is the one that minimizes the ground state 
energy and reproduces the ground state density
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• Variational principle: 

The total energy is minimal for  the ground state density          
of the system ( )r0r

( )[ ] ( )[ ]rEErE


00min rr ==

Second Hohenberg and Kohn Theorem:

Theoretical foundations of DFT: Hohenberg-Kohn Theorems
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For an arbitrary density r(r)

If r(r) ≠ r0(r) then Ψ ≠ Ψ0 and Ev > E0. Variational principle for the 
ground state density!
One can write the total energy also as:

Internal energy functional, 
Independent of v(r), universal!!!

2nd HK Theorem (cont’d)
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V-Representability of r(r)
Can all electron density distributions be associated with a Hamiltonian with 
an external potential Vext(r) (V-representability)? => not necessarily: e.g. 
electron density distribution in an electronically excited state
=> HK1 valid for v-representable densities
=> HK2: The minimization of the total energy with respect to the density 
has to be performed under the condition that r(r) remains V-representable 
(i.e. that there is a corresponding Vext(r)).

N-Representability r(r)
Can all electron densities be derived from an antisymmetric wavefunction 
(N-representability)?
=> The minimization of the total energy with respect to the density has to 
be performed under the condition that r(r) remains N-representable
=> Lieb&Levy constrained search

Some (subtle) remarks about the HK theorems 
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1) Try to find expressions for the different terms of the total energy in 
terms of the electron density distribution r(r):
a) The kinetic energy
b) The electron-nuclei interaction
c) The classical part of the electron-electron interaction
d) The exchange and correlation energy?

Quiz IXX: Total Energy as a functional of r(r)
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Precursors of Kohn-Sham DFT: 
The ‘true’ (orbital-free) Density Functional Methods

The total energy of the system (and any other observable) is expressed as a functional 
of the density only:

Some of these terms are easy to calculate, e.g. VeN[r]:

Classical electrostatic energy of a charge distribution 
r(r) in a potential vext(r).

Classical electrostatic potential 
energy:  

U !r( ) = qΦ !r( )
U = q d!r∫ Φ

!r( )
Φ
!r( ) : electrostatic potential at

!r

What is the form of the universal terms T[r] and Vee[r]?

21
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Precursors of Kohn-Sham DFT: 
The Thomas-Fermi Model (1927)

The electron-electron interaction is approximated by the classical Coulomb energy of a 
charge distribution r(r) (analogous to the Hartree term in the Hartree-Fock method):

It turns out that the most difficult term to express as a functional of the density, is the 
kinetic energy T[r].

Thomas and Fermi suggested a first approximation for this term in the form of a local 
density approximation for the kinetic energy functional:

Where thom(r(r) is the kinetic energy density (kinetic energy per unit volume) of a 
homogeneous electron gas with constant density r(r).

Thomas-Fermi Approximation:
Exchange and correlation effects 
neglected 

t = T
V

t hom ρ
!r( )( ) =CFρ

!r( )
5/3

CF =
3!
10m

3π 2( )
2/3

Homogeneous 
electron gas
r = N/V = const 

N electrons
homogeneus
compensating 
positive charge:
jellium 

Inhomogeneous 
system

Llewellyn 
Hilleth 

Thomas
(1903-1992)

Enrico 
Fermi
(1901-
1953)
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Unfortunately, it turns out that this approximation is not very useful in chemistry: atoms 
have no shell structure, molecules are not bound !!!! 
Many, more sophisticated approximations have been suggested for T[r] but so far no 
sufficiently accurate ‘pure’ density functional expression of T has been found!

How can we calculate the kinetic energy of an interacting many electron system?

This is very easy in a wavefunction 
formulation:

YÑY-= 2

2
1T

And in the case of noninteracting 
electrons, T is simply the sum of the 
kinetic energy of each electron:

å Ñ-=
i

iiT ff 2

2
1

L

Precursors of Kohn-Sham DFT: 
The Thomas-Fermi Method

e.g. Weizsäcker correction 
(1935): gradient expansion
T[r] = t(r(r),   r(r))

TW = !
2

8m

∇ρ
!r( )

2

ρ
!r( )∫ d!r L

23
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Literature on Density Functional Theory

