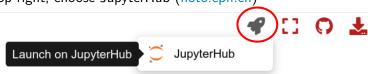


Exercise Session 2 IESM Fall 2024-2025


Yuri, Salomé, Sophia, Andrea, Víctor, Qihao

September 24, 2024



Notebook Reminders

 If you're on our exercise website click the rocket button on the top right, choose JupyterHub (noto.epfl.ch)

 Make sure to always activate (top right) the Computational Chemistry kernel

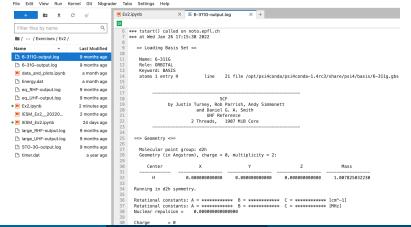
Notebook Reminders

- .iynb files organized in cells
 - Markdown (text)
 - Code
- You can edit the cells directly
- Run a code cell by pressing Play button (or Ctrl+Enter or Shift+Enter)

Psi4 Introduction

- Psi4 Manual
- Open-Source ab initio electronic structure software package
- Allows for calculations such as: HF, CI, DFT, molecular energies/structures, reaction mechanisms, transition state search, vibrational frequencies, molecular orbitals/densities, geometry optimization, atomic charges, electrostatic potentials, NMR properties, and more
- Other electronic structure software you may know: Gaussian, CP2K, CPMD, Quantum Espresso, ORCA, NWChem

Psi4 with Python


- We can use Psi4 as a python module with PsiAPI directly in Jupyter Notebooks
- We import Psi4 and use the psi4 directive to ask Psi4 to perform an action

```
[1]: import psi4
     import pandas as pd
     import numpy as np
     import matplotlib.pvplot as plt
     plt.style.use(['seaborn-poster', 'seaborn-ticks'])
[2]: psi4.set_memory('2 GB')
     psi4.set num threads(2)
       Memory set to 1.863 GiB by Python driver.
       Threads set to 2 by Python driver.
[3]: h = psi4.geometry("""
     H 0.0 0.0 0.0
     .....)
```


Viewing Output

- We often set an output file (usually a .log file) to store information from a calculation
- You can find them in the lefthand navigation directory

Linux & Terminal

Linux bash commands in notebooks (cell starts with !)

```
| grep 'iter' large_RHF-output.log

@DF-RHF iter 1: -0.73775656591694 -7.37757e-01 2.26180e-02 DIIS

@DF-RHF iter 2: -0.74503745659583 -7.28089e-03 2.27444e-03 DIIS

@DF-RHF iter 3: -0.74511202947724 -7.45729e-05 5.15094e-06 DIIS

@DF-RHF iter 4: -0.74511202986000 -3.82762e-10 6.49170e-09 DIIS
```

 Linux commands (even Psi4 calculations) directly via a terminal view of your notebooks

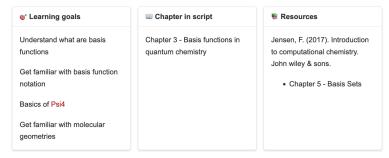
Jupyter Servers

 "Noto can run up to 15 parallel Jupyter backend servers to provide a total of up to 240 GB of RAM and 240 CPU, shared between all users. Our current policy is to allocate up to a maximum of 2 GB of RAM and 2 CPUs per user."

Node > Socket > Core (independent processing unit)

Intel Sandybridge socket with eight cores

Stampede node with two sockets and a co-processor


Server room

(Images from TACC HPC textbook)

Exercise 2 - Basis Sets & Psi4

First steps in Psi4 - Exercise page

- Understand what are basis functions
- Get familiar with basis function notation
- Basics of Psi4
- Get familiar with molecular geometries

10 / 10

Exercise 2 - Tips

Tips!

- Please focus on understanding basis sets well first and then getting familiar with Psi4:
- Practice single-point calculations for an H-atom and water molecule with psi4.energy() commands
 - Requires input geometry (Z-matrix or Cartesian coordinates)
 - Psi4 finds lowest energy combination of wavefunction coefficients for the given geometry
 - By comparing energy values with different basis sets we can discuss the effect of basis set selections on accuracy and cost (Additional note: is the total energy always meaningful? – think about that expecially in the H₂O exercise)
 - We will compute the energy of the system with the selected basis set and a method of choice. In this exercise we will always be UHF (unrestricted Hartree Fock), but don't worry too much about it for now: you will get familiar with this and other methods in the next lecutres/exercises!