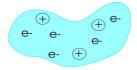
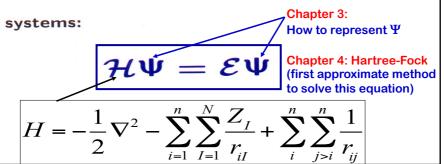
Problem to solve:

Solution of the

- electronic
- time-independent
- non relativistic



Schrödinger equation for many electron

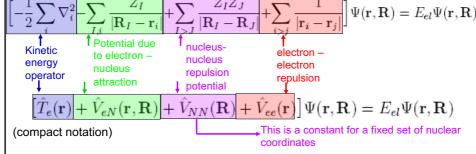


1

4. The Hartree-Fock Method

Electronic Schrödinger equation for many electron system

$$\hat{H}\Psi = E\Psi$$



Simplest Ansatz for the many-electron wavefunction Ψ :

1 single Slater determinant

$$\Psi = \Psi(\mathbf{r}_1, \mathbf{r}_2, \dots, \mathbf{r}_N) \ \thickapprox \mathsf{M} |\phi_1, \phi_2, \dots, \phi_N|$$

Hartree (1927) - Fock (1930) Approximation

Douglas Rayner Hartree

1897-1958

Vladimir Fock

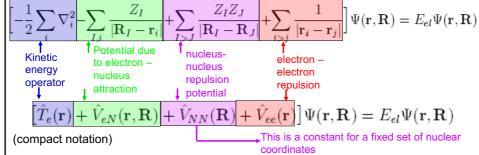
1898-1974

3

4. The Hartree-Fock Method

Electronic Schrödinger equation for many electron system

 $\hat{H}\Psi = E\Psi$



Simplest Ansatz for the many-electron wavefunction Ψ :

1 single Slater determinant

$$\Psi = \Psi(\mathbf{r}_1, \mathbf{r}_2, \dots, \mathbf{r}_N) \ \thickapprox \mathsf{M} |\phi_1, \phi_2, \dots, \phi_N|$$

Hartree (1927) - Fock (1930) Approximation

Quiz VIII: Hartree-Fock Approximation

- Why is the description of the many-electron wavefunction as a single Slater determinant an approximation?
- 2) For which system would this Ansatz be exact?

5

Shorthand Notations

- one electron operator \hat{h} (all the terms of - two electron operator $\hat{v}(i,j)$ (the term the Hamiltonian that depend on 1 electron of the Hamiltonian that depends on 2 electrons)

$$\hat{h}(i) = -\frac{1}{2}\nabla_i^2 - \sum_I \frac{Z_I}{|\mathbf{r}_i - \mathbf{R}_I|}$$

- electronic Hamiltonian in shorthand form

$$\hat{H}_{el} = \sum_{i} \hat{h}(i) + \sum_{i < j} \hat{v}(i, j) + V_{NN}$$

- one electron integrals

$$\langle \dot{\mathbf{\phi}}_i | \hat{\mathbf{h}} | \dot{\mathbf{\phi}}_j \rangle = \langle i | h | j \rangle = \int d\mathbf{x}_1 \phi_i^*(\mathbf{x}_1) h(\mathbf{r}_1) \phi_j(\mathbf{x}_1)$$

 $\mathbf{x}_i = (\mathbf{r}_i, s_i))$ (combined coordinate for the position ri and the spin si of electron i)

- two electron integrals (Chemist's notation)

$$\left[\begin{array}{c} \boldsymbol{\varphi}_{i}\boldsymbol{\varphi}_{j}\boldsymbol{\mathsf{I}}\boldsymbol{\varphi}_{k}\boldsymbol{\varphi}_{l} \end{array}\right] = \left[ij|kl\right] = \int d\mathbf{x}_{1}d\mathbf{x}_{2}\phi_{i}^{*}(\mathbf{x}_{1})\phi_{j}(\mathbf{x}_{1})\frac{1}{r_{12}}\phi_{k}^{*}(\mathbf{x}_{2})\phi_{l}(\mathbf{x}_{2}). \end{array}\right] = \left\langle ik\left|jl\right\rangle$$

