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Quiz VIII: Hartree-Fock Approximation

1) Why is the description of the many-electron wavefunction as a single
Slater determinant an approximation?

2) For which system would this Ansatz be exact?

Shorthand Notations

- one electron operator & (all the terms of - two electron operator #(i,7) (the term
the Hamiltonian that depend on 1 electron  of the Hamiltonian that depends on 2
only) electrons)

- 1, Z
h(i) = —=V* — —_—
)= —5Vi Z\r,-R,\

o(i,j) = oy
1 J

- electronic Hamiltonian in shorthand form Ha=Y h(i)+ Y oi,j)+ Van
i i<j

- one electron integrals
<¢i h

- two electron integrals (Chemist’ s notation)

— . . X; = (1. 5)
o )= (ilh]7) = [ dxq] (x1)h(r1)dhs(x1) (combined coordinate for
the position riand the spin s;
of electron i)
bra-ket notation

- e . .
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. . . 1
- antisymmetrized two electron integrals — fdxldxz b; (x1)¢}‘ (x,) — b (x) P, ()
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How do we find the Hartree-Fock solution
(Eye and ¥¢) of the Schrodinger Equation?

- As always when we want to determine the expectation value of a quantum operator we
multiply to the left with the conjugate complex of the wavefunction and integrate over all

space:

(\PHF |]:1L)I|\PHF> By = (qJHF |[:Ie/ LPHF) = qu:lF[:]equHFdV
— v

(e [ W)

H,

< Wor

- this formula tells us how to calculate the total Hartree-Fock energy Enr once we know the
wavefunction Wye . But how do we find Wyr ?

\PHF>=EHF<lPHF|\PHF) Eyp =

For an orthonormal Wyr

- for this we can use the variational theorem that tells us that the correct wavefunction among
all possible Slater determinants is the one for which Eyr is minimal

E. = (‘PHF |];el quF) < (‘{I|I:[cl|\y>

-That means that in order to find the Hartree-Fock wavefunction we have to minimize the

energy expression Enr with respect to changes in the one electron orbitals ¢, — ¢; + 8¢, from which
we construct the Slater determinant . The set of one electron orbitals ¢; for which we obtain the
lowest energy are the Hartree-Fock orbitals, i.e. the solutions to the Hartree-Fock equations.

Hartree-Fock Energy Expression

Let’ s look at this in detail...we first start with the Hartree-Fock energy expression Ey¢:

What kind of energy , " .
expression do we get Eg=1{ ‘If|HEg| \If_}
if we use our 1 Slater

determinant Ansatz
for the wavefunction? =1/ n!| 010>...¢,

Example: Let’ s look at this in the case of a 2 electron system:

=> Appendix C of the script!
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Hartree-Fock Energy Expression

Let’ s look at this in detail...we first start with the Hartree-Fock energy expression Eu:

What kind of energy . .
expression do we get if Eg=¢{ ‘If|Hgg| o)
we use our 1 Slater

determinant Ansatz for

the wavefunction? W =1/~ l’l!| 0102...0,
Let’ s look at this in the case of a 2 electron system:
e (010 o2 W0 =1y [0 - e )
142
:( F)) ffil"lfh"z (1(r1)da(re) — d1(T2)021r1)) He (911X 05(T2) — @1(X2)05(r1))
V2,

...etc..this example is solved explicitly in Appendix C of the script!

In the general n electron case we obtain . .
Restricted HF (n/2 orbitals)

. 1 . n n
Epp — 23. (i) i)|+ EZ}: [id 5] . E11F=2§<il};|i>+%§2‘]y‘_l<ij
i ij

One electron two electron integrals

integrals . .
Coulomb integral Exchange integral

J
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Quiz IX: Hartree-Fock Energy Expression

1) What is the energy expression if you use a simple Hartree product
instead of an antisymmetrized product?

2) How large is the self-interaction energy (i.e. the interaction of an
electron with itself v(i,j) for i=j) in Hartree-Fock?

3) Can you motivate Hund'’s rule that for a given electronic configuration
the term with the highest multiplicity has the lowest energy with the
help of the Hartree-Fock energy expression?
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Hartree-Fock Equations

How do we find the Hartree-Fock wavefunction? 1
— minimize the Hartree-Fock energy expression Eyr = Z (i|h]i) + 5 Z[NUJ — [i4]41]
with respect to variations in the one-electron i T

orbitals ¢; with the additional boundary condition
that the orbitals have to remain orthonormal

mmm) Hartree-Fock Equations (1 Schrédinger equation for each 1 electron orbital ¢;)

A , o Derivation in Appendix
Jxu)oi(xy) = €i0i(x1) D of the script!

