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   Problem to solve: 

Chapter 3: 
How to represent Y

Chapter 4: Hartree-Fock
(first approximate method
to solve this equation)
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4. The Hartree-Fock Method

Simplest Ansatz for the many-electron wavefunction Y:

Y=Y EĤ
Electronic Schrödinger
equation for many electron 
system 

(compact notation)

Kinetic 
energy 
operator

Potential due 
to electron – 
nucleus 
attraction

nucleus-
nucleus 
repulsion 
potential                          

electron – 
electron 
repulsion

1 single Slater determinant

≈ M

Hartree (1927) – Fock (1930) Approximation

This is a constant for a fixed set of nuclear
coordinates
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Vladimir Fock 

1898-1974

Douglas Rayner Hartree 

1897-1958
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1) Why is the description of the many-electron wavefunction as a single 
Slater determinant an approximation? 

2) For which system would this Ansatz be exact? 

Quiz VIII: Hartree-Fock Approximation
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Shorthand Notations
- one electron operator         (all the terms of 
the Hamiltonian that depend on 1 electron 
only) 

- two electron operator              (the term 
of the Hamiltonian that depends on 2 
electrons)   

- electronic Hamiltonian in shorthand form 

- one electron integrals 

- two electron integrals (Chemist’s notation) 

ϕi ĥ ϕ j =

ϕiϕ j ϕkϕl
!" #$=

(combined coordinate for
the position ri and the spin si
of electron i)

)

bra-ket notation 
= ik jl

- antisymmetrized two electron integrals 

!𝑖𝑗‖ ⟩𝑘𝑙 = 𝑖𝑗 𝑘𝑙 − 𝑖𝑗 𝑙𝑘
= "𝑑𝑥!𝑑𝑥" 𝜙#∗ 𝑥! 𝜙%∗ 𝑥"

1
𝑟!"

𝜙& 𝑥! 𝜙' 𝑥"

−"𝑑𝑥!𝑑𝑥" 𝜙#
∗ 𝑥! 𝜙%

∗ 𝑥"
1
𝑟!"

𝜙' 𝑥! 𝜙& 𝑥"

= [𝑖𝑘‖ ]𝑗𝑙

fi fj

fifjIfkfl
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How do we find the Hartree-Fock solution 
(EHF and YHF) of the Schrödinger Equation?

- this formula tells us how to calculate the total Hartree-Fock energy EHF once we know the 
wavefunction YHF . But how do we find YHF ?

- for this we can use the variational theorem that tells us that the correct wavefunction among 
all possible Slater determinants is the one for which EHF is minimal

- As always when we want to determine the expectation value of a quantum operator we 
   multiply to the left with the conjugate complex of the wavefunction and integrate over all 
  space: 

HFHFHFHFelHF EH YY=YY ˆ
HFHF

HFelHF
HF

H
E

YY

YY
=

ˆ

For an orthonormal YHF

dVHHE HFel
V

HFHFelHFHF YY=YY= ò ˆˆ *

YY<YY= elHFelHF HHE ˆˆ
min

-That means that in order to find the Hartree-Fock wavefunction we have to minimize the
 energy expression EHF with respect to changes in the one electron orbitals fi → fi + dfi from which 
we construct the Slater determinant Y. The set of one electron orbitals fi for which we obtain the 
lowest energy are the Hartree-Fock orbitals, i.e. the solutions to the Hartree-Fock equations.
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Hartree-Fock Energy Expression
Let’s look at this in detail…we first start with the Hartree-Fock energy expression EHF:

What kind of  energy 
expression do we get 
if  we use our 1 Slater 
determinant Ansatz 
for the wavefunction?

Example: Let’s look at this in the case of  a 2 electron system:

=> Appendix C of  the script!

Ψ =1/ n ϕ1ϕ2...ϕn! f1f2…fn
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Hartree-Fock Energy Expression

Ψ =1/ n ϕ1ϕ2...ϕn

Let’s look at this in detail…we first start with the Hartree-Fock energy expression EHF:

What kind of energy 
expression do we get if 
we use our 1 Slater 
determinant Ansatz for 
the wavefunction?

Let’s look at this in the case of a 2 electron system:

…etc..this example is solved explicitly in Appendix C of the script!