- two electron integrals (Chemist's notation) of electron i)
$$\begin{bmatrix} \phi_i \phi_j | \phi_k \phi_l \end{bmatrix} = \begin{bmatrix} ij|kl] = \int d\mathbf{x}_1 d\mathbf{x}_2 \phi_i^*(\mathbf{x}_1) \phi_j(\mathbf{x}_1) \frac{1}{r_{12}} \phi_k^*(\mathbf{x}_2) \phi_l(\mathbf{x}_2). \end{bmatrix} = \langle ik | jl \rangle$$
 - antisymmetrized two electron integrals
$$= \int d\mathbf{x}_1 d\mathbf{x}_2 \, \phi_i^*(\mathbf{x}_1) \phi_j^*(\mathbf{x}_2) \frac{1}{r_{12}} \, \phi_k(\mathbf{x}_1) \phi_l(\mathbf{x}_2)$$

$$\langle ij||kl\rangle = \langle ij|kl\rangle - \langle ij|lk\rangle \qquad - \int d\mathbf{x}_1 d\mathbf{x}_2 \, \phi_i^*(\mathbf{x}_1) \phi_j^*(\mathbf{x}_2) \frac{1}{r_{12}} \, \phi_l(\mathbf{x}_1) \phi_k(\mathbf{x}_2)$$

$$= [ik||jl]$$

How do we find the Hartree-Fock solution (E_{HF} and Ψ_{HF}) of the Schrödinger Equation?

 As always when we want to determine the expectation value of a quantum operator we multiply to the left with the conjugate complex of the wavefunction and integrate over all space:

$$\left\langle \Psi_{HF} \left| \hat{H}_{el} \right| \Psi_{HF} \right\rangle = E_{HF} \left\langle \Psi_{HF} \left| \Psi_{HF} \right. \right\rangle$$

$$E_{HF} = \frac{\left\langle \Psi_{HF} \middle| \hat{H}_{el} \middle| \Psi_{HF} \right\rangle}{\left\langle \Psi_{HF} \middle| \Psi_{HF} \right\rangle}$$

$$E_{HF} = \left\langle \Psi_{HF} \left| \hat{H}_{el} \right| \Psi_{HF} \right\rangle = \int_{V} \Psi_{HF}^* \hat{H}_{el} \Psi_{HF} dV$$

For an orthonormal Ψ_{HF}

- this formula tells us how to calculate the total Hartree-Fock energy E_{HF} once we know the wavefunction Ψ_{HF} . But how do we find Ψ_{HF} ?
- for this we can use the variational theorem that tells us that the correct wavefunction among all possible Slater determinants is the one for which E_{HF} is minimal

$$E_{\min} = \left\langle \Psi_{HF} \left| \hat{H}_{el} \right| \Psi_{HF} \right\rangle < \left\langle \Psi \left| \hat{H}_{el} \right| \Psi \right\rangle$$

-That means that in order to find the Hartree-Fock wavefunction we have to minimize the energy expression E_{HF} with respect to changes in the one electron orbitals $\phi_i \to \phi_i + \delta \phi_i$ from which we construct the Slater determinant Ψ . The set of one electron orbitals ϕ_i for which we obtain the lowest energy are the Hartree-Fock orbitals, i.e. the solutions to the Hartree-Fock equations.

8

Hartree-Fock Energy Expression

Let's look at this in detail...we first start with the Hartree-Fock energy expression E_{HF}:

What kind of energy expression do we get if we use our 1 Slater determinant Ansatz for the wavefunction?

$$E_{el} = \langle \Psi | \hat{H}_{el} | \Psi \rangle$$

$$\Psi = 1/\sqrt{n} | \phi_1 \phi_2 \dots \phi_n \rangle$$

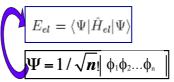
Example: Let's look at this in the case of a 2 electron system:

=> Appendix C of the script!

Hartree-Fock Energy Expression

Let's look at this in detail...we first start with the Hartree-Fock energy expression E_{HF}:

What kind of energy expression do we get if we use our 1 Slater determinant Ansatz for the wavefunction?



Let's look at this in the case of a 2 electron system:

$$\begin{split} E_{HF} = &\langle \Psi | \hat{H}_{el} | \Psi \rangle \\ = & \left(\frac{1}{\sqrt{2}} \right)^2 \int d\mathbf{r}_1 d\mathbf{r}_2 \left(\phi_1(\mathbf{r}_1) \phi_2(\mathbf{r}_2) - \phi_1(\mathbf{r}_2) \phi_2(\mathbf{r}_1) \right) \\ = & \left(\frac{1}{\sqrt{2}} \right)^2 \int d\mathbf{r}_1 d\mathbf{r}_2 \left(\phi_1(\mathbf{r}_1) \phi_2(\mathbf{r}_2) - \phi_1(\mathbf{r}_2) \phi_2(\mathbf{r}_1) \right) H_{el} \left(\phi_1^*(\mathbf{r}_1) \phi_2^*(\mathbf{r}_2) - \phi_1^*(\mathbf{r}_2) \phi_2^*(\mathbf{r}_1) \right) \end{split}$$

...etc..this example is solved explicitly in Appendix C of the script!

