Post-Hartree Fock Methods:

(Methods that use Hartree-Fock as a starting point and
go beyond it, i.e. that take electron correlation into
account)

1. Configuration Interaction (Cl)
(Script: Chapter 5)

Per-Olov Léwdin

Electron Correlation (1916-2000)

Chemist’s definition of E.,,. (Lowdin):
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Electron Correlation: Physicist’s view

Probability distribution of a system with
2 electrons is not given by the product

p(1)p(2) only:
— — 1 — — P —>
p2(71, 72) = Sp(F1)p(72)[1 + h(71, T2)]
h (7., ¥2): pair correlation function

The presence of electron(1) modifies the
probability distribution for electron(2):
—exchange-correlation hole

Pzc(T1, F2) = p(F2)h(71, T2)

(exchange-correlation hole created by an
electron at 7).

—rcorrelated motion of electrons
(electrons ‘avoid each other’ — electron-electron repulsion is lowered)

—H Fj;p.;:+ is higher than the true total
energy of the system

.(l)ﬂ. Discussion on correlation
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FEDERALE DE LAUSANNE 0.5 Helium atom
i nucleus

electron 2

wave function Wy(r,,r,) as function of r,
No dependence on the instantaneous position of electron 2 -> independent motion

From Jiirgen Gauss lecture on Coupled Cluster, figure from T. Helgaker, P. Jergensen, J.
Olsen ,,Molecular Electronic-Structure Theory“




.(Pﬂ- Discussion on correlation

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE Helium atom
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correlation
effect

Dependence on the position of electron 2: correlated motion

wave function ¥, (r,,r,) as function of r,

From Jiirgen Gauss lecture on Coupled Cluster

.(l)ﬂ. Discussion on correlation
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From Jiirgen Gauss lecture on Coupled Cluster




.(l)ﬂ- Discussion on correlation

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE Helium atom
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Another view : wavefunction plotted on a circle of radius 0.5 a;
centered at the nucleus.
Variation of the angle between the two electron coordinate vectors.

From Jiirgen Gauss lecture on Coupled Cluster

Post-Hartree-Fock Methods

Methods use a Hartree-Fock calculation as starting point and try to
improve the HF results by taking account of electron correlation:

 Configuration Interaction (Cl)
* Moller-Plesset Perturbation (MP)
» Coupled-Cluster (CC)




Quiz X: Post-Hartree Fock Methods

1) What would be a straightforward way to improve over the Hartree-Fock
approximation? What better Ansatz could we use for the many-electron
wavefunction?

2) Does this Ansatz lead to solutions that take account of the correlation
hole?

3) Using this improved Ansatz for the many-electron wavefunction, can
the electronic Schrodinger equation be solved in practise?

How can we construct a basis of Slater determinants?

=> let's make use of what we already have: the Hartree-Fock solution:

FC'=EC

For a basis set with M basis functions, the dimensions of the Fock matrix are
MxM:

Examples:

minimal basis set for H,O => 10 electrons, 7 basis functions => 7 HF orbitals
and HF eigenvalues => 5 (doubly) occupied and 2 empty (virtual orbitals)
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Each Slater determinant corresponds to a different electronic configuration (therefore the name
Configuration Interaction (Cl)) that is generated by creating excited state configurations from the

ground state Hartree-Fock wavefunction.

HF ground state single excitations ‘S’ double excitations ‘D’
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Quiz XI: Configuration Interaction

1) How many occupied and virtual orbitals do you get from a HF
calculation of H,O with a 6-31G* basis set?

2) How many Slater determinants can you construct out of these HF
orbitals?
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We often use the letters a,b,c etc.. for the occupied molecular orbitals from which we excite an
electron, and the letters r,s, etc.. to label the empty (virtual) orbitals to which we excite electrons.

In this way, we can write the linear combination of Slater determinants that describe the many
electron wavefunction ¥ as

|T”)=q$m)+§gcg

® )+ LEYYC

azb b rzs s

®5)+”.

If we include Slater determinants for all possible excitations, the method is called full Cl and
The result is exact (within a chosen basis set)!

|q)0) Hartree-Fock ground-state determinant

|(I);> singly-excited determinants

|q):;7)) doubly-excited determinants

r,s: indices for virtual orbitals
a,b: indices for occupied orbitals
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If we include all possible excited state configurations where one electron is promoted from the
occupied to the unoccupied orbitals, the method is called CIS, if we include all possible single and
double excitations it is CISD etc.. (CISDT, CISDTQ...). By allowing for this increased flexibility of
the wavefunction, we are able to capture the modifications of the electronic distribution caused by
correlation effects. If we include all possible excited state configurations, the method is called full Cl
and the results is exact.