Recent review orbital-free DFT:  Mi et al. Chem Rev. 123, 12039-21204 (2023) 
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Kohn and Sham Formulation of DFT 
(Kohn&Sham, Phys. Rev. 1140, 1133A, 1965)

- re-introduce some wavefunctions (single particle orbitals)
- The many-electron problem can be mapped exactly onto:
• an auxiliary noninteracting reference system with the same density (i.e. the exact 
ground state density)

kinetic energy of the noninteracting single-
particle system Ts[r]  is

ρ
!r( ) = 2 φi

* !r( )
i
∑ φi

!r( )

• each electron moves in an effective 1-particle-potential due to all the other electrons

kinetic energy of the interacting 
system T[r]  is

vs
!r( ) = vext

!r( )+ vee
!r( )

d!r∫ ρ
!r( ) = N

Walter 
Kohn
(1923
-2016)

Lu Jeu 
Sham
(1938)
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Kinetic energy of the non interacting 
system  
External potential due to ionic cores                                                              
Hartree-term ~ classical Coulomb energy

EKS φi{ }⎡
⎣

⎤
⎦= − d!rφ

i

* !r( )∇2∫
i
∑ φi

!r( )− Vext∫ !r( )ρ !r( )d!r

+
1
2

ρ
!r( )ρ !r '( )
!r − !r '∫ d!rd!r ' + Exc ρ

!r( )⎡
⎣

⎤
⎦+ Eion

!
RI{ }( )

KS Energy Functional

L = EKS φi{ }⎡
⎣

⎤
⎦+ εij

j
∑ d!r∫ φ

i

* !r( )φ
j

!r( )−∂ij( )
i
∑

Find ro(r), fi:  minimize                     under orthonormality constraints for fi’s

∂L
∂φi

*
=
∂EKS φi{ }⎡

⎣
⎤
⎦

∂φi
*

− εijφ j
j
∑

ei: Lagrange multipliers associated with 
N orthogonality constraints

exchange-correlation energy functional 
(includes also Tc)
core -core interaction

EKS φi{ }⎡
⎣

⎤
⎦

=> N single particle equations

26

VH: Hartree potential

VXC: exchange-correlation potential

We have to find suitable approximations for Exc!

Kohn-Sham equations

V !r( ) =
∂E ρ

!r( )⎡
⎣

⎤
⎦

∂ρ
!r( )

Potential is the functional derivative of the energy

V H !r( ) =
∂EH ρ

!r( )⎡
⎣

⎤
⎦

∂ρ
!r( )

= d!r '∫
ρ
!r '( )

!r − !r '

Vxc
!r( ) =

∂Exc ρ
!r( )⎡

⎣
⎤
⎦

∂ρ
!r( ) Vxc

!r( ) = εxc ρ⎡⎣ ⎤⎦+ ρ
!r( )
∂εxc ρ⎡⎣ ⎤⎦
∂ρ

N coupled Schrödinger equations (1 for each effective one-particle orbital):

−
1
2
∇2 +Vext

!r( )+VH
!r( )+Vxc

!r( )
⎡

⎣
⎢

⎤

⎦
⎥φi
!r( ) = εiφi

!r( )
=> Solved self-consistently 

Initial fis

Calculate r(r)

Calculate VH(r) and Vxc(r)

Solve KS eqs

New fi(r)exc: exchange-correlation energy per particle 
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LDA 

GGAs

meta

hybrids
meta hybrids

Perdew’s Jacob’s Ladder 

ρ(!r )

ρ(!r ),∇ρ(!r )

ρ(!r ),∇ρ(!r ),τ (!r ) = 1
2

∇φi
!r( )

i
∑

2

Types of Exc[r] Approximations

Double hybrids

Exact HF 
exchange
Occupied fi

virtual fi

DFT 
Heaven

28

Purely local density functional ! (i.e. only dependent on the local position) 

Exchange contribution                            
(P.A.M. Dirac, Proc. Cambridge Phil. Soc. 26, 376 (1930), E.P. Wigner, Trans. Faraday Soc. 34, 
678 (1987))

( )[ ] 3
1

rre xx Cr -=
hom 3

1

3
4
3

÷
ø
ö

ç
è
æ=
pxC

Correlation contribution                         :
(D.M. Ceperly, B.J. Alder, Phys. Rev. Lett. 45, 566 (1980), G.Ortiz, P. Ballone, Phys. Rev. B 50, 
1391 (1994))
Accurate (numerical) results available from Quantum Monte Carlo simulations for 
discrete values of the density Parameterized analytic forms that interpolate between 
different density regimes are available: e.g. J.P. Perdew, A. Zunger, Phys. Rev. B. 23, 5084 (1981)

Usually split into separate contributions from exchange and correlation

εxc ρ⎡⎣ ⎤⎦= εx ρ⎡⎣ ⎤⎦+εc ρ⎡⎣ ⎤⎦

can be determined 
exactly !