In the general n electron case we obtain

Restricted HF (n/2 orbitals)
$$E_{HF} = \sum_{\pmb{i}} \frac{\langle \pmb{i} | \pmb{h} | \pmb{i} \rangle}{\langle \pmb{i} | \pmb{h} | \pmb{i} \rangle} + \frac{1}{2} \sum_{\pmb{i} j} \frac{[\pmb{i} \pmb{i} | \pmb{j} \pmb{j}]}{[\pmb{i} \pmb{i} | \pmb{j} \pmb{j}]} - \frac{[\pmb{i} \pmb{j} | \pmb{j} \pmb{i}]}{[\pmb{i} \pmb{j} | \pmb{j} \pmb{j}]}$$
 One electron two electron integrals integrals
$$Coulomb \text{ integral}$$
 Exchange integral

10

Quiz IX: Hartree-Fock Energy Expression

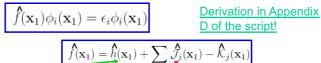
- 1) What is the energy expression if you use a simple Hartree product instead of an antisymmetrized product?
- 2) How large is the self-interaction energy (i.e. the interaction of an electron with itself v(i,j) for i=j) in Hartree-Fock?
- 3) Can you motivate Hund's rule that for a given electronic configuration the term with the highest multiplicity has the lowest energy with the help of the Hartree-Fock energy expression?

How do we find the Hartree-Fock wavefunction?

→ minimize the Hartree-Fock energy expression with respect to variations in the one-electron orbitals φ_i with the additional boundary condition that the orbitals have to remain orthonormal

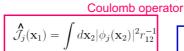
$$E_{HF} = \sum_{i} \langle i|h|i\rangle + \frac{1}{2} \sum_{ij} [ii|jj] - [ij|ji$$

Hartree-Fock Equations (1 Schrödinger equation for each 1 electron orbital ⟨₀⟩



 $f(\mathbf{x}_1)$: Fock operator

One electron Fock operator



Exchange operator

$$\overset{\wedge}{\mathcal{K}_j}(\mathbf{x}_1)\phi_i(\mathbf{x}_1) = \left[\int d\mathbf{x}_2 \phi_j^*(\mathbf{x}_2) r_{12}^{-1} \phi_i(\mathbf{x}_2) \right] \phi_j(\mathbf{x}_1)$$

Mean electrostatic field of all the other electrons

N.B. The Fock operator for electron i depends on all the other one-electron orbitals $\varphi_j \to$ The Hartree-Fock equations have to be solved iteratively until self-consistency (Self-Consistent Field SCF method)

13

Hartree-Fock Roothaan Equations

 Hartree-Fock equations are a set of coupled integro-differential equations to determine the Hartree-Fock molecular one-electron orbitals φ_i

$$\hat{f}_i(\vec{r}_1)\phi_i(\vec{r}_1) = \varepsilon_i\phi_i(\vec{r}_1)$$

Unrestricted HF:

i = 1...n

Restricted HF: i = 1...n/2

$$\hat{f}_{i}(\vec{r}_{1}) = \hat{h}_{i}(\vec{r}_{1}) + \sum_{j=1}^{n/2} (2\hat{J}_{j}(\vec{r}_{1}) - \hat{K}_{j}(\vec{r}_{1}))$$

• If we represent the ϕ_i in a basis (of atomic-like orbitals χ), the HF equations transform into matrix equations that were first derived by Roothaan

$$\phi_i(\vec{r}_1) = \sum_q c_{iq} \chi_q(\vec{r}_1)$$

Hartree-Fock Equations in Matrix Form: Roothaan Equations

Clemens C. J. Roothaan

1918-2019

15

Derivation of the Roothaan Equations

(for closed-shell, restricted case)

$$\phi_{i}(\vec{r}_{1}) = \sum_{q} c_{iq} \chi_{q}(\vec{r}_{1})$$

$$\hat{f}_{i}(\vec{r}_{1}) \left(\sum_{q} c_{iq} \chi_{q}(\vec{r}_{1}) \right) = \varepsilon_{i} \left(\sum_{q} c_{iq} \chi_{q}(\vec{r}_{1}) \right)$$