So in theory we now know how to solve a many-electron Schrodinger equation exactly:

Like for Hartree-Fock, we can calculate the expectation value of the total energy of the
system:

E:‘ﬂ = '::RII|HEE| ‘If}

Where ¥ is a linear combination of Slater determinants generated from the Hartree-

Fock orbitals
[¥)=cilo)+Irc]or)+XET Y

azb b rzs s

®g)+”.

To find P°', we use the variational theorem that tells us that the best wavefunction is
the one that minimizes the total energy Ee:

If we minimize E with respect to the coefficients C (but leave the one electron orbitals
untouched, i.e. equal to the Hartree-Fock orbitals), the method is called Cl (it takes
account of dynamic correlation).

If we include only few determinants and minimize with respect to the coefficients C;
and the one-electron MOs ®; (cim) the method is called multireference (multireference
methods are especially good for taking static correlation effects into account => lecture
on multifreference methods!).
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We get the matrix equation with the Hamiltonian matrix elements:

HC =CE Hy = (o |H|o,)

All we have to do is to diagonalize this matrix and we have found the exact solution of
the many-electron Schrodinger equation in a given basis!

We do not have to calculate all of the Hamiltonian matrix elements because some of
them are zero. There are simple rules (Slater-Condon rules) that help us to know which

ones (see script): _
H;; = (9| H|D;)

First arrange determinants with maximum coincidence:

|®1) = [abed) ) |O,) = |crds) = —|crsd) = |sred)
| Do) = |erds)
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Slater-Condon Rules

1. Identical Determinants: If the determinants are identical, then

N N
(@1]H|®1) = (mlh|m) + > (mnl||mn) (5.9)

m m>n

2. Determinants that Differ by One Spin Orbital:

|®1) = |---mn---) (5.10)

|Bs) |---pn---)
N

(1] H|®y) = (mlhlp) + ) (mnl|pn)

Il

3. Determinants that Differ by Two Spin Orbitals:

|®1) = |---mn---) (5.11)
A®2) = [-opg---)
(®4]|H|Dy) = (mn||pg)

4. Determinants that Differ by More than Two Spin Orbitals:
|(I)1> |...mno...> (512)
|D2) | cpgr---)

(®1|H|s) = 0
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Quiz XII: Slater Rules

1) Which type of configurations are contributing the most to electron
correlation? Singles? Doubles? Triples?

2) How large are the Hamiltonian matrix elements of the type:

A |H, = <<I>f’F

H|o)

abc

8) |Hop = (@™ | H]0)

o) |Hop =(@" | H|™)

abed
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We get the matrix equation

HC=CE

with the Hamiltonian matrix elements:

Hy, :<®K|H|(DL>

All we have to do is to diagonalize this matrix and we have found the exact
solution of the many-electron Schrodinger equation in a given basis!

We do not have to calculate all of the Hamiltonian matrix elements because some

of them are zero. There are simple rules (Slater-Condon rules) that help us to
know which ones (see script):

(D] [ {Bo|H|Do) s
(3| 0 (S|H|S)
(Dl | (D[H[®o) (DIH|S) (D|H|D)
H= p 0 (T|H|S) (T|H|D) (T|H|T)
Q 0 0 (QUEID) (QHIT) (QHQ)
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In practice: the number of determinants we have to include to do a full Cl
calculations is intractable in most cases!

(Nso) Nso!

Net) ™ Ng! (Ngg — Nep)!

Ex.: Benzene with 6-311G** basis:

# of determinants (24828 ) ~ 10>

We would have to calculate, store and diagonalize a 1052x1052 Matrix (ca. 10%
TByte!)

Full CI calculations have been performed as benchmarks studies for very small molecules. CIS is
sometimes used for approximate excited state calculations. Otherwise Cl is not used very often
because it is simply too expensive and other correlated methods give results of comparable quality
for a lower computational cost.
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Percentage of Correlation energy:

Molecule Basis Set CISD CISDT CISDTQ

BH DzZP 94.91 n/a 99.97

H>0 (R.) DZ 94.70 95.47 99.82

H,O (1.5 R.) DZ 89.39 91.15 99.48

H,O (2.0 R.) DZ 80.51 83.96 98.60

NH;3 DZ 94.44 95.43 99.84

HF DzZP 95.41 96.49 99.86

H} DzZP 96.36 96.87 99.96

e doubles contribute most to gs correlation
energy

e quadruples are more important than
triples (at least for energy)

e at stretched geometries CISD and
CISDT markedly poorer, CISDTQ ok

Number of CSF’s:

Molecule Basis set CISD CISDT CISDTC

BH DZP 568 n/a 28 698

H-0 DZ 361 3 203 17 678

NHs DZ 461 4 029 19 925

HF DZP 552 6 712 48 963

H} DZP 1271 24 468 248 149

(Handy et al., CPL 95, 386 (1983)

Schaefer et al.. JCP 100. 8132 (1994))

23

10