In the general n electron case we obtain

One electron          two electron integrals
integrals               

Coulomb integral
              J                                 K

Exchange integral

Restricted HF (n/2 orbitals)

Ψ =1/ 2 ϕ1ϕ2 =1/ 2[ϕ1(r1)ϕ2 (r2 )−ϕ1(r2 )ϕ2 (r1)]

EHF = 2 i
i

n/2

∑ ĥ i + 1
2

2Jij − Kij
ij

n/2

∑

Ψ =1/ n ϕ1ϕ2...ϕn! f1f2…fn

If1f2I = 1/ [f1(r1)f2 (r2) - f1(r2)f2 (r1)]
 

10

1) What is the energy expression if you use a simple Hartree product 
instead of an antisymmetrized product?

2) How large is the self-interaction energy (i.e. the interaction of an 
electron with itself v(i,j) for i=j) in Hartree-Fock?

3) Can you motivate Hund’s rule that for a given electronic configuration 
the term with the highest multiplicity has the lowest energy with the 
help of the Hartree-Fock energy expression?

Quiz IX: Hartree-Fock Energy Expression
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Hartree-Fock Equations
How do we find the Hartree-Fock wavefunction?
→ minimize the Hartree-Fock energy expression
     with respect to variations in the one-electron
     orbitals fi with the additional boundary condition
     that the orbitals have to remain orthonormal

Hartree-Fock Equations (1 Schrödinger equation for each 1 electron orbital fi)

f(x1): Fock operator

One electron Fock operator

Coulomb operator Exchange operator 

Mean electrostatic field of all the
other electrons

N.B. The Fock operator for electron i depends on all the other one-electron orbitals fj →
The Hartree-Fock equations have to be solved iteratively until self-consistency (Self-Consistent 
Field SCF method)

Derivation in Appendix 
D of the script!

^

^ ^ ^ ^^

^^
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Hartree-Fock Roothaan Equations

• Hartree-Fock equations are a set of coupled integro-differential equations to 
determine the Hartree-Fock molecular one-electron orbitals fi

• If we represent the fi in a basis (of atomic-like orbitals χ), the HF equations 
transform into matrix equations that were first derived by Roothaan

φi
!r1( ) = ciq

q
∑ χq

!r1( )

Unrestricted HF:
i = 1…n

Restricted HF:
i = 1…n/2

f̂i
!r1( ) = ĥi

!r1( )+ 2Ĵ j
!r1( )− K̂ j

!r1( )( )
j=1

n/2

∑

f̂i
!r1( )φi

!r1( ) = εiφi
!r1( )
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Clemens C. J. Roothaan

1918-2019

Hartree-Fock Equations in Matrix Form: Roothaan Equations
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Derivation of  the Roothaan Equations

(for closed-shell, restricted case)

φi
!r1( ) = ciq

q
∑ χq

!r1( )

f̂i
!r1( ) ciq

q
∑ χq

!r1( )
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟= εi ciq

q
∑ χq

!r1( )
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

Multiply from left with χ*p and integrate over all space:  

d!r1χ p
*
p
!r1( ) f̂i

!r1( ) ciq
q
∑ χq

!r1( )
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟∫ = εi d!r1χ p

*
p∫ ciq

q
∑ χq

!r1( )
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

ciq
q
∑ d!r1χ p

*
p
!r1( ) f̂i

!r1( )χq
!r1( )∫ = εi ciq

q
∑ d!r1χ p

*
p∫ χq
!r1( )

Fock matrix element

Fpq = d!r1χ p
*
p
!r1( ) f̂i

!r1( )χq
!r1( )∫ = p f̂ q

Overlap matrix element

Spq = d!r1χ p
*
p∫ χq
!r1( ) = p q
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Derivation of  the Roothaan Equations (2)

ciqFpq
q
∑ = εi ciqSpq

q
∑

Matrix equations:

FC = SCE
Transformation: 

F ' = S −1/2FS1/2 C ' = S −1/2C
Yields eigenvalue problem: 

F 'C ' =C 'E
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Self-Consistent Solutions of the Hartree-Fock Equations

(from wikipedia)
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Different Types of  HF Methods
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Performance of  Hartree-Fock
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Performance
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