( )[ ]rc
re hom

Exchange-Correlation Functionals

Rung 1: Local Density Approximation (LDA)

εxc
hom ρ

!r( )⎡
⎣

⎤
⎦Exc

LDA ρ⎡⎣ ⎤⎦= d!rρ !r( )∫ εxc
hom ρ

!r( )⎡
⎣

⎤
⎦

exchange-correlation energy per 
particle of a homogeneous 
electron gas with uniform density 
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From wikipedia

30

Performance of LDA
In principle LDA is a very crude approximation! Molecules do not have a homogeneous electron 
density!!!
Exc of a non uniform system locally approximated by results of the uniform electron gas results,
should ‘work’ only for systems with almost constant or slowly varying density!

But: atoms and molecules are highly inhomogeneous systems 

However LDA works remarkably well in practice:
J in general good structural properties: 
    bond lengths up to 1-2%
     bond angles ~ 1-2 degrees        torsional angles ~ a few degrees

J vibrational frequencies  
   ~ 10% (phonon modes up to few %)

J cheap and good method for transition metals ! 
   e.g. Cr2, Mo2 in good agreement with experiment ( not bound in HF, UHF!)

Cr2

Re [Å]       De (eV)
HF             1.465        -19.4
CCSD        1.560          -2.9 
CCSD(T)   1.621            0.5
DFT           1.59              1.5
exp            1.679            1.4

J F2 re within 3% (not bound in HF)
K  atomization, dissociation energies over estimated (mainly due to errors for atoms), typically by 
10-20%
L hydrogen-bonding overestimated
L van der Waals-complexes: strongly overestimated binding (e.g. noble gas dimers, Mg2, Be2: 
factor 2-4

31
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Exc
GGA ρ⎡⎣ ⎤⎦= d!r∫ f xc ρ

!r( ),∇ρ !r( )( )
fxc : analytic function that contains a number of adjustable parameters 

Determination of parameters:

• fully non empirical
• fit to exact Ex-Corr energies for atoms
• fit to experimental data (empirical)

  Þ many different forms (B88, P86, LYP, PW91, PBE, BLYP, BP86 etc..)

Generalized Gradient Approximations (GGAs)

Ex
B88 ρ⎡⎣ ⎤⎦=Cx d

!rρ 4/3 !r( )∫ Fx s( ) Fx
B88 s( ) =1+ γc2c1

2s2

1+6γc1ssinh
−1 c1s( )

s =
∇ρ
!r( )

ρ
!r( ) Reduced gradient                                enhancement factor                    

Cx = 3 / 4(3 / π )
1/3

c1 = 2(6π
2 )1/3

c2 = 2
1/3Cx( )

−1

g =0.0042
Fitted to exchange of 6 noble gases

32

Kinetic 
energy 
density

Meta-GGAs, Hybrids and Double Hybrids

Exc
meta ρ⎡⎣ ⎤⎦= d!r∫ gxc ρ

!r( ),∇ρ !r( ),τ !r( )( )
Rung 3: Meta functionals

τ
!r( ) = 12 ∇φi

!r( )
i

occ

∑
2

e.g.  TPSS, SCAN, M06-L etc.