A
f(x4): Fock operator

A A A A
| J00) =hixa) + 3 Jixa) = K1)
// ‘\
Coulomb operator Exchange operator

A _ 2 -1
Ji(xy) = ./(FX2|(JJ(X2)‘ a2 }l&\'fj(xljoz(xl) = {[(/xgcﬁ»;‘(xﬂp-ﬁlc‘)](xz)} 0i(x1)

Mean electrostatic field of all the
other electrons

One electron Fock operator—

N.B. The Fock operator for electron i depends on all the other one-electron orbitals ¢; —
The Hartree-Fock equations have to be solved iteratively until self-consistency (Self-Consistent
Field SCF method)
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Hartree-Fock Roothaan Equations

» Hartree-Fock equations are a set of coupled integro-differential equations to
determine the Hartree-Fock molecular one-electron orbitals ¢

= IR iR Unrestricted HF:
(R)o(7)=eg(n) =

> Restricted HF:
R R n . ~ i=1...n/2
J1(7)=h(7)+ >(29,(7)- &, (7))

+ If we represent the ¢; in a basis (of atomic-like orbitals x), the HF equations
transform into matrix equations that were first derived by Roothaan

(%)= 2, (7)

q

14


appACD.pdf
appACD.pdf

Hartree-Fock Equations in Matrix Form: Roothaan Equations

Clemens C. J. Roothaan

1918-2019
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Derivation of the Roothaan Equations

(for closed-shell, restricted case)

(%)= 2eo, (7)

q

2eu()

q

7,(7)

=& Eciqxq (ﬁ)

q

Multiply from left with X*p and integrate over all space:

i, () 1(7)| Zewx, (7) | =2 f @iy | Degx,(7)

q q

- * [\ 7[> = * =
Eciqfdrlxp (ﬁ)fl (ri)Xq (rl) - gizciqfdaxpxq (rl)
q q
Fock matrix element Overlap matrix element

£, = [, (7) 7)) = (el ) 18, = S i, (7)=(pla)
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Derivation of the Roothaan Equations (2)

EC.F =8.EC.S
iq" pq i iq pq
q

q
Matrix equations:

FC=SCE

Transformation:
F! — S—I/ZFSI/Z C' _ S_1/2C

Yields eigenvalue problem:

F'C'=C'E
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Self-Consistent Solutions of the Hartree-Fock Equations

Input
3D Coordinates
of atomic nuclei

Initial Guess ]
Molecular Orbitals || Fock Mgtrlx
(1-electron vectors) Formation

Fock Matrix
Diagonalization

Calculate
Properties

End

(from wikipedia)
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Some Remarks:

Solution of the HF eqs.

— gives "the best” 1 determinant wf,
i.e. the Slater determinant with the
lowest possible energy (for this basis)
motions of electrons with the same
spin are correlated (Fermi hole)
exchange is exact

electrons with different spins move
independently — no electron correlation
HF is variational (HF energy > true

energy)
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leferent Types of HF Methods

Restricted Hartree-Fock (RHF)
(Roothaan 1951, Hall 1951)

closed-shell systems (spatial MO'’s doubly
occupied with one spin « and one spin 3
electron) (non degenerate singlet ground
state)

e restricted open-shell Hartree-Fock (ROHF)
(Rothaan 1961)
spatial MO'’s are singly or doubly occupied

e unrestricted Hartree-Fock (UHF)
(Pople-Nesbet 1954)
different spatial MO’s for « and 3 spins
Wavefunctions no longer eigen functions
of spin operator S? — occurrence of ’spin
contaminated’ states: Example: Li atom

ROHF |1s22s]| doublet
UHF |1sqlsg2s,| lower energy
but not pure doublet
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rerformance or Hartree-rFock

Relative good performance:

e structural properties:
(bond distances ~0.054, bond angles ~ 5°,
torsional angles ~ 10°

e enthalpies for isodesmic reactions:
(error ~ 2-4 kcal/mol)

e barriers for internal rotations

Relative bad performance:

whole PES

vibrational frequencies:

systematically too high (10-12 %)

reaction energies:

homolytic bond breaking (~ 25-40 kcal/mol
off), protonations ( ~ 10 kcal/mol off)

transition states

excited states

e alkali metals (e.g. Lis, Nas..)

transition metal complexes (e.g. ferrocene)

systems with low lying excited states
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Performance
Wrong results
e dissociation to open-shell fragments
e dispersion interactions:
e.g. Arz not bound
£ F_}
22
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