Multiply from left with χ^*_p and integrate over all space:

$$\int d\vec{r}_{1} \chi_{p}^{*} (\vec{r}_{1}) \hat{f}_{i} (\vec{r}_{1}) \left(\sum_{q} c_{iq} \chi_{q} (\vec{r}_{1}) \right) = \varepsilon_{i} \int d\vec{r}_{1} \chi_{p}^{*} \left(\sum_{q} c_{iq} \chi_{q} (\vec{r}_{1}) \right)$$

$$\sum_{q} c_{iq} \int d\vec{r}_{1} \chi_{p}^{*}(\vec{r}_{1}) \hat{f}_{i}(\vec{r}_{1}) \chi_{q}(\vec{r}_{1}) = \varepsilon_{i} \sum_{q} c_{iq} \int d\vec{r}_{1} \chi_{p}^{*} \chi_{q}(\vec{r}_{1})$$
where the property element are covering matrix element.

Overlap matrix element

$$F_{pq} = \int d\vec{r}_{1} \chi_{p}^{*} (\vec{r}_{1}) \hat{f}_{i} (\vec{r}_{1}) \chi_{q} (\vec{r}_{1}) = \langle p | \hat{f} | q \rangle$$

$$S_{pq} = \int d\vec{r}_{1} \chi_{p}^{*} \chi_{q} (\vec{r}_{1}) = \langle p | q \rangle$$

$$S_{pq} = \int d\vec{r}_1 \chi_p^* \chi_q(\vec{r}_1) = \langle p | q \rangle$$

Derivation of the Roothaan Equations (2)

$$\sum_{q} c_{iq} F_{pq} = \varepsilon_i \sum_{q} c_{iq} S_{pq}$$

Matrix equations:

$$FC = SCE$$

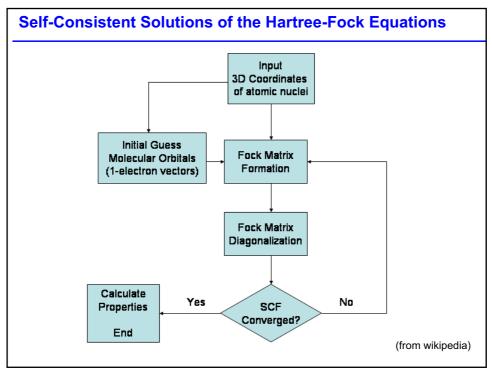
Transformation:

$$F' = S^{-1/2}FS^{1/2}$$
 $C' = S^{-1/2}C$

Yields eigenvalue problem:

$$F'C' = C'E$$

17



Some Remarks:

- Solution of the HF eqs.
 - → gives "the best" 1 determinant wf, i.e. the Slater determinant with the lowest possible energy (for this basis)
- motions of electrons with the same spin are correlated (Fermi hole)
- exchange is exact
- electrons with different spins move independently → no electron correlation
- HF is variational (HF energy > true energy)

19

Different Types of HF Methods

- Restricted Hartree-Fock (RHF) (Roothaan 1951, Hall 1951) closed-shell systems (spatial MO's doubly occupied with one spin α and one spin β electron) (non degenerate singlet ground state)
- restricted open-shell Hartree-Fock (ROHF)
 (Rothaan 1961)
 spatial MO's are singly or doubly occupied
- unrestricted Hartree-Fock (UHF)
 (Pople-Nesbet 1954)
 different spatial MO's for α and β spins
 Wavefunctions no longer eigen functions
 of spin operator S² → occurrence of 'spin
 contaminated' states: Example: Li atom

 $\begin{array}{ll} {\sf ROHF} \ |1s^22s| & {\sf doublet} \\ {\sf UHF} \ |1s_{\alpha}1s_{\beta}2s_{\alpha}| \ |{\sf lower \ energy} \\ & {\sf but \ not \ pure \ doublet} \end{array}$

Performance of Hartree-Fock

Relative good performance:

- structural properties: (bond distances $\sim\!0.05\mbox{\normale}$, bond angles $\sim5^\circ$, torsional angles $\sim10^\circ$
- enthalpies for isodesmic reactions: (error ~ 2-4 kcal/mol)
- barriers for internal rotations

Relative bad performance:

- whole PES
- vibrational frequencies: systematically too high (10-12 %)
- reaction energies: homolytic bond breaking (\sim 25-40 kcal/mol off), protonations (\sim 10 kcal/mol off)
- transition states
- excited states
- alkali metals (e.g. Li₂, Na₂..) transition metal complexes (e.g. ferrocene)
- systems with low lying excited states

21

Performance

Wrong results

- dissociation to open-shell fragments
- dispersion interactions:
 e.g. Ar₂ not bound
- **F**₂