Ex
hybrid ρ⎡⎣ ⎤⎦= aEx

EXX φi⎡⎣ ⎤⎦+ (1− a)Ex
GGA ρ⎡⎣ ⎤⎦

Rung 4: Hybrid functionals

Ex
EXX φi⎡⎣ ⎤⎦= −

1
2

φi
!r( )φi*

!r '( )φ j
!r '( )φ j*

!r( )
!r − !r '

d!r d!r '∫∫
i , j

occ

∑

e.g.  B3LYP, PBE0, HSE, M06 etc.

use a fraction of exact exchange

Ex
B3LYP = Ex

LDA + a0 Ex
EXX − Ex

LDA( )+ ax ExGGA − ExLDA( )+ ac EcGGA − EcLDA( )
a0 = 0.2, ax = 0.72, ac = 0.81 

Rung 5: make use of unoccupied orbitals

e.g.  RPA, double hybrids =>mix in a fraction of exact HF exchange and a 
fraction of MP2 correlation energy

33
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9. First-Principles 
Molecular Dynamics

34

When the nuclei start to move:
Ab initio Molecular Dynamics

Classical dynamics of nuclei (MI >>> me):

Newton’s equations:

MI
RI = −

∂E
∂RI

EKS[ρ(r)]

1) Do DFT calculation for a given geometry {R}-> EKS{R}
2) Calculate forces acting on every nuclei I as dEKS/dRI 
3) Integrate equations of motion to get new positions of 
     nuclei at time t = to+Dt
4) Go to 1)

- in principle => time-dependent Schrödinger eq.
- Within Born-Oppenheimer approximation: solve time-independent electronic SE at 

each nuclear configuration during dynamics
- Nuclei move classically => semiclassical methods

Born-
Oppenheimer
Molecular 
Dynamics

Ru-tris(bipy) in waterRu-tris(bipy) in water

35
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10. Mixed Quantum 
Mechanical/Molecular 
Mechanical (QM/MM) 

Simulations

39

"for the development of multiscale models for complex 
chemical systems”: mixed quantum mechanical/molecular 

mechancial (QM/MM) simulations

Nobelprize in Chemistry 2013
Martin Karplus Michael Levitt Arieh Warshel

40
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Mixed Quantum Mechanical / 
Molecular (QM/MM) Mechanical Methods

Interface 
region

QM part
~ 100 atoms

 ~ 400 electrons

MM part
> 1000 solute atoms

 > 10000 solvent atoms

41

QM/MM coupling

• Bonded and van der Waals interactions: MM level

monovalent
 pseudo
potential

QM

e-

MM

i

j
k

l

qo
qp -

+

included
 in Vext

• van der Waals interactions:
   - within MM and between QM and MM Þ via classical force field
     parameters
   - within QM:
       - none
       - via addition of empirical C6 term
       - via optimized effective atom centered potentials (OECPs)

• bonded interaction in which at least 1 MM atom involved
   Þ via classical force field

(bonds across QM/MM interface saturated via monovalent
  pseudopotentials)
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Viewing Watch Enzymes in
                   Action.. 
at work 

HIV- I Protease

43

Overview

Some important features of electronic structure methods:       

• what is the Ansatz for the wavefunction?

• how are exchange and correlation treated?

• can static correlation/multireference problems be treated?

• is the method variational (i.e. is E always ≥ Etrue)?

• is the method size consistent (i.e. is the energy of two noninteracting 
  systems the sum of the single systems?) 

• can excited states be treated with the same method?

• what is the scaling of the method (i.e. how does the computational cost 
grow if I double the system size?)

44
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Method       wavefunction     exchange    correlation   variational?     Size-        multi-ref?  Excited states?    Scaling
                                                                                                        consistentt?

HF             1 determinant        exact          none               yes               yes             no               no                   N2-N4

MPn         contributions from    exact        some               no                yes         CAS-PT2     CAS-PT2         MP2 N5

excited determinants                                                                                              MP3 N6

through perturbation                                                                                              MP4 N7

Truncated selected             exact        some               yes               no              no               yes           e.g. CISD
CI        determinants                                                                                                                 N6

CASSCF selected dets          exact        little                 yes               no             yes             yes       exp, Nact*Ndet4

determinants                                                                                                

CC contribution of           exact       some                no                yes             no            EOM-CC     CCSD N6

selected excitations                                                                                               CC2         CCSD(T) N7

through infinite order                                                                                              CCSDT   N8

CCSDTQ N10

Full CI exact wf within basis     exact       all                  yes               yes             yes             yes      N!/Nel!(N-Nel)! 
set, linear combination 
of all possible excited 
determinants

Exact DFT   electron density      exact         exact              yes               yes             no           TDDFT          N

Orbital-free  electron density     some         some              no                yes              no           TDDFT          N
DFT

KS-DFT        electron density     some         some              no                yes               no           TDDFT        N2-N3
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